© Springer-Verlag Berlin Heidelberg 2016 R. Gerecke, T. Gledhill, V. Pešić, H. Smit, Süßwasserfauna Von Mitteleuropa, Bd. 7

Total Page:16

File Type:pdf, Size:1020Kb

© Springer-Verlag Berlin Heidelberg 2016 R. Gerecke, T. Gledhill, V. Pešić, H. Smit, Süßwasserfauna Von Mitteleuropa, Bd. 7 Hydrachnidia 377 9-123: Hydrachnidia, plesiotypical idiosoma organization, dorsal view (from Davids et al. 2007). Terminology following Lundblad 1927 (in parentheses: following Zahvatkin 1952, after Tuzovskij 1987). Explanation of abbreviations: Zahvatkin 1952 Lundblad 1927 – Fr: Frontale Fch: frontalis chelicerarum Dgl-1: Dorsoglandulare 1 (Antenniforme) Vi: verticalis interna Dgl-2: Dorsoglandulare 2 Oe: occipitalis externa Dgl-3: Dorsoglandulare 3 Hi: humeralis interna Dgl-4: Dorsoglandulare 4 Sci: scapularis interna Dgl-5: Dorsoglandulare 5 Li: lumbalis interna Dgl-6: Dorsoglandulare 6 Si: sacralis interna Dgl-7: Dorsoglandulare 7 (= Vgl-4, Ventroglandulare 4) Ve: verticalis externa Lgl-1: Lateroglandulare 1 He: humeralis externa Lgl-2: Lateroglandulare 2 Sce: scapularis externa Lgl-3: Lateroglandulare 3 Le: lumbalis externa Lgl-4: Lateroglandulare 4 Oi: occipitalis interna Postoc: Postoculare Fp: frontalis pedipalporum Preoc.: Preoculare – Dc-1-4: Dorsocentralia 1-4 – Dl-1-4: Dorsolateralia 1-4 © Springer-Verlag Berlin Heidelberg 2016 R. Gerecke, T. Gledhill, V. Pešić, H. Smit, Süßwasserfauna von Mitteleuropa, Bd. 7/2-3 Chelicerata, Süßwasserfauna von Mitteleuropa, DOI 10.1007/978-3-8274-2689-5_1 378 Hydrachnidia 9-124: Hydrachnidia, plesiotypical idiosoma organization, ventral view (from Davids et al. 2007). Terminol- ogy following Lundblad 1927 (in parentheses, following Zahvatkin 1952, after Tuzovskij 1987). Explanation of abbreviations: Ac-1-3: Acetabulum 1-3 An: Anus Genpl: Genital plate Pregen: Pregenital plate Postgen: Postgenital plate Zahvatkin 1952 Lundblad 1927 – Cx-1-4: first to fourth coxae Hv: humeralis ventralis Cxgl-2: Coxoglandulare 2 (Cxgl-1 and -3 not existing) Sce: scapularis externa Cxgl-4: Coxoglandulare 4 Si: sacralis interna Dgl-7: Dorsoglandulare 7 (= Vgl-4: Ventroglandulare 4) Pi: praeanalis interna Vgl-1: Ventroglandulare 1 Se: sacralis externa Vgl-2: Ventroglandulare 2 Ci: caudalis interna Vgl-3: Ventroglandulare 3 – V-1-4: Ventralia 1-4 Hydrachnidia 379 9-125: a-d, Hydrachnidia, gnathosoma and its appendages in lateral view, example of Thyopsis cancellata (Protz, 1896) (from Davids et al. 2007); a, gnathosoma and left palp; b, right palp laterally (indicating num- bering of segments and traditional segment terminology); c, chelicera; d, palp indicating important measure- ment distances (L = length, H = height); e, Hydrachnidia, schematical lateral view; dashed lines indicate hy- pothetical segment borders (for abbreviations see Figs 8-75-76, frontal eye posterodorsally, paired lateral eyes posterolaterally from Dgl-2; setae Ce reduced in most taxa, developed only in postlarval instars of Limnochares and Pontarachnidae; after Tuzovskij 1987). 380 Hydrachnidia 9-126: Hydrachnidia, habitus (from Davids et al. 2007); a, Wandesia female, ventral view (from Di Sabatino et al. 2002); b, Hydrovolzia male, ventral view (detail: glandulare); c, Hydrovolzia male, dorsal view (arrow: dorsal furrow), d, Panisopsis male, dorsal view (from Di Sabatino et al. 2002), e, Sperchon male, ventral view (detail: glandulare); f, Arrenurus male, ventral view; g, Aturus female, ventral view, h, Ljania male, ventral view. 381 Hydrachnidia, key to superfamilies 1 Legs with three claw-like, sickle-shaped appendages: paired, ventrally pectinate, true claws, and an empodium similar in shape, but without pectination; idiosoma vermiform, without muscle attachment sclerites; rod-shaped frontal sclerite (8-79 a) with one unpaired, and three paired setae; eyes strongly reduced or completely absent; legs covered by rather uniform hairs over the segment surface ("hyper- trichous"); palp compact (8-80 a), P-1-3 fused, P-4+5 forming a functional unit; P-5 without claws, bearing one stiff terminal seta; pale reddish species of interstitial waters. ....................... ����������������������������������������������������������������������������������������������������Stygothrombioidea (Vol. I, page 289) – Legs with two (or occasionally less) claw-like appendages (8-79 h-k): empodium not claw like; claws rarely with ventral pectination; idiosoma rarely vermiform (8-78 a), with or without muscle attachment sclerites; if a rod-shaped frontal sclerite is present (e. g., 8-79 b), never bearing an unpaired anterior seta; eyes various, in most cases with paired lateral eyes, sometimes also with an unpaired frontal eye (8- 79 e, g); legs rarely hypertrichous, in general with distal margin setae stronger than setae on remaining segment surface (8-79 h-k); palp various (8-80 b, e-f, h-i, l-o), P-5 generally with claws, rarely bearing only one stiff terminal seta. ��������������������������������������������������������������������������������������������������������������������2 2 (1) Palp chelate (P-4 forming a chela with P-5) and P-1 longer than P-2, P-3 longer than P-4, P-4 reduced in size, maximum height of palps in P-1, the following segments gradually tapering (8-80 b); gnatho- soma in ventral view characteristically narrowed at the base of the slender, pointed rostrum (8-80 b, d), chelicerae needle-like (basal segment + claw fused to a single unit, 8-80 c); genital field (8-81 c) with maximum width in the anterior part, bearing numerous acetabula located anteriorly from, or on the level of, the anterior margin of the gonopore; rather large, globular red species of standing waters. ....... ���������������������������������������������������������������������������������������������������������� Hydrachnoidea (Vol. I, page 333) – If palp chelate, neither P-1 longer than P-2, nor P-4 shorter than P-3, maximum height of palps in general in segments P-2-4 (8-80 e-f, h-i, l-o); gnathosomal rostrum, if present, generally not pointed (8-80 i), chelicerae two-segmented, not needle-like (8-80 k, p); genital field various in shape, if numer- ous acetabula present, they are arranged in a different manner or the genital field has not its maximum width anteriorly from the gonopore (8-81 a-b, e, h, m-o); larger or smaller species, various in colour and shape. 3 3 (2) Lateral eyes, if present, incorporated into a frontal sclerite (8-79 b-d, f); palps not chelate (8-80 e-f, h), in some groups transformed by fusion of segments (e. g., 8-80 f), claws of P-5 straight (8-80 h) or reduced to fine tips (8-80 f); mouth opening surrounded by a circular, membranous fringe (8-80 g) or (in Apheviderulicidae, so far not recorded from the study area, 8-80 f) reduced to a fine slit in the centre of a conspiciously enlarged gnathosoma; acetabula numerous, or on roundish sclerites flanking the gonopore (8-81 a), or in the membranous perigenital area (8-81 b), or extremely reduced in size scattered all over the membranous idiosoma surface (8-81 d); glandular openings occasionally with semilunar, fan-shaped openings (8-79 f, 8-81 a); large, red species of temporary and permanent standing waters (outside the study area also pale inhabitants of springs and interstitial waters). ............................. ��������������������������������������������������������������������������������������������������������������������Eylaoidea (Vol. I, page 301) – Lateral eyes, if present, not incorporated into a frontal sclerite (but occasionally very close to such a sclerite, 8-79 g); palps various in shape, P-5 in general with hook-like distal claw setae (8-80 i, l-o); mouth opening various, but neither surrounded by a circular fringe, nor in the centre of an extremely enlarged idiosoma; acetabula in three pairs or numerous (8-81 e-o), in rare