“Promoting a resilient campus community”

Multi-Hazard

Mitigation Plan

MULTI-HAZARD MITIGATION PLAN

Prepared by the Eastern Michigan University June 2012 Emergency Management Office Rev.2.2

This page is intentionally left blank

This page is left intentionally blank

Eastern Michigan University Multi-Hazard Mitigation Plan

Prepared by: Eastern Michigan University Office of Emergency Management 204C Public Safety Building Eastern Michigan University Ypsilanti, MI 48197 http://www.emich.edu/

June, 2012

This page is left intentionally blank

i

Record of Multi-Hazard Mitigation Plan Revisions

Date Section Pages Entered By

8-23-12 All document review All Mark Wesley

2-13-13 Appendices 201-216 Mark Wesley

ii

Table of Contents

Section 1: Introduction………………………………………………………………..… 1 Background and Purpose………………………………………………….………..…. 1 Authority…………………………………………………………………………….. 3 Disaster Resistant University Initiative……………………………………..………… 4 Eastern Michigan University…………………………………………………..……… 5 Scope of Plan……………………………………………………………………..…… 8 Plan Overview…………………………………………………………………..…….. 11 Mission Statement…………………………………………..………………………… 13

Section 2: Community Profile……………………………………………..……………. 13 Community Background……………………………………………………………… 13 Population and Demographics………………………………………………………... 14 Geography and Environment…………………………………………………………. 18 Employment and Industry…………………………………………….………………. 19 Housing………………………………………………………………………….……. 23 Social & Community Development………………………………………………... 24 Zoning & Land Use…………………………………………………………………… 25 Transportation Network………………………………………………………………. 29 Police, Fire and Emergency Facilities………………………………………………… 34

Section 3: University Profile…………………………………………….…………….… 36 University Impact……………...……..…………………………………………..…… 36 University Mission…………………………………………………….……………. 37 University Background……………...……………………………….………………... 37 Organizational Structure……………………………………………………..……… 38 Scope……………………………………………………………………………...…… 40 Economic Impact………………………………..……………………..……………… 40

Section 4: Planning Process………………………………………………………..……. 42 Overview of Hazard Mitigation Planning…………………………………..……….... 42 Preparing the Plan……………………………………………………………....…….. 43 The Advisory Committee, Committee Meetings and Public Involvement…...……..... 49

Section 5: Hazard Identification, Risk Analysis & Vulnerability Assessment……..... 51 Initial Hazard Identification………………………………..………..………………... 51 State and Federal Disaster Declarations………………………………………………. 54 University Facilities Inventory………………………………………………………... 55 Natural Hazard………………………………………………………………………... 63 Mold…………………………………………...……………………………………… 81 Technological Hazards……………….………………………………..…...... ……… 84 Societal Hazards…………………………………………………………………..…... 106 Hazard Priority Rating……………………………………………………………….... 117 Hazard Summary……………………………………...………………...…………….. 120

iii

Section 6: Mitigation Strategy…………………………………………………………... 121 Introduction…………………………………..……………………………………..… 121 Eastern Michigan University Mitigation Goals……………………………………….. 123 Identification and Analysis of Mitigation Actions……………………………………. 129 Recommendation and Prioritization of Mitigation Actions…………………………... 134 Potential Funding Sources…………………………………………………………….. 142

Section 7: Plan Implementation and Maintenance…………………………….....…… 143 Adoption and Implementation………………………………………………………… 143 Monitoring, Reviewing and Amending……………………………………………….. 144 Continued Public Involvement………………………………………………………... 146

Section 8: References…………………………………………………………………….. 147 Print Resources…………………………..……………………………….…………… 147 Website Resources…………………………………………….……………………… 148

Section 9: Appendices…………………………………………………………………… 149 EMU Hazard Mitigation Risk Assessment Results 2011……………..……………. 149 Mass Notification & Emergency Communications…………………………………. 171 Hazard Mitigation Meeting Sign in November 19, 2010…………………………... 175 EMHE Presentation Sign in December 13, 2011…………………………………...... 176 November Mitigation Meeting Public Posting……………………………………... 177 November Mitigation Meeting Public Posting 2…………………………………… 178 Health and Safety Committee Minutes September 17, 2010…………………………. 179 Health and Safety Committee Minutes October 15, 2010……………….…………. 181 Health and Safety Committee Minutes April 15, 2011……………………………….. 184 Health and Safety Committee Minutes August 19, 2011…………………………….. 186 Health and Safety Committee Minutes December 16, 2011………………………….. 189 Washtenaw Emergency Managers Consortium Risk Assessment Meeting March 23, 2012…………………………………………………………………………………… 192 Mitigation Plan Community Presentation June 14, 2012…………………………... 193 Mitigation Plan Committee Presentation June 15, 2012……………………………… 199

Figures Figure 1-1: EMU Campus Locations Map……………………………………………..…. 7 Figure 1-2: EMU Main Campus Map…………………………………………………….. 10 Figure 2-1: Population by County Map…………………………………………………… 16 Figure 2-2: EMU Student Gender Distribution…………………………………………… 17 Figure 2-3: EMU Student Racial Distribution……………………………………………. 17 Figure 2-4: Labor Force Annual Average Map…………………………………………… 22 Figure 2-5: Ypsilanti Road Map………………………………………………………….. 26 Figure 2-6: Michigan Road Map………………………………………………………….. 27 Figure 2-7: Washtenaw County Rail Map………………………………………………… 28 Figure 2-8: Michigan Rail Map…………………………………………………………… 29 Figure 2-10: Area Public Transit Map……………………………………………………. 31

iv

Figure 3-1: EMU Organizational Chart…………………………………………………… 39 Figure 3-2: Economic Impact of EMU……………………………………………………. 41 Figure 5-1: Presidential Disaster Declaration………….…………………………………. 54 Figure 5-2: Areal View of EM……………………………………………………………. 55 Figure 5-3: Michigan Average Annual Snowfall…………………………………………. 64 Figure 5-4: Tornado Activity in the United States………………………………………... 67 Figure 5-5: FEMA Wind Speed Map……………………………………………………... 70 Figure 5-6: Middle Huron Watershed Boundaries Map………………………………….. 72 Figure 5-7: City of Ypsilanti 100-yr Floodplain Map…………………………………….. 75 Figure 5-8: 1947 Earthquake Effect Map…………………………………………………. 79 Figure 5-9: Electric Utility Services Map………………………………………………… 95 Figure 5-10: YCUA Existing Water Supply System……………………………………… 96 Figure 5-11: YCUA Existing Wastewater System………………………………………... 98 Figure 5-12: Gas Utility Services Areas…………………………………………………... 99 Figure 5-13: City of Ypsilanti Map with Campus Information…………………………… 100 Figure 5-14: IED Attack Timeline………………………………………………………... 114 Figure 9-1: Outdoor Speaker Arrays Coverage Map 198 Figure 9-2: Washtenaw County Outdoor Warning Siren Coverage Map 199

Tables Table 2-1: Demographic data 15 Table 4-1: EMU Mitigation Timeline 48 Table 4-2: EMU Hazard Mitigation Advisory Committee Members 50 Table 5-1: Hazard Identification Comparison 53 Table 5-2: General Fund Building Inventory & Replacement Costs 56 Table 5-3: Auxiliary Fund Building Inventory & Replacement Costs 58 Table 5-4: Estimated Building Contents Value 60 Table 5-5: Additional Asset Value Information 62 Table 5-6: Frequency Distribution of Ice and Sleet Storms 65 Table 5-7: EF Scale 69 Table 5-8: Recent Historical Earthquake Data 80 Table 5-9: Probability of Earthquakes within the Next 50 Years 80 Table 5-10: Results of the Risk Assessment 88 Table 5-11: EMU Fire Safety Matrix 91 Table 5-12: Hazard Priority Ranking 120 Table 6-1: STAPLEE Mitigation Criteria 136 Table 6-2: Mitigation Actions 137 Table 6-3: Mitigation Action Worksheet 141

v

This page is left intentionally blank

vi

Section 1: Introduction

 Background and Purpose  Authority  Disaster Resistant University Initiative  Eastern Michigan University  Scope of Plan  Plan Overview

Background & Purpose

In the public sector, choices are made every day that affect the consequences, duration, and costs of responding to and recovering from adverse incidents. Mitigation requires systemically anticipating and adjusting to trends that could endanger the future of the campus community.

Appropriate choices made beforehand can manage or reduce long-term risk and potentially reduce response requirements. Mitigation during the recovery phase helps strengthen and build a more resilient campus community to withstand future disasters.

Hazard mitigation is defined by FEMA as “any sustained action taken to reduce or eliminate long-term risk to human life and property from a hazard event.” The results of a three-year, congressionally mandated independent study to assess future savings from mitigation activities provides evidence that mitigation activities are highly cost-effective. On average, each dollar spent on mitigation saves society an average of $4 in avoided future losses in addition to saving lives and preventing injuries (National Institute of Building Science Multi-Hazard Mitigation

Council 2005).

This plan documents Eastern Michigan University’s (the “University”) hazard mitigation planning process and identifies relevant hazards and vulnerabilities and strategies the University will use to decrease vulnerability and increase resiliency and sustainability of the Ypsilanti

Campus.

1

Information in this plan will be used to help guide and coordinate mitigation activities and decisions for the University in the future. Proactive mitigation planning will help reduce the cost of disaster response and recovery to the campus community by protecting critical university facilities, reducing liability exposure, and minimizing overall campus impacts and disruptions.

The University planning area has been affected by hazards in the past and it is thus committed to reducing future impacts from hazard events and becoming eligible for mitigation-related federal funding.

The benefits of hazard mitigation include the reduction of: loss of life, property, essential services, critical facilities and economic hardship as well as short and long-term recovery and reconstruction costs. In addition it can increase cooperation and communication within the university community and increase the potential for state and federal funding for recovery and reconstruction projects. This can be accomplished through studying potential risks to the campus community and coordinating resources, programs and authorities based on the information discovered.

The Eastern Michigan University Multi-Hazard Mitigation Plan was created to work towards a proactive campus community. The goal of this plan is to identify risks to the campus community and to educate university officials of said risks and the proposed actions to minimize associated damages from both natural and manmade hazards. It was prepared with input from various university departments and administrators as well as from the City of Ypsilanti and

Washtenaw County emergency programs. The plan was developed with the support of the State of Michigan Emergency Management & Homeland Security Division (EMHSD) and the Federal

Emergency Management Agency (FEMA), Region V.

2

Authority

In 2010 Eastern Michigan University was able to secure a FEMA Hazard Mitigation Grant1 allowing the University to develop and implement a hazard mitigation plan for its Ypsilanti, MI campus location.

The Eastern Michigan University Multi-Hazard Mitigation Plan has been created in accordance with current federal rules and regulations governing local hazard mitigation planning and prepared pursuant to the requirements of the Disaster Mitigation Act of 2000 (Public Law

106-390) and the implementing regulations set forth by the Interim Final Rule published in the

Federal Register on February 26, 2002, (44 CFR §201.6) and finalized on October 31, 2007. The

2007 amendments also incorporate mitigation planning requirements of the Flood Mitigation

Assistance (FMA) program authorized by the National Flood Insurance Act of 1968. While the

Disaster Mitigation Act emphasized the need for mitigation plans and more coordinated mitigation planning and implementation efforts, the regulations established the requirements that local hazard mitigation plans must meet in order to be eligible for certain federal disaster assistance and hazard mitigation funding under the Robert T. Stafford Disaster Relief and

Emergency Act (Public Law 93-288).

In addition since November 2004, a plan is required to receive post-disaster mitigation funds under the Hazard Mitigation Grant Program, information can be found in 44 CFR, Part 201 of the Code of Federal Regulations (Revised November 2006). Under the DMA states, communities and universities are eligible for funding. Universities are able to qualify as a result of the Disaster

1 (HMGP-1777.DR) Funded through the Federal Emergency Management Agency (FEMA) and the Emergency Management & Homeland Security Division of the Michigan State Police (EMHSD).

3

Resistant University (DRU) initiative. The Eastern Michigan multi-hazard mitigation plan is designed to meet the requirements laid out by FEMA. As a result the university will successfully be eligible to obtain mitigation funding before and after disasters strike the EMU campus community.

The project has been a collaborative effort on the part of the EMU Emergency

Management Office, which is responsible for day-to-day emergency preparedness, the

Environmental and Health Safety Office, the University Health and Safety Committee, which also serves as the Hazard Mitigation Advisory Committee, Physical Plant, the Institute for

Geospatial Research & Education, and the many other units that contributed information and review on the project.