cases invisible by light microscope; glandular openings never fan-shaped (8-79 e, g). ��������������������������������������������������������������4 4 (3) I/II-L directed anteriorly, III/IV-L directed posteriorly, the two leg groups separated by a large interspace (8-78 b); genital field minute, in the centre of the ventral idiosoma, devoid of acetabula (these numerous, mostly invisible in light microscope and inserted as minute cups on the medial coxal surface); in the postgenital area two large unpaired plates, the anterior one with the anal pore, or all perigenital plates and platelets fused to a shield embracing the genital field; dorsum with two shields in "T" position (8- 78 c); glandular openings and setae on paired paletelets (8-78 b, arrow); flattened inhabitants of springs, cascades and interstital waters. Hydrovolzioidea (Vol. I, page 294) – If legs arranged in two groups, they are not orientated into two opposite directions, and the interspace is less extended (8-78 a, d); genital field various, (with the exception of the marine Pontarachnidae) always with groups of acetabula arranged in various ways (8-81 e-o); if dorsal shields present, not arranged in a "T" position; glandularia and their associated setae together on one single platelet (8-79 e, g, arrow) ����������������������������������������������������������������������������������������������������������������������������������������������������������������5 382 Hydrachnidia, key to superfamilies 9-127: Hydrachnidia (from Davids et al. 2007); a-g, frontal sclerites, h-k, legs; a, Stygothrombium; b, Limno- chares; c-d, Eylais; e, Euthyas; f, Piersigia; g, Hydryphantes; h, Parathyas IV-L; i, Hydryphantes (Polyhydry- phantes), IV-L; k, Trichothyas I-L. Hydrachnidia, key to superfamilies 383 5 (4) Palps chelate (8-77 a-b, d, 8-80 i, arrow: P-4 with a dorsal extension or a heavy dorsal seta dorsally flanking P-5); idiosoma smooth or with regularly arranged muscle insertion sclerites (8-78 d), only in exceptional cases with extended dorsal and ventral shields; acetabula
Recommended publications
  • On the Taxonomic State of Water Mite Taxa (Acari: Hydrachnidia) Described from the Palaearctic, Part 3, Hygrobatoidea and Arrenuroidea with New Faunistic Data
    Zootaxa 3981 (4): 542–552 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3981.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:861CEBBE-5277-4E4C-B3DF-8850BEDD2A23 On the taxonomic state of water mite taxa (Acari: Hydrachnidia) described from the Palaearctic, part 3, Hygrobatoidea and Arrenuroidea with new faunistic data HARRY SMIT1, REINHARD GERECKE2, VLADIMIR PEŠIĆ3 & TERENCE GLEDHILL4 1Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands. E-mail: [email protected] 2Biesingerstr. 11, 72070 Tübingen, Germany. E-mail: [email protected] 3Department of Biology, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro. E-mail: [email protected] 4Freshwater Biological Association, The Ferry House, Far Sawrey, Ambleside, Cumbria LA22 0LP, United Kingdom. E-mail: [email protected] Abstract Following revision of material from museum collections and recent field work, new taxonomic and faunistic data are given for several representatives of the water mite superfamilies Hygrobatoidea and Arrenuroidea. Ten new synonyms are established: Family Limnesiidae: Limnesia martianezi Lundblad, 1962 = L. arevaloi arevaloi K. Viets, 1918; Limnesia jaczewskii Biesiadka, 1977 = Limnesia connata Koenike, 1895. Family Hygrobatidae: Hygro- bates properus Láska, 1954 = H. trigonicus Koenike, 1895. Family Unionicolidae: Unionicola finisbelli Ramazzotti, 1947 = U. inusitata Koenike, 1914. Family Pionidae: Tiphys koenikei (Barrois & Moniez, 1887) = Forelia variegator (Koch, 1837); Piona falcigera Koenike, 1905, P. bre h m i Walter, 1910, P. trisetica bituberosa K. Viets, 1930 and P. dentipes Lun- dblad, 1962 = P. alpicola (Neuman, 1880).
    [Show full text]
  • Water Mites of the Genus Arrenurus (Acari; Hydrachnida) from Europe and North America
    Department of Animal Morphology Institute of Environmental Biology Adam Mickiewicz University Mariusz Więcek EFFECTS OF THE EVOLUTION OF INTROMISSION ON COURTSHIP COMPLEXITY AND MALE AND FEMALE MORPHOLOGY: WATER MITES OF THE GENUS ARRENURUS (ACARI; HYDRACHNIDA) FROM EUROPE AND NORTH AMERICA Mentors: Prof. Jacek Dabert – Institute of Environmental Biology, Adam Mickiewicz University Prof. Heather Proctor – Department of Biological Sciences, University of Alberta POZNAŃ 2015 1 ACKNOWLEDGEMENTS First and foremost I want to thank my mentor Prof. Jacek Dabert. It has been an honor to be his Ph.D. student. I would like to thank for his assistance and support. I appreciate the time and patience he invested in my research. My mentor, Prof. Heather Proctor, guided me into the field of behavioural biology, and advised on a number of issues during the project. She has been given me support and helped to carry through. I appreciate the time and effort she invested in my research. My research activities would not have happened without Prof. Lubomira Burchardt who allowed me to work in her team. Many thanks to Dr. Peter Martin who introduced me into the world of water mites. His enthusiasm was motivational and supportive, and inspirational discussions contributed to higher standard of my research work. I thank Dr. Mirosława Dabert for introducing me in to techniques of molecular biology. I appreciate Dr. Reinhard Gerecke and Dr. Harry Smit who provided research material for this study. Many thanks to Prof. Bruce Smith for assistance in identification of mites and sharing his expert knowledge in the field of pheromonal communication. I appreciate Dr.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D.
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • Ecological Character Description of the Muir-Byenup System Ramsar Site South-West Western Australia
    ECOLOGICAL CHARACTER DESCRIPTION OF THE MUIR-BYENUP SYSTEM RAMSAR SITE SOUTH-WEST WESTERN AUSTRALIA Report Prepared for Department of Environment and Conservation, 2009 CENRM Report: CENRM085 i © Centre of Excellence in Natural Resource Management, The University of Western Australia TITLE: Ecological Character Description of the Muir- Byenup System Ramsar Site South-west Western Australia: Report prepared for the Department of Environment and Conservation PRODUCED BY: CLAIRE FARRELL AND BARBARA COOK Centre of Excellence in Natural Resource Management The University of Western Australia Unit 1, Proudlove Parade, Albany, 6332 Telephone: (08) 9842 0839 Fax: (08) 9842 8499 Email: [email protected] PRODUCED FOR: DEPARTMENT OF ENVIRONMENT AND CONSERVATION 17 Dick Perry Avenue Technology Park, Western Precinct Kensington WA 6151 CONTACT: MICHAEL COOTE DATE: SEPTEMBER 2009 PUBLICATION DATA: Farrell, C. and Cook, B. 2009. Ecological Character Description of the Muir-Byenup System Ramsar Site South-west Western Australia: Report prepared for the Department of Environment and Conservation, CENRM085. Centre of Excellence in Natural Resource Management, University of Western Australia. September 2009. ACKNOWLEDGEMENTS Funding for the development of this document was sourced jointly from the Natural Heritage Trust (NHT) and the State and Commonwealth contributions to the National Action Plan for Salinity and Water Quality (NAP). NHT and NAP are jointly administered by the Australian Government departments of Agriculture, Fisheries and Forestry
    [Show full text]
  • Acht Nieuwe Soorten Watermijten Voor De Nederlandse Fauna (Acari: Hydrachnidia)