Disaster Resistant University Initiative

While state and local governments are required to complete a Hazard Mitigation Plan under the dictates of the Disaster Mitigation Act of 2000 (DMA 2000), universities are not required by that law to perform a similar planning and mitigation activity. FEMA’s Disaster Resistant

University (DRU) program was intended to encourage and promote mitigation among institutions of higher learning. The DRU initiative was phased out as a designated set-aside of planning and mitigation funding for universities. Despite being phased out, the Disaster Resistant

Universities initiative emphasized the economic impact and interdependence of universities with their surrounding communities and remains the model for hazard assessment and mitigation planning for colleges and universities across the nation.

FEMA released a publication entitled Building a Disaster Resistant University (FEMA

443). “Building a Disaster-Resistant University” is both a how-to guide and a distillation of the

4 experiences of six universities and colleges that have been working to become more disaster- resistant. This guide provided basic information as well as concrete ideas, suggestions, and practical experiences for institutions that have provide insights to Eastern Michigan University for beginning the step toward becoming a safer and more prepared campus

The DRU initiative put forth phases to the process that a university can follow to successfully become a disaster resistant university. The phases are as follows in this order to: organize resources, conduct hazard identification and risk assessment, develop a mitigation plan and to adopt and implement the plan.

As of 2005, universities must compete with states, Indian Tribal governments and local governments to attain funding. The mission of Eastern Michigan University is to develop a

FEMA approved multi-hazard mitigation plan to identify and address risks to the campus community environment and by doing so will join the ranks of other disaster resistant universities.

Eastern Michigan University

Eastern Michigan University is a comprehensive co-educational public university located in

Ypsilanti, Michigan. Eastern Michigan University was founded in 1849 as Michigan’s first institution whose purpose was to educate teachers in preparation for serving in the public school system. Initially, the school was known as the Michigan State Normal School, it also bore the names Michigan State Normal College in 1899 and Eastern Michigan College in 1956 until 1959 when the name was changed to its final name Eastern Michigan University.

Today the campus has grown from a small four-acre plot to include more than 800 acres of land. Currently, it serves about 23,000 students who have a choice from a full range of

5 bachelor’s programs, about 170 masters programs and a selection of specialty and doctoral programs. The university is governed by an 8 member Board of Regents who are appointed by the Michigan governor for eight-year terms and who oversee the university president. While the main campus of the university is located in Ypsilanti, MI and includes a building to itself for the

College of Business located downtown, it also has satellite locations including Brighton, Detroit,

Fish Lake (Lapeer), Flint, Grand Rapids, Jackson, Livonia, Monroe, Traverse City and the jean

Noble Parson Center for the Study of Arts and Science (Lake Ann).

6

Figure 1-1: Map depicting the entirety of EMU locations including the satellite campuses. The main campus is located within Washtenaw County.

7

Scope of Plan

Eastern Michigan University’s Multi-Hazard Mitigation Plan is a single institutional plan that identifies goals, objectives, and measures for hazard mitigation and risk reduction. This plan follows DMA 2000 planning requirements and associated guidance for developing

Local Hazard Mitigation Plans, including specific guidance for “Building a Disaster-

Resistant University”. These guidelines set forth a generalized 4-task planning process: 1)

Organize your Resources, 2) Assess Hazards and Risks, 3) Develop a Mitigation Plan, and 4)

Evaluate your Work.

Information in this plan will be used to help guide and coordinate mitigation activities and decisions for Eastern Michigan University. This plan addresses natural hazards and manmade hazards. Proactive mitigation planning will help reduce the cost of disaster response and recovery to the University and the campus community by protecting critical facilities, reducing liability exposure, and minimizing overall campus impacts and disruptions. Eastern Michigan

University and its host community have been affected by hazards in the past and the University is committed to reducing future impacts from hazard events and becoming eligible for mitigation-related federal funding.

Although Eastern Michigan University has several satellite locations, the focus of this plan will be the main campus, including the Athletic Campus, the Eagle Crest Golf Course &

Corporate Education Center and the College of Business.

8

The main campus is located at:

124 College Place, Ypsilanti, MI 48197

The College of Business is located at:

300 W. Michigan Ave., 473 Gary Owen Building, Ypsilanti, MI 48197

The Eagle Crest Golf Course & Corporate Education Center is located at:

1275 South Huron Street Ypsilanti, MI 48197

Depicted below in Figure 1-2 is a map of the Eastern Michigan University main campus as well as a view of the relative location of the College of Business, the Corporate Education Center and Eagle Crest.

9

Figure 1-2:

10

Plan Overview

This plan is divided into 9 sections including appendices, figures and tables. Within this multi-hazard mitigation one will find information on: hazard mitigation planning, Eastern

Michigan University, potential hazards to the campus community and a suggested course of action to reduce the risks identified as being specific to Eastern Michigan. Below is a summation of the sections.

Section 1: Introduction

The introduction provides a brief history on not only hazard mitigation planning but also on the Disaster Resistant University initiative as laid out by FEMA. It connects the generalized information on mitigation planning with the specifics of Eastern Michigan University and the risks associated with its campus environment. Essentially, it acts as the foundation of the plan by defining what it is and identifying plan objectives.

Section 2: Community Profile

Within the Community Profile section, the location and demographic information specific to Eastern Michigan University can be found. In addition, an overview of the community surrounding the university is provided.

Section 3: University Profile

This section provides a brief history and a current description of the University and information regarding the university’s impact on the region, including economic impact on the surrounding community.

11

Section 4: Planning Process

The planning process section details the specific steps taken by Eastern Michigan

University to create this plan. These steps were guided by the FEMA publication; Building a

Disaster Resistant University (FEMA 443). Also, detailed is the process used by Eastern

Michigan University to identify and rank the hazards to the campus community.

Section 5: Hazard Identification, Risk Analysis and Vulnerability Assessment

Details of the potential natural and manmade hazards to the community are found within this section. In order to identify these hazards, a risk assessment was conducted that accounted for both the probability and potential impact level of identified hazards. From this data, the potential risks were ranked and categorized.

Section 6: Mitigation Strategy

The mitigation strategy identifies Eastern Michigan’s mitigation goals in response to the highest potential risks to the campus. It identifies objectives that the university can pursue to reduce potential losses.

Section 7: Implementation and Plan Preservation

This section details how Eastern Michigan will follow through on keeping an up to date plan and suggested mitigation actions. Detailed within this section is the specifics on how the university can follow through on the suggested mitigation actions. Individuals responsible for maintaining the plan are identified as well as those who will support carrying out the mitigation strategies.

Section 8: References

This section identifies the sources that contributed to the compilation of this plan.

12

Section 9: Appendices

Additional information useful to the plan will be found in this section including any additional documents necessary.

Mission Statement

To engage our campus community in identifying and prioritizing specific mitigation actions and to define and implement those mitigation actions in an effective and efficient process that will ensure the greatest benefit to the stakeholders of Eastern Michigan University.

Section 2: Community Profile  Community Background  Population and Demographics  Geography and Environment  Employment and Industry  Housing  Transportation Network  Police, Fire and Emergency Facilities

Community Background

Washtenaw County is located approximately 30 miles west of Detroit and is comprised of roughly 7120 square miles. The county is ranked 6th in the state of Michigan in regards to population and it remains one of the fastest growing counties within the state following

Livingston County. Ypsilanti is one of 28 local governments within the county. Ypsilanti is the second oldest city within the state as it was established in 1823. The name of the community comes from General Demetrius Ypsilanti, a hero in the Greek war for independence. Eastern

Michigan University is a major population center for the city.

13

The community early on gained recognition for its commercial districts including what is now known as Depot Town and for its educational institutions. In its early stages, the community was greatly influenced by the presence of the river and its resulting abundant water power. As

Ypsilanti continued to flourish and thrive so did the river industries until the late 19th century when the auto industry became the next major economic force. The Historic District is now an area of great pride within the community and to this day it is protected.

Culturally, the community is often overshadowed by the nearby Ann Arbor however, that has not kept the city from having a life of its own. Ypsilanti has several summer festivals which take place in Depot Town including the annual Ypsilanti Heritage Festival and the Michigan Brewers

Guild Summer Beer Festival.

The Eastern Michigan Community is comprised of a mixture of faculty, staff, undergraduate and graduate students. As of fall 2011, the University has approximately 23,441 students, 18,621 undergraduates and 4,820 graduate students. Students represent 45 states and 93 foreign countries. The most popular majors are education, business, social sciences and history, science and engineering, English, and the health professions.

Population & Demographics

Washtenaw County was formed out of a portion of Wayne County and consists of 14 townships, 6 charter townships, 3 villages and 5 cities including Ypsilanti. In addition the county also houses several unincorporated communities. According to the 2010 census the population for the county was at 344,791 with a great deal of its population concentrated in the Ann

Arbor/Ypsilanti area. Not surprisingly, a large portion of that population concentration stems

14 from the large colleges within this geographic area including the University of Michigan and

Eastern Michigan University.

According to the 2010 census the community itself is comprised of a population that is

59.39% Non-Hispanic white, 29.17% Black, 3.8% Asian and the remainder being a combination of two or more races, Hispanic or Latino, Native American or Pacific Islander. The population stood at 19,435 dropping from the 2000 census 13.1%. The median household income from

2006-2010 was $34,685 while the percentage of the population below the poverty line was

26.5%. To view a summation of the demographic data please see Table 2-1 below.

Demographics City of Ypsilanti Washtenaw County Michigan Population 19,435 344,791 9,883,640 Median Age 25 33.3 35.5 Male 9,662 170,132 4,873,095 Female 9,773 174,659 5,065,349 Under Age 15 2,333 59,300 2,164,198 Age 15-24 7,367 70,959 1,363,706 Age 65 and over 1,609 34,951 1,219,018 Bachelor Degree or higher 36.80% 50.80% 25.00% Poverty level 26.50% 13.70% 14.80% White 61.50% 74.50% 78.90% Asian 3.40% 7.90% 2.40% African American 29.20% 12.70% 14.20% Blend of two or more races 4.30% 3.40% 2.30%

In addition, the population disbursement by county can be viewed below in Figure 2-1.

15

Figure 2-1.

16

The University population itself also has its own unique breakdown of demographic information. Of all students, 59 percent are female and 41 percent are male.2

Figure 2-2.

EMU’s undergraduate population is approximately 67 percent white; 23 percent black; 2 percent international; 25 percent Asian; 2 percent Hispanic, 0.5 percent Native-American, and 7 unknown.

Figure 2-3.

2 Eastern Michigan University Office of Institutional Research and Information Management (IRIM)

17

Geography & Environment

The state of Michigan joined the union in 1837 and was the 26th state to join, its capital is

Lansing and its largest city is Detroit. Michigan is also nicknamed the ‘Great Lakes State’ and the ‘Wolverine State,’ furthermore it proudly carries the motto “Si quaeris peninsulam amoenam circumspice, which translates, ‘If you seek a pleasant peninsula, look about you.’” Michigan is easily identifiable on a map as its Lower Peninsula resembles a left mitten as it is often called by its residents, while the Upper Peninsula is known as “The U.P.” The Lower Peninsula is 277 miles long from north to south and 195 miles from east to west, it constitutes for approximately two-thirds of the state’s land area. The state is surrounded by the world’s largest fresh surface water system which is made up of the five great lakes and their connecting channels. The Great

Lakes include; Lakes Superior, Michigan, Huron, Erie and Ontario and they cover more than

94,000 square miles they are a valued resource seeing as they hold about nine-tenths of the U.S. freshwater supply and one-fifth of the world’s freshwater supply.

In addition to the vast water resources that the state has to offer there is also a wealth of beautiful forest land and wildlife to be seen especially in the Upper Peninsula of the state. About

50% of the state is covered with 19.3 million acres of forests which is an important factor in analyzing Michigan’s economy. This is because not only does a portion of that enable the ability to harbor timber but also there is great appeal for recreational and tourism purposes. The ‘Pure

Michigan’ campaign relies heavily on the idea that people will want to come and experience what the outdoors has to offer, not just the summer water sports or the winter recreation but also the relaxing effects of the changing leaves in the fall months. In total the state has 78 state parks,

19 state recreation areas and 6 state forests; it should be of little surprise with these facts that

Michigan has the largest state forest system of any state.

18

Climate

Located in what is known as the Mid-western region of the United States, the state of

Michigan is one that experiences all four seasons and is known for its rather unpredictable weather. Michigan has what is known as a continental climate, meaning that it is a climate characterized by annual variations in temperatures caused by a lack of significant bodies of water nearby, i.e. a sea or ocean. Due to the sheer length from top to bottom of the state there are two different climate classifications, the southern and central parts of the Lower Peninsula have a warmer climate with hot summers and cold winters. The northern area of the Lower Peninsula and the entire Upper Peninsula have a climate that is much more harsh, with short warm summers and long cold to very cold winters.

Washtenaw County sits within the humid continental climatic zone of eastern North

America. It is because of this that residents will experience a larger temperature range than other areas at similar latitude. Eastern Michigan University and the surrounding community have to be prepared to deal with a wide assortment of natural hazards including; flash flooding, thunderstorms, tornadoes, snow or hail storms and much more.

Employment & Industry

Since its founding in 1849, Eastern Michigan University (EMU) has provided high‐quality educational services to residents of Ypsilanti, Washtenaw County, the State of

Michigan, other states, and nations throughout the world. These educational services, the resulting salaries for EMU faculty and staff, and other expenditures by the University represent key components of the economic base of Ypsilanti, Washtenaw County, and neighboring areas.

EMU also contributes to economic activity at the local, state, and national levels through the

19 placement of its graduates in high‐skilled jobs that pay more than jobs requiring only a high school education.

Furthermore, EMU enhances the quality of life of the local and regional communities through providing arts and entertainment, athletic events, WEMU radio, and University support for public service activities. EMU also improves the quality of life of the state and local communities through cultural events, services to businesses, research and development, and the extensive volunteer activities of its staff and students.

EMU’s annual operating budget and construction spending of about one‐half billion dollars have a total impact on the regional economy of more than one billion dollars per year.

The state and regional economies also benefit from higher earnings, and thus higher expenditure levels, for workers who have earned college degrees compared to those who have not. Including this earnings premium, the total direct impact of Eastern Michigan University is more than $1.8 billion per academic year.

The alumni earnings premium accounts for more than 75% of EMU’s total direct impact on Michigan’s economy. University expenditures account for about 18%, and student off‐campus spending accounts for almost 7% of the direct impact. EMU’s total economic impact amounts to more than $3.7 billion when the indirect effects of the direct expenditures are added.

The impact of the earnings premium is spread throughout Michigan, since EMU alumni reside throughout the state. For all items except the earnings premium, the impact of EMU on the economy is mostly concentrated in the Ypsilanti and Washtenaw County area.

EMU had a total impact on the Michigan economy of $3,694.8 million for the 2008 academic year. Thus, EMU’s impact on the Michigan economy was $41.6 for each dollar received from the state, greater than the $26 to $1 ratio estimated by Carr and Roessner (2002)

20 for all 15 state universities. EMU’s better‐than‐average showing on this measure reflects the number of EMU graduates and their corresponding earnings premiums relative to the level of funding per student that EMU receives from the state compared to the average state university funding.

Another way to look at the return the state receives on its investment in EMU is to compare the state’s tax revenue from EMU’s impact to total funds received from the state government. EMU’s total impact on the Michigan economy results in a contribution of $115.1 million in state tax revenue. Thus, EMU’s impact on state government tax revenue is $1.87 in taxes for each dollar received from the state.

Student Off‐Campus Expenditures

The primary function of the University is providing educational services to students, so the geographic origin of EMU students is an important factor in analyzing EMU’s economic impact more than three quarters of its students come from Lenawee, Livingston, Macomb,

Monroe, Oakland, Washtenaw, and Wayne counties; while 14.9 percent come from areas other than southeastern Michigan, and 2.46% represents foreign students.

Nearly eighty percent of EMU’s students come from outside of Washtenaw County to attend EMU. About 3,000 students live in University‐provided residence halls or apartments; expenditures on housing and food service by these on‐campus students represent the majority of the $29.6 million in Auxiliary Activity Income for the University. Approximately 2,500 students live in privately owned rental housing near campus and about 16,500 students commute to classes from surrounding communities.

On‐campus students spend an estimated $7.5 million per academic year, split about equally among books, supplies, transportation, and miscellaneous expenses. The 2,500

21 off‐campus students pay out an estimated $11.2 million for rent and meals per year, plus an additional $7.4 million for books, supplies, transportation, and miscellaneous expenses. EMU’s

16,500 commuter students spend an estimated $29.8 million for transportation and an estimated

$29 million for books, supplies, and miscellaneous items.

Figure 2-4.

22

Housing

Eastern Michigan University's students make use of a variety of housing options both on campus and in the surrounding community.

On campus, over 3,000 students, staff and faculty live in university housing. Housing options include both traditional residence halls and apartments. Residence hall options include the first year center, Buell Hall, Downing Hall, Wise Hall, The Village (which includes six buildings and a commons building) and The Towers (which consists of Hill, Hoyt and Pittman).

The apartment options include Brown and Munson Apartments which primarily house single students. These are located on the west side of campus. Cornell Courts is located west of the main campus and includes one and two bedroom units. This complex also houses tenants with children. Finally, there is Westview apartments which are located adjacent to Rynearson Stadium and the Convocation Center. This complex is townhouse style and includes one and two bedroom units.

Off campus a good portion of students have access to various types of property such as houses, apartments, shared accommodations, townhouses, private homes, room & board, home- stay, and several other popular property categories. It is estimated that more than 2,500 students live in the neighborhoods adjacent to campus.

At the time of the last census survey, there were 9,215 total housing units in Ypsilanti.

The number of occupied housing units was 8,551, or 92.8 of the total units in town. Of these,

2,810 were owner-occupied (32.9) and 5,741 were renter-occupied (67.1, compared to the national average of 33.80%). There were also 664 vacant homes in Ypsilanti at the time of the last complete survey.

23

Social & Community Development

Universities, including Eastern Michigan University, have an impact that extends well beyond such economic measures as monetary expenditures and economic vitality into the social fabric of the entire community.

The mission of Eastern Michigan University includes this statement: "We extend our commitment beyond the campus boundaries to the wider community through service initiatives and partnerships of mutual interest addressing local, regional, national, and international opportunities and challenges." One of EMU’s strategic directions is that it “will become a model for public engagement by linking students, faculty, staff, and alumni with the local community, the Detroit metropolitan area, southeastern Michigan, the State of Michigan and the region to produce real‐world value and practical experience that enhances learning and helps address community needs.”

Community engagement activities are an integral program component for a large majority of organizational units at the university. Academic units use community venues as a professional outlet for faculty and students in a mutually beneficial learning relationship. Many non‐academic and support units at the university are also intensively involved in community activities, often because such engagement is central to their organizational mission.

Community settings also serve as an extension of the campus as venues for such field‐experience educational activities as internships and student teaching. While these career‐preparation activities are sometimes recognized in terms of their social integration with the community, they are less often analyzed as a vital component of a university’s long‐term contribution to the economic well‐being of the community.

24

Community engagement value can be partially expressed through the aggregation of common data about community‐based programs, events, and partnerships. On average during the academic year, the community‐engagement programs of EMU:

 Sponsor or host more than 2,200 events, programs, and activities that average 900,000

attendees.

 Receive more than $4.3 million of outside funding for community‐based programming

from more than 20 different organizations, including individuals, businesses, foundations,

and government agencies.

 Collaborate with more than 800 different organizations to engage in community‐service

activities. Partners include non‐profit agencies, governmental units, professional and

fraternal organizations, private corporations, school districts, and other colleges and

universities.

Zoning & Land Use

Eastern Michigan University’s Ypsilanti campus is within the jurisdictional boundary of

the City of Ypsilanti. The EMU Corporate Education Center, just south of the main campus

is within the jurisdictional boundary of Ypsilanti Township. Both jurisdictions are zoned

communities and have assigned districts for the areas where EMU property is located.

City of Ypsilanti

For the EMU main campus, University properties fall within the Public Lands (PL)

zoning district. The PL public land district is designed to classify publicly-owned uses and

permits the normal principal and incidental uses required to carry out governmental functions

and services. It is the intent of the PL public land district to encourage the development of

25 attractive public spaces which are conducive to community interaction, including innovative parking arrangements, combinations of permitted uses, and rehabilitation of existing structures.

While not under control of the University, the City of Ypsilanti has a Student Overlay

District (S-OL). The intent of the student overlay district is to provide areas in the vicinity of the Eastern Michigan University campus which are conducive to student living, recognizing that the needs and lifestyle of students vary from those of families and other household types.

It is further recognized that a higher density of development in student areas is appropriate given the large number of students who wish to live in close proximity to the university campus and the necessity of students to walk or otherwise use nonautomotive transportation thereby reducing the overall number of off-street parking that is needed. To allow greater flexibility within the S district, "relaxed requirements" are permitted for some land uses.

26

Charter Township of Ypsilanti

The area in which the EMU Corporate Education Center and Eagle Crest Golf Course are located is zoned Multiple Family Residential by the Township (RM-3). The RM-3 multiple- family residential district is designed to provide sites for high-density multiple-dwelling developments adjacent to high traffic generators and in areas abutting major thoroughfares and expressways.

27

University Development and Local Zoning Ordinances

Eastern Michigan University is immune from control by the legislature, many aspects of the executive branch, and cities in which its University-owned campuses are located; but it is not immune from the authority of the courts. Some degree of political control is exercised as the legislature approves appropriations for the University. While the local communities have zoning ordinances in place, the University is not compelled to follow the ordinances. The

University does work with local jurisdictions in being a responsible community partner.

The board of control of a public university is a constitutional corporation and is vested with the entire control of university affairs and property. Eastern Michigan Univ Bd of

Control v Labor Mediation Bd, 384 Mich 561, 565; 184 NW2d 921 (1971) (relying on

Weinberg v Regents of the Univ of Michigan, 97 Mich 246, 254; 56 NW 605 (1893)).

Whether a public university is subject to local regulation depends upon the legislative intent expressed in the applicable enabling statute. Chapter 390 of the Michigan Compiled

Laws governs the operations of universities and colleges, MCL 390.1 et seq; MSA 15.901 et seq. Section 551 provides for the continuation of Central, Eastern, Northern, and Western

Michigan Universities and states that these universities will each be governed by an eight member board of control. Under section 553, a university's board of control has general supervisory power to control and direct university funds. University authority to acquire and develop land, buildings, and other facilities is addressed in section 558, which provides in part that “A board, after approval by the legislature, may acquire land or acquire or erect buildings, or alter, equip or maintain them, to be used as residence halls, apartments, dining facilities, student centers, health centers, stadiums, athletic fields, gymnasiums, auditoriums, parking structures and other educational facilities”.

28

Transportation Network

Roads

Ypsilanti is made up of mostly collector roads but also several major roadways. Major portions of I-94, US-12 and US-23 run through the city limits as well as the surrounding area.

These highways can be viewed in Figures 2-5 below. The city of Ypsilanti shares responsibility of the local roads with Washtenaw County. Eastern Michigan is responsible for maintaining its parking lots and streets.

Figure 2-5.

29

Figure 2-6.

30

Rail

Within Washtenaw County there are four rail lines, these lines run through Ypsilanti including the areas surrounding campus. Ypsilanti Depot Town still has tracks which run through it and influenced the name of the popular local restaurant, Sidetracks. Directly across from campus lies a set of tracks used primarily for freight trains, several popular off campus housing options surround these tracks and house a substantial portion of students.

Figure 2-7.

31

Figure 2-8.

32

Airports

Detroit Metropolitan Wayne County Airport is located less than 20 miles east of campus and is the primary airport for the state of Michigan. Housed much closer to campus is Willow

Run Airport, Willow Run sits just 8 miles east of Eastern Michigan University. Due primarily to its proximity to the primary airport, Willow Run serves non-commercial passenger services.

Willow Run occupies a 2,600-acre site along the Detroit - Ann Arbor high tech and manufacturing corridor. It is supported by a strong infrastructure of freeways: I-94, I-96, US 23,

I-275, and I-75.

Figure 2-9.

33

Public Transit

Public transportation in the city is primarily offered through The Ann Arbor transportation authority (AATA). The AATA provides transportation primarily between the city of Ann Arbor and Ypsilanti.

Figure 2-10.

Police, Fire & Emergency Facilities

Police

Within Washtenaw County there are a total of eighteen police stations, the city of Ypsilanti has its own police department although the area is also patrolled by state police officers. The

Ypsilanti police department is currently made up of 30 police officers, 2 parking enforcement officers and 3 civilian support personnel.

34

Eastern Michigan University also has its own full service professional police department, including the power of arrest. EMU Public Safety is located at 1200 Oakwood St. and is open 24 hours a day, seven days a week, to serve the needs of the campus community. The department is comprised of 21 Police Officers, 4 foot patrol Officers, 9 full time dispatchers, 4 sergeants and 4 administrators.

Fire

The City of Ypsilanti Fire Department protects 45000 people living in an area of 4.5 square miles. It operates out of 1 station that protects a range of areas from residential to commercial to Eastern Michigan University. The City of Ypsilanti Fire Department which consists of approximately 19 firefighters divided up into 3 shifts.