    acht nieuwe soorten watermijten voor de nederlandse fauna (acari: hydrachnidia) Harry Smit, Harry Boonstra, Hans Hop, Barend van Maanen, Bart Achterkamp & Rink Wiggers Watermijten zijn kleine spinachtige diertjes, die in zoet water leven. De aandacht voor deze diergroep is groot, omdat ze een rol spelen in de waterkwaliteitsbeoordeling. In de verspreidingsatlas uit 2000 worden 234 Nederlandse watermijten gemeld. Sinds die tijd worden regelmatig aanvullingen gerapporteerd. In dit artikel worden weer acht nieuwe soorten gemeld, wat het totaal nu op 266 brengt. Dit is een opmerkelijke toename van 13 % in 15 jaar. inleiding Wereldwijd zijn zo’n 6000 soorten watermijten bekend (Di Sabatino et al. 2008), en 259 daarvan zijn tot nu toe in Nederland gevonden (Smit & Van Maanen 2012). De Nederlandse soortenlijst groeit nog steeds gestaag, vooral dankzij het hydrobiologisch onderzoek van de waterschappen en adviesbureaus. Deels zijn dit eenmalige vondsten, voor een ander deel zijn dit soorten die op een zeer beperkt aantal locaties (soms zelfs één) voor- komen. Voorbeelden van de laatste groep zijn Panisellus thienemanni en Bandakia concreta, die bekend zijn van twee bronnen van de Mosbeek (provincie Overijssel) (Smit et al. 2012) en Lebertia sefvei sefvei, gemeld van de Maalbeek (provincie Limburg) (Smit et al. 2003). In dit artikel worden acht soorten nieuw voor de Nederlandse fauna gemeld (fig. 1). Voorts worden aanvullende waarnemingen van soorten gerappor- teerd die zeldzaam zijn of buiten het tot nu toe bekende verspreidingsgebied in Nederland liggen. Met de acht nieuwe soorten komt het totaal aantal uit Nederland bekende soorten op 266. Piona dispersa Sokolov, 1926 werd tot nu toe gesynoni- Figuur 1.
    [Show full text]
  • AKES Newsletter 2016
    Newsletter of the Alaska Entomological Society Volume 9, Issue 1, April 2016 In this issue: A history and update of the Kenelm W. Philip Col- lection, currently housed at the University of Alaska Museum ................... 23 Announcing the UAF Entomology Club ...... 1 The Blackberry Skeletonizer, Schreckensteinia fes- Bombus occidentalis in Alaska and the need for fu- taliella (Hübner) (Lepidoptera: Schreckensteini- ture study (Hymenoptera: Apidae) ........ 2 idae) in Alaska ................... 26 New findings of twisted-wing parasites (Strep- Northern spruce engraver monitoring in wind- siptera) in Alaska .................. 6 damaged forests in the Tanana River Valley of Asian gypsy moths and Alaska ........... 9 Interior Alaska ................... 28 Non-marine invertebrates of the St. Matthew Is- An overview of ongoing research: Arthropod lands, Bering Sea, Alaska ............. 11 abundance and diversity at Olive-sided Fly- Food review: Urocerus flavicornis (Fabricius) (Hy- catcher nest sites in interior Alaska ........ 29 menoptera: Siricidae) ............... 20 Glocianus punctiger (Sahlberg, 1835) (Coleoptera: The spruce aphid, a non-native species, is increas- Curculionidae) common in Soldotna ....... 32 ing in range and activity throughout coastal Review of the ninth annual meeting ........ 34 Alaska ........................ 21 Upcoming Events ................... 37 Announcing the UAF Entomology Club by Adam Haberski nights featuring classic “B-movie” horror films. Future plans include an entomophagy bake sale, summer collect- I am pleased to announce the formation of the Univer- ing trips, and sending representatives to the International sity of Alaska Fairbanks Entomology Club. The club was Congress of Entomology in Orlando Florida this Septem- conceived by students from the fall semester entomology ber. course to bring together undergraduate and graduate stu- The Entomology Club would like to collaborate with dents with an interest in entomology.