Medical

Washtenaw County has five medical hospitals including the U of M Health System which is one of the largest in the world. Less than 2 miles from main campus and across the street from

Rynearson Stadium is St. Joseph Mercy Hospital. St. Joseph Mercy has 529 beds and a staff of over 3,500. It also has a helicopter facility.

Emergency Management

The Michigan Emergency Management Act, Act 390, 30.409, Section 9 (5) requires that a “ public college or university with a combined average population of faculty, students, and staff of 25,000 or more, including its satellite campuses within this state, shall appoint an emergency management coordinator for the public college or university.“ In compliance with the act, EMU has an appointed emergency management coordinator.

35

The Office of Emergency Management is housed within the Department of Public Safety.

EMU Emergency Management works in collaboration with the city, county and university to align preparedness activities for the better of the University and community population.

The Office maintains comprehensive preparedness and response plans that are coordinated with the City of Ypsilanti and Washtenaw County and define the actions to be taken by the University to respond to various types of emergencies. EMU also has a Community Emergency Response

Team (CERT) that provides support on campus and to the surrounding communities.

Washtenaw County has its own Office of Emergency Management which works on emergency preparedness for the county as well as education and outreach for the public. While the City of Ypsilanti does not have a separate emergency management program, emergency services are coordinated through the Ypsilanti Fire Department.

Section 3: University Profile  University Impact  University Mission  University Background  Organizational Structure  Scope  Economic Impact

University Impact

Eastern Michigan University has a substantial influence on the surrounding community. A sizeable portion of the population is made up of students, faculty and staff members. The

University hosts many community events in the various sporting facilities, the convocation center as well as the Student Center. The community has many of the traditional staples of being a ‘college town’ however; it is often overshadowed by Ann Arbor and the University of

Michigan.

36

University Mission

Eastern Michigan University is committed to excellence in teaching through traditional and innovative approaches, the extension of knowledge through basic and applied research, and creative and artistic expression. Building on a proud tradition of national leadership in the preparation of teachers, it maximizes educational opportunities and personal and professional growth through an array of baccalaureate, master’s and doctoral programs.

The University extends its our commitment beyond the campus boundaries to the wider community through service initiatives, and public and private partnerships of mutual interest addressing local, regional, national and international opportunities and challenges.

University Background

Founded in 1849, Michigan State Normal School was designated by the state legislature as the first institution to educate teachers to serve the public schools. As a result the University became the sixth teacher education institution in the nation. A campus that today comprises more than 800 acres was once a four-acre plot with one building and two programs of study. The school’s name changed several times; to Michigan State Normal College in 1899; to Eastern

Michigan College in 1956; and finally to Eastern Michigan University in 1959.

The University has since expanded; adding the College of Business in 1964, the College of

Health and Human Services in 1975 and the College of Technology in 1980. More recently,

Eastern Michigan has developed Extended Programs that include Continuing Education, the

Centers for Corporate Training, the World College and numerous community-focused institutes.

37

Over the years, EMU has educated thousands of sons and daughters of Michigan, the nation, and the world.

The University currently serves nearly 23,000 students who are pursuing undergraduate, graduate, specialist, doctoral and certificate degrees in the arts, sciences and professions. In all, more than 200 majors, minors and concentrations are delivered through the University’s

Colleges of Arts and Sciences; Business; Education; Health and Human Services; Technology, and its graduate school.

Eastern Michigan’s exceptional faculty, students and alumni include CEOs from major businesses; numerous Fulbright Scholars and Milken Family Foundation National Educators award winners; and several Michigan Teachers of the Year. EMU is regularly recognized by national publications for its excellence, diversity, and commitment to applied education.

The University has enhanced its learning environment through structural initiatives during the past several years. Recent construction includes the Terrestrial and Aquatic Research Facility

(1998), the Convocation Center (1998), the Bruce T. Halle Library (1998), the John W. Porter

College of Education Building (1999), the Everett L. Marshall College of Health and Human

Services Building (2000), the Village residence hall (2001), University House (2003), and new

Student Center (2006).

Organizational Structure

The president is the chief executive officer of the University. The president is responsible for the entire operation of the University and is charged to implement its mission, consonant with the policies and actions of the Board of Regents. The Board consists of eight members appointed by the Governor to serve staggered eight-year terms. The University is constitutionally autonomous.

38

Below is an organizational chart which gives insight into the hierarchical structure of the university.

Figure 3-1.

39

Scope

Hazards analyzed within this plan were categorized as being high, medium and low. Within the contents of this plan, all potential hazards are addressed on a rudimentary level and can be seen within the risk rating chart found later on. Those hazards deemed to be ‘high’ or that have the most potential to occur and damage the campus community will be focused on in depth.

Eastern Michigan University had multiple campus locations including several satellite campuses. Within this plan, the main campus, the College of Business and Eagle Crest take primary focus.

Economic Impact

Eastern Michigan University has a substantial impact on the local economy as a result mainly of two things: employing individuals and attracting students and visitors to the area for a majority of the calendar year. As depicted below, the university stimulates the local economy through purchases and construction contracts, especially in recent years as updates have been performed in several of the buildings. To name just a few examples this included the construction of the relatively new Student Center and most recently the renovation of Pray-

Harold. In addition, students place their money into the local economy during their time in school whether it is on off campus housing or generic spending. Finally, faculty/staff and visitors often find themselves investing in the Ypsilanti, economy whether intentional or not.

40

Figure 3-2.

Often, students and graduates dedicate their time to developing the local community.

Many students attain internships to assist in their personal and professional growth; this labor is most often free and can be of great benefit to the surrounding community. The University not only assists in stimulating the local economy but it also attributes a great deal to the makeup of the City of Ypsilanti.

41

Section 4: Planning Process  Overview of Hazard Mitigation Planning  Preparing the Plan  The Advisory Committee, Committee Meetings and Public Involvement

Overview of Hazard Mitigation Planning

Across the United States, natural and manmade disasters have led to increasing levels of death, injury, property damage, and interruption of business, government and educational services. Eastern Michigan University recognizes the consequences of disasters and the need to reduce their impacts.

The Plan will guide the University toward greater disaster resistance in harmony with the character and needs of the campus and the surrounding community. Planning is a prerequisite for funding under the Hazard Mitigation Grant Program, Pre- Disaster Mitigation Program and

Flood Mitigation Assistance program, all available from FEMA through EMHSD and will position the University to be eligible to apply for future mitigation grants.

Mitigation is defined as any sustained action taken to reduce or eliminate the long term effects of disasters. Simply stated, mitigation is loss reduction activities taken before or after disasters. While it is important to address the other three phases of emergency management: preparedness, response and recovery, the focus of this Plan is on mitigation. It also addresses some aspects of disaster preparedness, response, and recovery, as these elements can enhance or hinder the eventual success of the plan itself.

Hazard mitigation planning is beneficial to EMU in several ways. It helps the University become more resilient to disaster losses and is necessary in order for the University to maintain its eligibility for FEMA Pre-disaster Mitigation and Hazard Mitigation Grant Programs.

42

An element of particular interest to many administrators is that it is mitigation planning is meant to reduce the costs associated with hazards of all kinds. If done properly, it will take a long term view of rebuilding post hazard and identify ways to minimize the time and cost associated with addressing the most likely hazards. The benefits associated with mitigation planning include a reduction in: loss of life, property, essential services, critical facilities and economic hardship as well as a reduction in short and long-term recovery and reconstruction costs. Additional benefits include an increase in both cooperation and communication within the community as well as potential for state and federal funding for recovery and reconstruction projects.

Preparing the Plan

Eastern Michigan University worked to establish the framework and process for this planning effort using FEMA’s Local Multi-Hazard Mitigation Planning Guidance (2008) and the State and Local Mitigation Planning How-To Guides (2001), which include Multi-Jurisdictional

Mitigation Planning (2006). The plan is structured around a four-phase process:

1) Organize resources

 Organize the planning effort

 Involve the campus community

 Coordinate with other agencies

2) Assess risks

 Identify the hazards

 Assess the risks

43

3) Develop the mitigation plan

 Set goals

 Review proposed activities

 Draft an action plan

4) Implement the plan and monitor progress

 Adopt the plan

 Implement, evaluate and revise the plan

In October of 2010 work on the Eastern Michigan University Multi-Hazard Mitigation Plan began. The first steps taken involved researching the necessary contents of a hazard mitigation plan and then transitioning into the specifics of the Eastern Michigan community. While creating this plan, information was collected from a variety of sources including previous documents and plans. Some are listed below. A kick-off meeting was held for the campus community and local agencies on November 19, 2010.

Supporting Plans and Procedures

 Eastern Michigan University, Emergency Response Procedures

This Emergency Response3 Procedure (ERP) is a guide to how the Eastern Michigan

University community (students, faculty, staff and visitors) conducts specific emergency

response actions for emergency situations. While this procedure provides detailed action

steps, the users must keep in mind that all emergency events are unique and that

3 The term “response” as used in this procedure includes immediate actions to save lives, protect property and the environment, and meet basic needs.

44 procedures can, and should, be implemented on a scalable, flexible, and adaptable basis to align with the challenges presented by the emergency.

This ERP is an integrated component of a comprehensive preparedness and response system that will ensure unity of effort and help EMU protect the health and safety of the campus community and its resources. As this system is implemented, it will align and synchronize this ERP with the University’s Comprehensive Emergency Management

Plan (CEMP), Continuity of Operations Plan (COOP) and Building Emergency Plans

(BEP).

This ERP has also been developed to comply with the Michigan Occupational Safety and Health Act, Act 154, P.A. 1974, as amended, the Fire Prevention Act, Act 207, P.A.

1941 as amended, and the Michigan Emergency Management Act, Act 390, 1976, as amended.

 All-Hazards Comprehensive Emergency Management Plan

The EMU Comprehensive Emergency Management Plan (CEMP) is intended to

establish policies, procedures and organizational structure for response to

emergencies that cause a significant disruption of the functioning of all or portions of

the University. The CEMP describes the roles and responsibilities of divisions,

departments, offices, units and personnel during emergency situations. The CEMP is

designed to:

1. Present a proactive response designed to protect students, staff and faculty, as

well as the community and the environment in case of a major emergency or

disaster.

45

2. Serve as a guide for managing any situation, generally of an emergency nature

that may result from a single violent act and disasters both natural and

technology-based.

3. Outline and assign responsibilities for coping with emergencies affecting the

safety and wellbeing of people and/or facilities on campus.

4. Facilitate compliance with certain regulatory requirements of federal, state

and local agencies and enhances the University's ability to quickly return to

normal operations following an emergency or disaster.

 Continuity of Operations Plan

The Continuity of Operations Plan (COOP) allows the University to preserve,

maintain, and/or reconstitute its capability to perform essential functions in the event

of any disaster or emergency that could potentially disrupt operations and services. It

is not an emergency response plan; the purpose of a COOP is to facilitate the

recovery and resumption of critical or essential functions through the development of

plans, procedures and provisions for alternate sites, personnel, resources,

interoperable communications and vital records/databases.

 Building Emergency Plan

Building Emergency Plans (BEP) provide additional procedures for preparedness

and response for emergency incidents. The BEP provides critical information that

each individual needs to be familiar with when there is an emergency in a specific

building. All building occupants need to review, understand, and practice their

Building Emergency Plan information and procedures, including emergency alerting,

notification, evacuation, and shelter-in-place procedures.

46

 Crisis Communications Plan

The EMU Crisis Communications Plan outlines the policies and procedures for

the coordination of communications within the university, and between the university,

the media and the public in the event of an emergency or controversial issue. The plan

provides a strategy for communicating quickly and adequately with EMU’s target

audiences during various levels of emergencies.

 Emergency Alert Systems Policy and Procedures

The Eastern Michigan University campus maintains a multi-modal approach to all

hazards emergency alerting and notification. This document establishes the policy

and procedures for the support of emergency alerts and notification at EMU and to

ensure compliancy with applicable federal laws.

In addition to the Eastern Michigan University plans referenced, the State of Michigan

Hazard Analysis, and the Washtenaw County and the City of Ypsilanti Hazard Mitigation plans were reviewed for area information.

47

Table 4-1.

48

The Advisory Committee, Committee Meetings & Public Involvement

In compliance with the guidelines laid out by FEMA, the Emergency Management Office held a public meeting at the both the start and conclusion of the project to inform the community of what this project entailed and what the project goals were. In addition, a meeting was held in

December of 2011 to provide a status update of the project while revision were being made to the plan. To gain more direct involvement, a rough draft of the plan was sent out in March of

2012 to solicit commentary and suggestions. It was sent to advisory committee members as well as the public safety professionals of the city and county.

As the office concluded the research phase of the project, it proceeded to involve the community members once more. Members of the Eastern Michigan University campus community (faculty, staff and students) were asked for suggestions regarding mitigation recommendations. Additionally, copies of the plan were provided to the City of Ypsilanti Fire

Department which coordinates emergency services for the city, Ypsilanti Police Department,

Washtenaw County Emergency Management and the Michigan Emergency Management &

Homeland Security Division Region 2 –S Coordinator.

Information on how to obtain a copy of the draft plan was made available to interested members of the public and a presentation was prepared to provide an overview of the planning process and the results of the project.

Hazard Mitigation Planning & Advisory Committee Information

The Eastern Michigan University Multi-Hazard Mitigation project is headed by Mark

Wesley, EMU Emergency Director, who is the primary point of contact. Members of the committee include representatives from various University departments, the City of Ypsilanti and Washtenaw County. The table below identifies the individuals and the organizations they represent.

49

Eastern Michigan University Hazard Mitigation Advisory Committee Name Affiliation Kevin Abbasse EMU Physical Plant Sonya Alvarado EMU Federation of Teachers Ellen Bernard EMU Environmental Health and Safety Marc Breckenridge Washtenaw County Emergency Management Elizabeth Bucciarelli American Association of University Professors Susan Campbell PT Union/Office of Research & Development Akosua Dow Provost’s Office & Academic Affairs John Foley Huron River Watershed Nick Graham AFSCME/Physical Plant Cat Griebe Mitigation GA Joanne Hansen Women's Commission Erica Healander Risk Management Robert Heighes Chief, EMU Department of Public Safety Barbara Hopkins Center for Organization Risk Reduction Jon Ichesco Chief, Ypsilanti Fire Department Ken Kelly Washtenaw County Emergency Management Thomas Kovacs American Association of University Professors Kevin Lawson EMU Student Center Mark Monarch EMU Physical Plant Steve Moore EMU Physical Plant Steve Pernicky American Association of University Professors Bilal Sarsour EMU Physical Plant Toni Taylor Clerical Union/Academic Advising Eric Ward University Health Services Mark Wesley EMU Emergency Management Kathryn Wilhoff Environmental Health and Safety Gregg Wilmes American Association of University Professors

Table 4-2.

50

Section 5: Hazard Identification, Risk Assessment & Vulnerability Analysis  Initial Hazard Identification  State and Federal Disaster Declarations  Risk and Vulnerability  Community Critical Facilities and Services  Campus Critical Facilities and Services  University Building Inventory  Natural Hazards  Technological Hazards  Societal Hazards  Hazard Summary  Hazard Priority Rating

Initial Hazard Identification

The primary method used to initially identify relevant hazards to the Eastern Michigan

University community was to conduct a survey. The Eastern Michigan Emergency Management

Office conducted an online hazard assessment survey from January 27, 2011 until February 26,

2011. The survey was made available for students, staff and faculty via Surveymonkey, an online survey hosting website. The purpose of the survey was to identify relevant threats to the campus community. The information gathered from the responses to this survey supports the development of the Eastern Michigan University Hazard Mitigation Plan. The survey acted as a vital part of steps 1 through 3 of the risk assessment process.

The survey was sent out to various members of email mailing lists, was posted on EMU

Today and word of mouth was used to increase awareness of the surveys existence. In total there were 350 respondents, which included faculty, staff and both undergraduate and graduate students. The survey consisted of 12 multiple choice questions and 1 optional question regarding additional commentary suggesting any improvements the university might be able to make in the area of emergency preparedness and mitigation.

51

The results of this survey were used in conjunction with previously existing data from the

City of Ypsilanti and Washtenaw County Hazard Mitigation Plans and data from past natural and manmade events that have occurred on and around campus. The survey supports the creation of an extensive profile of potential hazards affecting the University based on historical accounts, existing emergency plans, and knowledge of students, faculty, and staff. The various hazards identified through the risk assessment process will then be prioritized based on the likelihood of occurrence, severity of the hazard and cost of damage to the University

52

The following chart compares the hazards identified in other plans with the hazards identified by Eastern Michigan University.

Table 5-1.

53

State & Federal Disaster Declarations

Washtenaw County has experienced five (5) governor’s declarations of emergencies

(9/05; 4/04; 8/03; 7/80; 1/78) and eight (8) Presidential declarations (9/05; 6/04; 8/03; 1/01; 1/99;

7/80; 1/78; 4/65) between 1953 and 2011.

Figure 5-1.

54

University Facilities Inventory

"Buildings" are the primary components of what is commonly referred to as "facilities” in the

University inventory. Physical "facilities" is often used as a more generic term to include other types of structures, real property, and fixed assets; and records of these extended capital investments should be maintained by each institution. Following is a listing of university facilities including satellite locations which are denoted with an asterisk in Table 5-2.

Figure 5-2.

55

General Fund Building Inventory and Replacement Cost Information

General Fund Major System Renovations Time Since 2012 Building Date Age Buildings Floors Sq. ft. Renovation Replacement Built (yrs) Architectural Mechanical Electrical (yrs) Value Alexander 4 86,900 1980 32 1980 1998 1980 32 $22,857,042 Boone Hall 3 45,210 1914 98 2000 2000 2000 12 $11,891,448 Bowen 2 89,220 1955 57 1955 1955 1955 57 $23,467,264 Briggs 1 9,500 1937 75 1990 1990 1990 22 $2,498,756 Central Stores 1 10,140 1972 40 1972 1972 1972 40 $2,667,093 Convocation Center 3 198,385 1998 14 1998 1998 1998 14 $52,180,601 Cooper 2 12,150 1984 28 1984 1984 1984 28 $3,195,777 Corporate Education 2 37,200 1989 23 1989 1989 1989 23 $10,917,195 Center Everett C. Marshall 3 70,324 2000 12 2000 2000 2000 12 $18,497,107 Fletcher Building 1 ------$4,000,000 (Acquired 2010) Ford Hall 2 33,333 1929 83 1968 1968 1968 44 $8,767,477 Greenhouse & Aquatic 1 5,200 1998 14 1998 1998 1998 14 $1,367,740 Biology Halle Library 5 273,715 1998 14 1998 1998 1998 14 $71,994,422 Heating Plant 3 23,856 1951 61 1951 1951 1951 61 $43,731,458 Hover 2 11,021 1941 71 2002 2002 2002 10 $4,045,514 Indoor Practice Facility 1 2010 2 2010 2010 2010 - $3,400,000 John W. Porter 3 143,775 1966 46 1999 1999 1999 13 $37,816,700 King 4 61,450 1939 73 1939 1939 1939 73 $17,946,458 Kresge Center* 1 12,606 1974 38 1974 1974 1974 38 $3,315,717 Mark Jefferson 5 180,802 1969 43 2011 2011 2011 1 $68,645,427 McKenny Union 4 107,103 1931 81 1992 1992 1992 20 $28,170,975 1 1,312 1968 44 1968 1968 1968 44 $1,818,953 Olds\Robb Center 5 180,631 1984 28 1984 1984 1984 28 $47,510,821 Owen C.O.B 5 126,000 1990 22 1990 1990 1990 22 $40,082,287 *Satellite location

Table 5-2.

56

General Fund Building Inventory and Replacement Cost Information

General Fund Major System Renovations Time Since 2012 Building Date Age Buildings Floors Sq. ft. Renovation Replacement Built (yrs) Architectural Mechanical Electrical (yrs) Value Paint Research 1 8,000 1987 25 1987 1987 1987 25 $2,937,565 Pease 2 30,181 1914 98 1994 1994 1994 18 $7,938,416 Physical Plant 1 25,300 1995 17 1995 1995 1995 17 $6,654,581 Physical Plant Storage 1 8,500 1995 17 1995 1995 1995 17 $2,235,729 Garage Pierce Hall 4 61,275 1948 64 1990 1990 1990 22 $16,116,976 Pray Harrold 7 237,108 1967 45 2011 2011 2011 1 $62,365,794 Quirk 2 58,205 1959 53 1959 1959 1959 53 $15,309,483 Rackham 2 45,890 1938 74 1938 1938 1938 74 $12,070,306 Roosevelt 2 75,639 1924 88 1973 1973 1973 39 $19,895,095 Rynearson Stadium 3 49,595 1968 44 1968 1968 1968 44 $15,776,833 School House 1 900 1905 107 1988 1988 1988 24 $659,676 Sculpture Studio 1 4,648 1959 53 1959 1959 1959 53 $1,222,549 Sherzer 3 35,253 1903 109 1990 1990 1990 22 $9,272,489 Sill Hall 2 92,635 1965 47 1965 1965 1965 47 $24,365,501 Snow 2 30,035 1959 53 1959 1959 1959 53 $11,304,440 2 8,706 1896 116 1996 1991 1991 16 $2,289,912 Strong 3 80,713 1957 55 1957 1957 1957 55 $21,229,694 Student Union 3 176,000 2006 6 2006 2006 2006 6 $41,530,308 Team Building 1 13,536 1995 17 1995 1995 1995 17 $3,560,332 University House 2 10,700 2003 9 2003 2003 2003 9 $3,374,689 Warner 2 95,349 1964 48 1964 1964 1964 48 $25,079,356 Welch Hall 4 36,840 1896 116 1986 1986 1986 6 $9,689,912 611 West Cross Street 2 4,050 1970 42 1970 1970 1970 42 $1,065,259 (Psych Clinic) Total Replacement Cost $846,731,151 Table 5-2. (cont’d.)

57

Auxiliary Fund Building Inventory and Replacement Cost Information

2011 Major System Renovations Time Since Auxiliary Buildings Date Age Building Floors Sq. ft. Renovation Built (yrs) Replacement Architectural Mechanical Electrical (yrs) Value Best Hall 5 68,516 1965 47 1965 1965 1965 47 S47,187,463 Brown Hall 5 87,872 1940 72 1940 1940 1940 72 4 Buell Hall 5 73,352 1957 55 1957 1957 1957 55 $6,225,667 Cornell Courts- 2 28,344 1966 46 1966 1966 1966 46 $1,964,530 3 units Cornell Courts- 2 56,728 1960 52 1960 1960 1960 52 $4,108,049 6 units Dining Commons 1 2 49,276 1957 55 1957 1957 1957 55 $5,169,150 Dining Commons 2 2 68,635 1967 45 1967 1967 1967 45 $31,000,9455 Dining Commons 3 2 46,990 1969 43 1969 1969 1969 43 $4,929,343 Downing Hall 5 73,821 1957 55 1957 1957 1957 55 $9,603,070 Eagle Crest Golf ------$2,100,512 Course Clubhouse Goddard Hall 5 75,856 1955 57 1955 1955 1955 57 $12,291,0506 Hill Hall 11 94,944 1969 43 1969 1969 1969 43 $11,492,091 Hoyt Hall 11 94,944 1969 43 1969 1969 1969 43 $11,492,091 Jones Hall 5 70,491 1948 64 1948 1948 1948 64 See 5 Lake House 1 3,380 1994 18 1994 1994 1994 18 $395,091 Munson 4 49,264 1940 72 1940 1940 1940 72 See 3 Table5-3.

4 Brown-Munson Apartments combined. See Munson value.

5 Includes Phelps/Putnam/Sellers/Walton Residence Halls Complex

6 Goddard/Jones Halls combined

58

Auxiliary Fund Building Inventory and Replacement Cost Information

2011 Major System Renovations Time Since Auxiliary Buildings Date Age Building Floors Sq. ft. Renovation Built (yrs) Replacement Architectural Mechanical Electrical (yrs) Value Phelps Hall 5 56,722 1966 46 1966 1966 1966 46 See 4 Pittman Hall 11 94,944 1969 43 1969 1969 1969 43 $11,492,091 Putnam Hall 5 56,722 1968 44 1968 1968 1968 44 See 4 Sellers 5 56,722 1966 46 1966 1966 1966 46 See 4 Softball Concessions 1 1,050 2005 7 2005 2005 2005 7 $381,058 The Village 3 113,060 2001 11 2001 2001 2001 11 $14,580,978 Walton Hall 5 56,722 1968 44 1968 1968 1968 44 See 4 Westview Apartments 2 107,880 1967 43 1969 1969 1969 43 $11,316,824 600 W. Forest 2 5,580 1949 63 1949 1949 1949 63 $359,717 601 W. Forest 2 2,775 1919 93 1980 1980 1980 32 $191,358 526 St. Johns 3 1,434 1920 92 1920 2001 1988 92 $119,559 Total Replacement Cost $61,820,858 Table5-3. (cont’d.)