    [Show full text]
  • Does Parasitism Mediate Water Mite Biogeography?
    Systematic & Applied Acarology 25(9): 1552–1560 (2020) ISSN 1362-1971 (print) https://doi.org/10.11158/saa.25.9.3 ISSN 2056-6069 (online) Article Does parasitism mediate water mite biogeography? HIROMI YAGUI 1 & ANTONIO G. VALDECASAS 2* 1 Centro de Ornitología y Biodiversidad (CORBIDI), Santa Rita 105, Lima 33. Peru. 2 Museo Nacional de Ciencias Naturales (CSIC), c/José Gutierrez Abascal, 2, 28006- Madrid. Spain. *Author for correspondence: Antonio G Valdecasas ([email protected]) Abstract The biogeography of organisms, particularly those with complex lifestyles that can affect dispersal ability, has been a focus of study for many decades. Most Hydrachnidia, commonly known as water mites, have a parasitic larval stage during which dispersal is predominantly host-mediated, suggesting that these water mites may have a wider distribution than non-parasitic species. However, does this actually occur? To address this question, we compiled and compared the geographic distribution of water mite species that have a parasitic larval stage with those that have lost it. We performed a bootstrap resampling analysis to compare the empirical distribution functions derived from both the complete dataset and one excluding the extreme values at each distribution tail. The results show differing distribution patterns between water mites with and without parasitic larval stages. However, contrary to expectation, they show that a wider geographic distribution is observed for a greater proportion of the species with a non-parasitic larval stage, suggesting a relevant role for non-host-mediated mechanisms of dispersal in water mites. Keywords: biogeography, water mites, non-parasitic larvae, parasitic larvae, worldwide distribution patterns Introduction Studies of the geographic distribution of organisms have greatly influenced our understanding of how species emerge and have provided arguments favoring the theory of evolution by natural selection proposed by Darwin (1859).
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Occasional Papers
    NUMBER 69, 55 pages 25 March 2002 BISHOP MUSEUM OCCASIONAL PAPERS RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 2000 PART 2: NOTES NEAL L. EVENHUIS AND LUCIUS G. ELDREDGE, EDITORS BISHOP MUSEUM PRESS HONOLULU C Printed on recycled paper Cover: Metrosideros polymorpha, native ‘öhi‘a lehua. Photo: Clyde T. Imada. Research publications of Bishop Museum are issued irregularly in the RESEARCH following active series: • Bishop Museum Occasional Papers. A series of short papers PUBLICATIONS OF describing original research in the natural and cultural sciences. Publications containing larger, monographic works are issued in BISHOP MUSEUM five areas: • Bishop Museum Bulletins in Anthropology • Bishop Museum Bulletins in Botany • Bishop Museum Bulletins in Entomology • Bishop Museum Bulletins in Zoology • Pacific Anthropological Reports Institutions and individuals may subscribe to any of the above or pur- chase separate publications from Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-0916, USA. Phone: (808) 848-4135; fax: (808) 848-4132; email: [email protected]. The Museum also publishes Bishop Museum Technical Reports, a series containing information relative to scholarly research and collections activities. Issue is authorized by the Museum’s Scientific Publications Committee, but manuscripts do not necessarily receive peer review and are not intended as formal publications. Institutional libraries interested in exchanging publications should write to: Library Exchange Program, Bishop Museum Library, 1525 Bernice Street,
    [Show full text]
  • Water Mites of the Genus Unionicola Haldeman, 1842 (Acari, Hydrachnidia, Unionicolidae) in Russia
    Zootaxa 3919 (3): 401–456 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3919.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:FF49DAFE-EA8E-473B-9F3D-CEB670B4882B Water mites of the genus Unionicola Haldeman, 1842 (Acari, Hydrachnidia, Unionicolidae) in Russia PETR V. TUZOVSKIJ1& KSENIA A. SEMENCHENKO2 1Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Nekouzkii District, Yaroslavl Province, 152742 Russia. E-mail: [email protected] 2Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022 Russia. E-mail: [email protected] Table of contents Abstract . 401 Introduction . 402 Material and methods . 402 Results . 402 Family Unionicolidae Oudemans, 1909 . 402 Subfamily Unionicolidae Oudemans, 1909 . 402 Genus Unionicola Haldeman, 1842 . 403 Unionicola intermedia (Koenike, 1882) . 403 Unionicola crassipes (O.F. Müller, 1776) . 406 Unionicola rossica sp.n. 408 Unionicola figuralis (Koch, 1836) . 410 Unionicola gracilipalpis (Viets, 1908) . 413 Unionicola markovensis Tuzovskij, 1990 . 415 Unionicola minor (Soar, 1900) . 417 Unionicola hankoi Szalay, 1927 . 420 Unionicola aculeata (Koenike, 1890) . 422 Unionicola aculeatella sp.n. 424 Unionicola bonzi (Claparède, 1869) . 427 Unionicola inusitata Koenike, 1914 . 430 Unionicola rezvoi Sokolow, 1931 . 432 Unionicola samaraensis sp.n. 434 Unionicola setipella sp.n. 436 Unionicola setipes Sokolow, 1931 . 438 Unionicola tricuspis (Koenike, 1895). 441 Unionicola japonensis Viets, 1933 . 443 Unionicola primoryensis sp.n. 445 Unionicola ypsilophora (Bonz, 1783) . 448 Unionicola arcuata (Wolcott, 1898) . 451 Key to species of the genus Unionicola . 453 Acknowledgements . 454 References . 455 Abstract This study presents a detailed taxonomic review of water mites of the genus Unionicola Haldeman, 1842 (Hygrobatoidea: Unionicolidae) found in the fauna of Russia during the long-term survey period of 1969–2013.
    [Show full text]
  • Finnish Water Mites (Acari: Hydrachnidia, Halacaroidea), the List and Distribution
    Memoranda Soc. Fauna Flora Fennica 85:69–78. 2009 Finnish water mites (Acari: Hydrachnidia, Halacaroidea), the list and distribution A.M. Bagge & Pauli Bagge† A.M. Bagge, University of Jyväskylä, Open University, P.O. Box 35, FI-40014, Finland, Author for correspondence, e-mail [email protected]. The species of Finnish water mites (Acari, Hydrachidia and Halacaroidea) are listed, and their occurrence in the biogeographical provinces shown. The list is based on publica- tions, on unpublished data known by the authors, and on a private collection (of Pauli Bagge). The list consists of 139 Hydrachnidia and 9 Halacaroidea species, which are mainly limnetic or lotic. Brackish waters and the family Halacaridae have remained little studied. 1. Introduction Water mites are one of the most diversified groups of invertebrates in the freshwaters. For example the number of taxa may exceed 50 species in clean large lowland rivers of central Europe (Van der Hammen and Smit, 1996), but is lower in the northern streams (Bagge, 2001). The species and distribution of Finnish water mites have been of interest only by few researchers. The first studies have been done during expeditions of Ferdinand Koenike and Erik Nordenskiöld in the late of 19th century. The species list was later completed, among others, by professor Kaarlo Mainio Levander, who has been mentioned as ’the father of Finnish lim- nology’. Viktor Ozolinš (1931) made a good sum- Pauli Bagge. Prof. Bagge passed away 19.6.2009. mary of these early studies in his article of Finnish water mite fauna. Determination of small Acari species and especially the difficult larvae stages years, from 1960s to 2009.
    [Show full text]