59

Estimated Building Contents Value 2010- 2011 Contents Building Name Value Alexander Music Building $1,969,347 Best Hall $1,079,417 Boone Hall $782,278 Briggs Hall $225,844 Buell Hall $447,452 Central Receiving & Warehouse $92,435 Convocation Center $527,089 Cooper Building (2000 Huron River Dr.) $382,265 Coral Substation $32,059 Cornell Court Apartments A-F $150,315 Cornell Court Apartments G,H,I $619,092 Corporate Education Center $392,430 Dining Commons #1 $1,721,127 Dining Commons #3-Hoyt Convention Center $355,400 Dining Complex #2 W/Dorms $364,850 Downing Hall $108,620 Eagle Crest Golf Course Clubhouse $90,086 Fletcher Building $500,000 Ford Hall $253,363 Halle Library $4,386,431 Heating Plant $1,008,667 Hill Tower Complex #3 $127,048 Hover Building $1,059,500 Hoyt Tower Complex #3 $619,957 Lake House $19,884 Jones-Goddard Hall $68,338 King Hall $643,280 Mark-Jefferson Science Complex $2,570,674 Marshall Building $359,170 McKenny Hall $656,500 Table 5-4.

60

Estimated Building Contents Value

2010- 2011 Contents Building Name Value Munson-Brown Hall $740,308 Oestrike Baseball Stadium $10,100 Owen/(Cob) Parking Structure $123,077 Owen/(Cob) $2,357,393 Paint Research Lab $444,654 Parking Structure $3,984,960 $106,866 Physical Plant (Wm. Smart Bldg) $489,676 Physical Plant Storage Garage $567,007 Pierce Hall {Including Radio Tower} $923,372 Pittman Tower Complex #3 $122,314 Porter College Of Education Building $1,550,149 Pray-Harrold $8,157,097 Quirk Theatre $210,706 Rackham Hall $820,997 Roosevelt Hall $616,006 Rynearson Eastside $181,740 Rynearson Indoor Practice Facility $50,000 Rynearson Stands $112,099 Rynearson Team Bldg. $694,561 School House $13,893 Sculpture Studio $53,433 $450,273 Sill Hall $2,634,193 Snow Health Center $480,220 Starkweather Hall $597,281 Strong Hall $1,252,926 Terrestrial/Aquatic Center $35,393 Table 5-4. (cont’d.)

61

Estimated Building Contents Value

2010- 2011 Building Name Contents Value Warner Gym, Bowen Fieldhouse, Rec-IM $1,431,528 Welch Hall $1,643,842 Westview Apartments $29,627 Wise Hall $138,238 Village Residence Halls $1,122,518 University House $493,239 Psychological Clinic 611 W. Cross Street $75,000 526 St. Johns $10,687 600 W. Forest St $1,515 601 W. Forest $1,515 Student Center $1,351,538 Total Estimated Content Values $55,692,859 Table 5-4. (cont’d.)

Additional Assets Value Information

Asset Value Library Holdings $82,131,140 Main Campus Parking Structure $7,659,760 College of Business Parking Structure $4,554,510 Coral Substation $2,806,015 Fine Arts throughout Campus $2,574,491 Stadium Scoreboard $558,000 Stadium Lights $411,565 Softball Fields $392,843 Radio Tower (890 W. Cross) $281,058 Women’s Softball Stands $97,986 Table 5-5.

62

Natural Hazards

Severe Snow Storm

Snow storms are just one category of severe winter weather; they include but are not limited to blizzard conditions. A snow storm involves an excess of snowfall while a blizzard is the combination of heavy snowfall with high winds, traditionally the winds are over 35 mph and visibility is reduced to near zero. Snow itself can be categorized as flurries, squalls, blowing snow and a blizzard. Severe snow storms have the potential to be quite devastating to the areas they hit. Snow storms have the ability to cause car accidents, power outages, property damages and loss of life in the most detrimental situations.

Eastern Michigan University has not been immune to the perilous winter conditions that hit Michigan traditionally between the months of November to March. The locations traditionally affected when the main campus closes are: the COB, Livonia, Brighton and Detroit.

Closures have occurred due to inclement winter weather conditions on multiple occasions over the past 2 years. The following are the dates on which EMU had to close their campus and all non-essential departments due to hazardous winter weather, including severe snowstorms.

 February 10, 2010

 February 1, 2011-for the evening beginning at 5pm

 February 2, 2011

 February 21, 2011

Snow storms have the ability to impact the Eastern Michigan community both on and off campus. Transportation impairments are a common hazard associated with severe snow storms and can affect the EMU community, especially due to the large commuter population. Falling

63 tree limbs and power outages have the potential to leave faculty, staff and students without adequate heat and sustenance if caught on campus in a severe snow storm condition. To demonstrate the likelihood of a potential extreme snow situation affecting an EMU property including the main campus, the map below displays the average snow fall seen in Michigan on any given year.

Figure 5-3.

64

Ice Storm

An ice storm is any heavy accumulations of ice which can result in hazardous conditions and potentially damage property. Ice storms have the ability to bring down trees, electrical wires, telephone lines and communication towers. Communications and power can be disrupted for extended periods of time while utility companies work to repair the damages. Additionally, entire communities can be left without heat during the extreme cold of a Michigan winter. While intense ice storms can clearly cause greater amounts of damage even small accumulations of ice may cause extreme hazards to motorists and pedestrians. Although ice storms are less common than snow storms they do occur in Michigan, the most recent severe ice storm occurred in

February of 2011 across much of southeastern Michigan. According to the National Climatic

Data Center, major ice storms have caused more than $200 million in damages since 1993

(averaging $16.4 million per year). It is clear that a severe ice storm has the potential to cause a major disruption to the campus. Repair staff may find themselves burdened with the challenge of returning damaged areas to a state of function in a fashion quick enough to prevent additional disruptions to daily operations. As displayed below in Table 5-6, the majority ice and sleet storms occur between December and March, knowing this will assist in preparedness planning.

The Eastern Michigan University community is vulnerable in the event of a severe ice storm. Not all buildings on campus are equipped with emergency generators in the event of

65 power loss due to such a storm. In addition, pipes are susceptible to freezing and bursting, potentially leaving residents without water for extended periods of time. The severity of the storm to the area as a whole would impact how detrimental such an event could be to the campus. It is possible for emergency response times to be slowed slightly if conditions reach a substantially dangerous level. While Eastern does have a capable maintenance staff; damages to power for example, can only be handled by the utility company. In this case, the campus would be at the mercy of their response time in order to restore campus to its fully functioning state.

Tornado/Microburst

Tornadoes are one of nature’s most violent storms. According to the Glossary of

Meteorology, a tornado is “a violently rotating column of air, pendant from a cumuliform cloud or underneath a cumuliform cloud, and often (but not always) visible as a funnel cloud.”

The most violenttornadoes, with wind speeds of 250 mph or more, are capable of tremendous destruction. Damage paths can be more than 1 mile wide and up to 50 miles long.

Tornadoes can occur anywhere in the United States. The states along the Atlantic and Gulf coasts have some of the highest occurrence rates of smaller tornadoes (EF0-EF2), while the Great

Plains region of the country (which includes parts of Texas, Oklahoma, Kansas, and Nebraska) consistently has the highest occurrence rates of larger tornadoes (EF3-EF5). Tornadoes are responsible for the greatest number of wind-related deaths each year in the United States.

The National Weather Service (NWS) classifies and issues tornado watches and warnings as follows:

A Tornado Watch is issued to alert people to the possibility of a tornado developing in the area in the next 12 hours.. At this point, a tornado has not been seen but the conditions are very favorable for tornados to occur at any moment.

66

A Tornado Warning is issued when a tornado has actually been sighted (reliable spotter report) or has been picked up on radar in the area.

Figure 5-4.

Tornadoes come in all shapes and sizes.Tornadoes can also occur in thunderstorms that develop in warm, moist air masses in advance of eastward-moving cold fronts. These thunderstorms often produce large hail and strong winds, in addition to tornadoes. During the spring, thunderstorms frequently develop along a“dryline,” which separates warm, moist air to the east from hot, dry air to the west.

In a simplified tornado “model,” there are three regions of tornadic winds:

1. Near the surface, close to the core or vortex of the tornado. In this region, the winds are

complicated and include the peak at-ground wind speeds, but are dominated by the

67

tornado’s strong rotation. It is in this region that strong upward motions occur that carry

debris upward, as well as around the tornado.

2. Near the surface, away from the tornado’s vortex. In this region, the flow is a

combinationof the tornado’s rotation, inflow into the tornado, and the background wind.

Theimportance of the rotational winds as compared to the inflow winds decreases with

distance from the tornado’s vortex. The flow in this region is extremely complicated. The

strongest winds are typically concentrated into relatively narrow swaths of strong

spiraling inflow rather than a uniform flow into the tornado’s vortex circulation.

3. Above the surface, typically above the tops of most buildings. In this region, the flow

tends to become nearly circular. In a tornado, the diameter of the core or vortex

circulation can change with time, so it is impossible to say precisely where one region of

the tornado’s flow ends and another begins.

Also, the visible funnel cloud associated with and typically labeled the vortex of a tornado is not always the edge of the strong, high winds. Rather, the visible funnel cloud boundary is determined by the temperature and moisture content of the tornado’s inflowing air. The highest wind speeds in a tornado occur at a radius measured from the tornado vortex center that can be larger than the edge of the visible funnel cloud’s radius. It is important to remember that a tornado’s wind speeds cannot be determined solely from its appearance.

From 1971 until February 2007, tornadoes were typically categorized according to the Fujita

Scale (F Scale), which was created by the late Dr. Tetsuya Theodore Fujita, University of

Chicago. The Fujita Scale categorized tornado severity by damage observed, not by recorded wind speeds.

68

The Fujita Scale categorizes tornado severity based on observed damage. The six-step scale ranges from F0 (light damage) to F5 (incredible damage). Since February 2007, the National

Weather Service has used the Enhanced Fujita Scale (EF Scale). This new scale ranges from EF0 to EF5. See http://www.spc.noaa.gov/efscale for further information on the EF Scale.

Table 5-7.

The FEMA Wind Speed Map in Figure 5-5 is primarily based on historical data. Since

1997, almost 1,300 tornadoes, on average, have been reported nationwide each year. Most tornadoes are short-lived, average less than 500 feet wide, and traverse less than 2,000 feet.

Some large tornadoes have been known to cause damage along paths that are 1-mile wide and many miles long; however, tornadoes such as these occur only a few times each year. The land area directly impacted by all tornadoes in a year is relatively small. At present, it is not possible to directly measure wind speeds in a tornado because of its short life. Thus, the data available for tornadoes, intensity, and area of damage are relatively sparse and require special consideration in the probability assessment of wind speeds.

69

Figure 5-5.

Wind Storm

High winds that are not a result of hurricanes or tornadoes are one of the most damaging forms of weather across the entire nation. High winds occur across Southeast Michigan. If the winds are sufficiently fast, they are identified as windstorms and are often labeled as damaging straight-line winds. They often cause damages to property and the environment, and sometimes to humans. Damages from high winds include downed transmission lines, broken and fallen trees, damaged buildings and homes (roofs, windows, and siding), and damages to aircraft, trains, and vehicles.

Severe winds are fairly common in various parts of Michigan. Along the Great Lakes shoreline, high winds occur regularly and gusts of over 74 miles per hour (hurricane velocity) occasionally occur with a storm system. Severe winds can cause damage to structures, power

70 lines, and trees. Power outages can result in the need for sheltering those left without power for extended periods.

High winds are often defined by wind speeds over 60 mph. High damaging wind areas range in size from a few hundred square miles up to hundreds of thousands of square miles.

The National Weather Service (NWS) classifies and issues wind advisories and warnings as follows:

A Wind Advisory is generally issued when there are sustained winds of 25–39 miles per hour

(40–63 km/h) and/or gusts to 57 miles per hour (92 km/h) over land. The product is site specific, but winds of this magnitude occurring over an area that frequently experiences such wind speeds will not trigger a wind advisory.

A High Wind Warning is issued by the NWS if winds are forecast to be 39-57 mph for at least

1 hour; or any gusts to 58-73 mph on land.

Flood/Riverine Urban Runoff

The climate in Washtenaw County is characteristically continental and, as such, is subject to extreme temperature variation and fairly well distributed precipitation. Precipitation is slightly greater during the summer months than during the winter months. The annual precipitation is approximately 30 inches. Snowfall averages approximately 30 inches annually.

The Huron River, which flows north to south through the County, is a major waterway flowing through southeastern Michigan to its mouth at Lake Erie. The Huron River, which runs through Ypsilanti and is near the northern boundary of EMU’s main campus, is a 130-mile-long river rising out of the Huron Swamp in Indian Springs Metropark in northern Oakland County and flowing into Lake Erie on the boundary between Wayne County and Monroe County.

71

The Huron River is a typical Southeast Michigan stream; mud banks, slow stream flow and a low gradient define this river. There are 24 major tributaries totaling about 370 miles

(600 km) in addition to the mainstream. The Huron River watershed drains 908 square miles

(2,350 km2). It is the only state-designated Country-Scenic Natural River in southeast Michigan.

This includes 27.5 miles (44.3 km) of the mainstream, plus an additional 10.5 miles (16.9 km) of three tributaries.

The river has many dams, 19 on the mainstream and at least 96 in the entire system. Most dams are only a few feet high, built to slightly increase and maintain water levels in existing lakes, a use that is now environmentally controversial. However, at least a dozen dams that were built for mill or hydroelectric power and several formed large new lakes behind them. Some of these on the Huron River mainstream are Kent Lake, Barton Pond, Argo Pond, Ford Lake,

Belleville Lake, and Flat Rock Pond.

Figure 5-6 The Middle Huron Watershed boundaries within the Ann Arbor-Ypsilanti Metropolitan Area.

72

Severe floods caused by intense thunderstorms during summer months have been recorded. However, the more severe flooding in rivers such as the Huron River, generally occur in late winter and early spring from a combination of frozen ground, melting snow and heavy rain. The greatest floods of the Huron River in Washtenaw County during the time period of

1920 to 1980 occurred in March 1918, April 1947 and June 1968, as recorded by the USGS stage gage on Huron River at the Charter Township of Ann Arbor. These floods had estimated recurrence intervals of 38, 19 and 15 years respectively based on flood frequency analyses. A heavy rain will produce sudden high discharges. Based on the USGS gage records for the Huron

River at the Charter Township of Ann Arbor, the June 1968 storm produced a flow increase of

3,800 cubic feet within a period of two to three hours after precipitation. The probability of flooding in the Huron River is further increased by the constrictive bridges and debris accumulated near these structures.

In the City of Ypsilanti, the probability of severe flooding in Paint Creek is increased due to constrictive culverts under Interstate Highway 94. During the March 1918 flood, Peninsular

Dam failed and inundated Michigan Ave (a major thoroughfare). During the April 1947 flood, the municipal pump, sewage treatment plant and high service pumping station were surrounded with water and the city’s well field was also inundated. During the 1968 flood, commercial and residential areas located within the Huron River floodplain were damaged. These types of flooding events have direct impacts on the University in terms of services provided and access to the University.

There are no flood protection measures for the Huron River and Paint Creek within the

City of Ypsilanti. The combined capacity of dams on the Huron River is not available for large stage flood reduction.

73

Eastern Michigan University is located in eastern Washtenaw County. The Ypsilanti

Water Tower, which is located directly across from campus, sits at the highest point of elevation in the city. The EMU Corporate Education Center and Eagle Crest Golf Center is located several miles to the south of the main campus.

Most flooding issues on campus are the result of urban runoff. A portion of the Eagle

Crest Golf Course borders Ford Lake, a segment of the Huron River chain, and is in a flood prone area. However, the land is recreation use and no structures are impacted. While not campus owned, there are housing units (apartments, single family homes) downstream of the

Peninsular Park Dam spillway. Many EMU students live in this downstream area and in the event of an emergency situation; the University would provide support to students. This represents an indirect consequence for the University to plan for.

Flood Hazard Areas City of Ypsilanti: Community Number 260216

As of May 3, 2012, Ypsilanti was re-instated as a participating National Flood Insurance

Program community.

The flood hazard areas of the city are subject to periodic inundation which may result in safety hazards, loss of life, property and health, disruption of commerce and governmental services, extraordinary public expenditures for flood protection and relief, and impairment of the tax base, all of which adversely affect the public health, safety and welfare. The flood losses are caused by the cumulative effects of obstructions in floodplains causing increased flood heights and velocities, and by the occupancy in flood hazard areas by uses vulnerable to floods or hazardous to other lands which are inadequately elevated, flood-proofed or otherwise protected from flood damages.

74

The boundaries of the flood hazard areas shall coincide with the boundaries of the areas indicated as within the limits of the 100 year flood in the report entitled "The Flood Insurance

Study", City of Ypsilanti, dated January 1980, with accompanying Flood Insurance Rate maps and Flood Boundary and Floodway maps, as well as the report entitled "The Flood Insurance

Study", Township of Ypsilanti, dated December 15, 1980, with accompanying flood insurance rate maps and flood boundary and floodway maps.

Figure 5-7.

The University is not directly impacted by flooding occurring along the Huron River. No

Eastern Michigan University main campus property falls within the identified 100 Year floodplain for the city. The University does not have any repetitive loss properties. However,

75 flooding can produce secondary impacts for the University such as the impact of flooding on

EMU students residing in private housing located in flood prone areas near campus. If flooding did occur, these students may be displaced and the University may be asked to provide support.

The previously effective FIS for the City of Ypsilanti is dated September 1982. The hydrologic and hydraulic analyses for the study were performed by USACE Detroit District for

FIA under Inter-Agency Agreement No. IAA-H-10-77, Project Order No. 15, Amendment No. 2.

The following streams were studied in detail: Huron River and Paint Creek. This study was completed in September 1978. Current Flood Insurance Study Number: 26161CV001A.

Charter Township of Ypsilanti: Community Number 260542

The flood hazard areas of the township are subject to periodic inundation which could result in potential loss of life, property, health and safety hazards, disruption of commerce and governmental services, extraordinary public expenditures for flood protection and relief, and impairment of the tax base, all of which would adversely affect the public health, safety and general welfare.

These potential flood loses are caused by the cumulative effect of obstructions in floodplains causing increases in flood heights and velocities, and by the occupancy in flood hazard areas by uses vulnerable to floods or hazardous to other lands which are inadequately elevated, flood-proofed or otherwise protected from flood damages.

In the Charter Township of Ypsilanti, the probability of severe flooding in the Huron

River is increased by the constrictive bridges and the debris accumulated near these structures. A similar effect occurs on Fleming Creek, Paint Creek and Traver Creek with constrictive culverts and poor alignment. During the June 1960 flood, Paint Creek extended itself throughout its floodplain and flowed over Michigan Avenue and Textile Road.

76

The combined flood control capability of dams in Huron River is minor because the pool levels must be maintained for water supply, waste disposal and recreation. Reservoir capacity is not enough for large flood stage reduction. On the Paint Creek, a retention basin has been built just south of Interstate Highway 94 to reduce the impact of flooding on the downstream properties within the township. Between Interstate Highway 94 and Congress Street, the channel has been cleaned, widened and straightened.

The previously effective FIS for the Charter Township of Ypsilanti is dated December

15, 1980. The hydrologic and hydraulic analyses for the study were performed by USACE

Detroit District for FIA under Inter-Agency Agreement No. IAA-H-10-77, Project Order No. 15,

Amendment No. 2. The following streams were studied by detailed methods: Huron River, Paint

Creek and West Branch of Paint Creek. This study was completed in November 1979. Current

Flood Insurance Study Number: 26161CV001A.

The National Flood Insurance Program (NFIP) is a Federal program created by Congress to mitigate future flood losses nationwide through sound, community-enforced building and zoning ordinances and to provide access to affordable, federally backed flood insurance protection for property owners. The NFIP is designed to provide an insurance alternative to disaster assistance to meet the escalating costs of repairing damage to buildings and their contents caused by floods.

Both the City of Ypsilanti and the Charter township of Ypsilanti are participating communities. Eastern Michigan University does not participate in the NFIP because university properties are not located within flood-prone areas.

77

Earthquake

An earthquake is a sudden movement in the earth’s surface caused by the breaking and shifting of rock beneath the surface. Michigan is susceptible to minor earthquakes which can occur thousands of times per year. The likelihood of earthquakes in Michigan is low enough that safety drills are not performed, however from time to time the state will feel be able to feel tremors.

Within Washtenaw County there are two potential sources of earthquakes including The

Greenville Front fault zone and The New Madrid Fault. The New Madrid Fault is predicted to have a major earthquake within the next few decades. The results of a potential 6.0-7.6 within the county could affect the EMU Campus Community as well with potential affects seen in the natural gas and petroleum pipelines as well as water supply mains.

History

Michigan can and has experienced the tremors from earthquakes originating outside the state; however in 1947 the state experienced its largest earthquake that originated within the state. The epicenter of the 1947 earthquake was located southeast of Kalamazoo but damage was reported as far away as Cleveland, Ohio; Cadillac, Michigan; Chicago, Illinoi; and Muncie,

Indiana. The effects can be seen below in Figure 5-7.

78

Figure 5-8.

The earliest recorded earthquake tremors felt in Michigan were a result of the New Madrid fault and occurred in 1811 and 1812; reports of the tremors being felt came from those in Detroit. In

1883 an earthquake cracked windows and shook buildings in Kalamazoo; this shock was also felt in southern Michigan and northern Indiana.

79

Hazard Zones near Michigan

East of the Rockies the most hazardous earthquake zones are located about 350 to 600 miles from Michigan in the Mississippi ad Ohio Rivers region. In addition, some of the most hazardous seismic regions near Michigan are in Eastern Canada.

The USGS database shows that there is a 0.528% chance of a major earthquake within 50 kilometers of Ypsilanti within the next 50 years. The largest earthquake within 100 miles of

Ypsilanti was a 3.5 magnitude in 1994.

Recent Historical Earthquake Data (Within 100 Miles of Ypsilanti) All distances and depths in the table below are measured in miles.

Date Distance Magnitude Depth 04/26/2011 95.50 2.4 5 02/23/2011 60.81 3 5 05/14/2010 60.98 2.7 5 03/08/2010 28.35 2.5 18 02/25/2010 72.49 2.4 5 09/02/1994 63.38 3.5 5 08/20/1980 37.27 3.2 5 02/02/1976 52.10 3.4 10 09/29/1974 70.39 3 1 Table 5-8.

Probability of earthquakes within the next 50 years Within 31 Miles / 50km Ypsilanti

Magnitude Probability 5.0 0.528%

6.0 0.098%

7.0 0.002%

Table 5-9.

80

Mold

Based on the number of surfaces on which mold is able to grow (and subsequently reproduce), the threat of the mold hazard affects all buildings on the Eastern Michigan

University campus.

Molds are fungi that can form both indoors and outdoors; their growth is spurred by the presence of excess moisture, as well as the presence of standing water. Continued humid and damp conditions contribute to further growth of molds; this is likely to occur as the result of the effects of natural hazards such as tropical storms, hurricanes, and floods. However, once mold spores are formed, they have the ability to thrive in the absence of moist and humid conditions.

Mold in its early stages is known as mildew. Outdoors, mold tends to grow in shady or damp areas or places where leaves and other vegetation are decomposing. Indoors, mold tends to grow where humidity levels are the highest, such as basements and showers. Molds digest organic material, and they usually grow on surfaces such as wood, ceiling tiles, cardboard, wallpaper, carpets, drywall, fabric, plants, food, and insulation.

Molds pose a problem to the University following water intrusion, most often from storm-water runoff during heavy rains but also as a result of mechanical system failures (leaks, pipe breaks, etc).

Mildew and molds continue to grow and reproduce until measures are taken to eliminate the source of the problem (typically moisture). On a university campus with maintenance staff, the sources of mold problems can be dealt with swiftly and efficiently. However, if there is no electricity and thus no ability to ventilate building, molds will continue to grow and cause damage to the surfaces on which they have formed.

81

Thousands of molds exist, and mildew and molds can grow and reproduce on a number of surfaces and in a number of environments. Under the right conditions, and when found in high concentration, all molds can be hazardous to human health. People who are allergic to mold may exhibit a number of mild symptoms, including nasal stuffiness, eye irritation, wheezing, or skin irritation. More serious side effects of exposure to mold include fever and shortness of breath.

People at higher risk for adverse health effects from mold are infants, children, immune compromised individuals, pregnant women, individuals with respiratory illnesses, and the elderly.

Seeing and smelling mold is a good indication of a mold problem. There may be hidden molds if a building smells moldy, or if you know there has been water damage. Molds may be hidden in places such as the back side of drywall, wallpaper, or paneling; the top side of ceiling panels; or the underside of carpets and pads. Other possible locations of hidden mold include areas inside walls around pipes (with leaking or condensing pipes), the surface of walls behind furniture (where condensation forms), inside ductwork, and in roof materials above ceiling tiles

(due to roof leaks or insufficient insulation). Cleaning must remove – not just kill – the molds, because dead spores can still lead to health problems.

Impacts

 Property

Damage by mold is not so much related to the value of the building because most of the

buildings have similar construction and interiors. Rather, the impact relates to the associated

cost of remediation and impact on university operations. To date, mold remediation has cost

the University in excess of $250,000.

82

 People

Mold has a low impact on the safety of individuals and a moderate impact on health and

mental health of individuals. For some people, even a relatively small number of mold spores

can cause health problems.

 University Operations

Damage from mold has a moderate impact on university operations. Mold can disrupt

different aspects of university operations. Some disrupted operations may resume in other

buildings on campus that do not contain mold. However, specific function buildings, such as

Halle Library, cannot have the function easily duplicated elsewhere on campus.

Mold grows on many different materials in high humidity environments which are not air conditioned for a long period of time. Because some people may be negatively affected by high concentrations of mold spores in the air, mold problems in public facilities are regarded very seriously, generally requiring specialized personnel and equipment for treatment. Further, removing mold from University property can prove to be very expensive.

The probability of future mold growth interfering with EMU operations can be reduced by:

 Improving back-up power sources to insure continuous HVAC System operation necessary

to control temperature and humidity.

 It may also be possible to reduce the use of “mold friendly” materials in favor of “mold

unfriendly materials such a concrete block, concrete board, treated wood and new “sheet

rock” materials. However, utilizing mold unfriendly materials in new construction or to

replace materials removed for other reasons may be justified.

 Buildings with known water intrusion issues should be inspected to identify all possible

sources of water infiltration and corrective actions identified.

83

Technological Hazards

IT Systems Failure

Information Technology (IT) provides both products and services that support the efficient operation of today’s global information-based society. These products and services are integral to the operations and services provided by the University and to other external organizations.

Threats to IT are complex and varied. In addition to the risks presented by natural hazards— such as catastrophic weather or seismic events—IT also faces threats from criminals, hackers, terrorists, and nation-states, all of whom have demonstrated a varying degree of capabilities and intentions to attack critical IT functions. Additionally, manmade threats to IT functions are also rapidly evolving from simple automated worms and viruses to complex social engineering attacks that exploit known and unknown vulnerabilities in products and services.

As with most organizations today, Eastern Michigan University is critically dependent on

Information Technology in its day-to-day operations. The role of the Eastern Michigan

University Division of Information Technology (DoIT) is ever changing. Critical functions7 of the DoIT include:

 Critical data backup and recovery

 Internet-based content, information and communications services

 Internet and network routing, access and connection services

 Information storage, management and security

 Identity and access management

 Incident response, management and recovery

7 Functions are sets of processes that produce, provide, and maintain products and services.

84

Many different scenarios may be identified as disasters from the loss of data, loss of a single machine, to the loss of the following facilities; DoIT Data Center, Pray-Harrold Building, and/or Halle Building. These scenarios include:

1. Any outage to computer operations. The outage may be caused by:

 Server malfunction

 Network outage

 Power outage to the Data Center

 Fire, water or smoke damage to the Data Center, DoIT facility or supporting

infrastructure

 Acts of nature

 Terrorism

2. A regional disaster (one affecting SE Michigan) could potentially cause business

interruption to all local sites and the Data Center. The Data Center may not need to be

operational due to the destruction of the business it supports. A detailed assessment by

University executive leadership of the situation will be required prior to determining the

level of DoIT recovery to be implemented if one of these events occur.

 Long-term power outage to the University

 Acts of nature that affect the entire campus

 Regional acts of terrorism

Examples of Types of Risks

The Internet is an open and global system, providing a variety of opportunities for attacking the University’s IT infrastructure. Actors attack the infrastructure for various motivations and

85 objectives. Risk assessment subject matter experts have identified four primary objectives for manmade deliberate threats to cause policy, governance, or knowledge failures in the information technology function:

 Politically-motivated attempts to influence or disrupt operations;

 Desire for financial gain;

 Demonstration of technical superiority; and

 Gratuitous defacement or damage.

Loss/Denial-of-Service can occur by a number of attacks against the DNS infrastructure.

Potential attacks could be either physical, logical/cyber, or a combination of both. Attacks may occur at any time since the DNS is continuously available. However, because DNS is a distributed system, an attack on one part of it would not necessarily paralyze the system.

A DNS failure could be the direct result of both hardware and software vulnerabilities and may be impacted by manmade deliberate, manmade unintentional, and natural threats. Risk assessment professionals have identified three major concerns that could cause a loss or denial- of-service:

 Damage or attacks to the infrastructure supporting the DNS system, such as routing

protocols, computer hardware, power supply lines, or phishing attacks

 Lack of assessment, testing, and preparation for the simultaneous introduction of new

technologies and protocols such as Internet Protocol version 6 (IPv6), Domain Name

System Security Extension (DNSSEC) and Internationalized Domain Names (IDN)

 Poor or negligent software development practices, the lack of comprehensive code

review, testing, reckless or negligent deployment procedures, and the lack of fully

understanding the ramifications of a particular configuration change.

86

Protecting the confidentiality of information is critical at higher education institutions.

Typically, there are two methods by which information could be disclosed: 1) recursive infrastructure and 2) cache disclosure. Many of the security compromises and breaches that have occurred in recent years have been related to vulnerabilities in the recursive or caching DNS server code.

Risks to the Internet routing function include outages to communications links caused by construction, excavation, or accidents (i.e., Notre Dame University utility tunnel fire).

Complete loss of Internet routing infrastructure is unlikely due to the distributed nature of its physical and operational underpinnings, but varying degrees of impact could be caused by localized damage at specific portions of the routing infrastructure. Damage to hardware and facilities supporting the network and the concentration of infrastructure within exchanges, collocation, and hotelling environments could cause significant and lasting national security and economic consequences. Two key areas of focus regarding physical damage or loss of this function:

 Partial or complete loss of key fiber optic, coaxial, satellite, and/or microwave trunks;

and

 Partial or complete destruction of collocation, hotelling, and/or exchange facilities.

The IT DR committee conducted an IT risk assessment by first identifying all possible disaster scenarios by category. Each disaster scenario will be assigned a Probability Rating and an Impact Rating. Each rating will be assigned a numerical value:

High = 3 Moderate = 2 Low = 1.

For each disaster scenario, an overall Risk Score will be calculated by multiplying the numerical Probability Rating by the numerical Impact Rating. Detailed response scenarios will

87 be defined disaster scenarios based on their overall Risk Score. The results of the IT Risk

Assessment survey conducted in May 2011 (ordered by Risk Score) are:

Probability Impact Risk Incident Type Rating Rating Score Departure of key staff 2.4 2.1 4.9 Equipment theft 2.3 1.8 4.2 Malicious unauthorized access 1.9 2.2 4.2 Power disruption 2.0 2.0 4.1 Software malfunction 2.1 2.0 4.1 Process malfunction 2.2 1.9 4.1 Malware requiring user interaction 2.2 1.9 4.1 Social engineering 2.1 1.9 4.0 Hardware malfunction 2.1 1.9 4.0 Loss of data 1.7 2.4 4.0 Equipment loss 1.8 2.0 3.7 Self-replicating malware 2.0 1.9 3.9 Implementation error 1.8 2.0 3.6 Malicious authorized access 1.6 2.4 3.8 Fire 1.6 2.5 3.9 Sprinkler pipe break in data center 1.5 2.5 3.9 Sprinkler water from upper floors 1.5 2.4 3.6 Other plumbing problem 1.6 2.2 3.5 Temp/humidity extremes 2.1 1.9 4.0 Malicious scan 2.0 1.8 3.5 Process violation 2.0 1.8 3.5 Physical break-in 1.9 1.9 3.4 Networking eavesdropping 1.8 1.9 3.3 Lightning 1.7 2.0 3.3 Use of generic accounts 1.9 1.8 3.3 Epidemic/pandemic 1.4 2.3 3.1 Physical attack 1.5 2.1 3.1 Blizzards/ice storms 1.7 1.7 2.9 Nuclear accident 1.2 2.4 2.9 Aircraft accident 1.2 2.3 2.7 Damaging wind 1.5 1.8 2.7 Electronic emanation/EMP 1.2 2.2 2.7 Earthquake 1.1 2.4 2.6 Rain/Huron River flood 1.3 2.0 2.6 Hazardous material 1.3 2.0 2.5 Contamination from train derailment 1.2 1.9 2.3 Table 5-10.

88

EMU systems will be restored according to the following priority matrix:

1. Core systems

a) Banner

b) Web/Internet infrastructure (for www.emich.edu)

c) VoIP telephony

d) EagleMail (via Merit Network)

e) Learning/Course Management Systems (via eCollege)

2. Tier 2 systems (to be defined by University BCP initiative)

3. Tier 3 systems (to be defined by University BCP initiative)

4. Non-critical systems

Response scenarios will depend on the status of the data center environmental systems

(electricity and cooling), physical access to the data center facility, and operational status of the computer systems and servers in the data center.

Fire-structural

Structure fires have many causes including smoking, arson, industrial accidents, electrical malfunctions, laboratory accidents, and lightning and other hazard events. A large fire has the potential to cause high casualties and can result in secondary impacts such as hazardous material release and damaged utilities. Older buildings that were constructed without fire evacuation routes are at a higher risk for casualties. Residence halls are at the highest risk for structural fire due to students living in close proximity and the residential activities that can cause fires.

Residence hall fires are often ignited by faulty appliances, lamps, overloaded outlets, smoking, cooking or candles. Many of the residence halls are older, masonry and block construction and do not have sprinkler fire suppression systems in place.

89

According to the National Fire Protection Association (NFPA), in 2005-2009, U.S. fire departments responded to an estimated average of 3,840 structure fires in dormitories, fraternities, sororities, and barracks. These fires caused an annual average of 3 civilian deaths, 38 civilian fire injuries, and $20.9 million in direct property damage. Between 2005 and 2009, cooking equipment was involved in 81% of the reported dormitory fires; this includes confined or contained fires. Structure fires in dormitories, fraternities, sororities, and barracks are more common during the evening hours between 5-11 p.m., as well as on weekends. Only 9% of fires in these properties began in the bedroom, but these fires accounted for almost one-quarter (26%) of the civilian injuries.

All Eastern Michigan University main campus residence halls are covered by an integrated automatic fire detection and fire alarm system, which is monitored 24 hours a day, seven days a week by the EMU PD. Some residence halls (The Village, Buell, and Downing) are equipped with integrated sprinkler systems. Existence of building sprinkler systems are the primary factor that determines the vulnerability from and overall impact of structural fires. Lack of sprinkler systems puts some EMU buildings at a high risk for structure fire. University apartment complexes and rental properties have different systems unique to each unit or complex.

90

EMU Fire Safety Systems Matrix

Table 5-11.

Electric Infrastructure Failure

In the event of a prolonged utility disruption which has a negative impact, or has the potential to cause a negative impact, on the university’s ability to provide needed life safety services, restoration of services is critical. Local community and regional energy system providers will act to restore their individual systems according to their established emergency plans and procedures.

91

Regardless of the cause of an energy emergency, the prompt restoration of energy production and distribution systems is vital to the well being of the campus community and to the execution of the University’s mission.

There are basically two types of electric system emergencies:

 Damage to or destruction of electrical systems (generation, transmission or distribution)

because of natural catastrophes (tornadoes, ice storms, high winds), technological

emergencies (component failure) or man-made disasters (throwing the wrong switch or

pushing the wrong button).

 Blackouts - Electric grid system failure because of electrical or mechanical problems that

result in massive power outages.

The extent of a service disruption and its expected duration time help define the tasks that must be undertaken by the University to protect health and safety and property. Where it appears that electrical outages will be long term and thus have a major impact on the campus, the

University must take measures to provide food, water, heat, and other essential needs to the affected campus population (i.e., students, faculty staff in university housing) by expedient means. If that is unfeasible, it may be necessary to evacuate and relocate the affected people.

EMU receives its normal electrical source directly from the DTE Energy via two (2), 40kV primary feeds at the Coral Substation. Typically, the switch gear at Coral Substation is configured so that each feed is carrying approximately one-half of the campus. The feeds are sized so that if a problem occurs with one feed, the other feed can carry the entire campus.

Annual system maintenance is performed and these outages are scheduled in advance and at times when they will have the least impact or inconvenience on University services or facilities.

92

Electrical Shop

The electrical shop is responsible for installation, maintenance, and repair of all building electrical systems, underground and overhead distribution systems and sixty two elevators.

Electric utilities shall follow their pre-established "Power Outage Recovery Plans" and

"Emergency Operations Procedures Manuals” during the restoration process. Typically these restoration plans prioritize recovery in the following manner:

1. Transmission;

2. Substation;

3. Feeder (main artery);

4. Laterals; and

5. Service (individual).

Heating Plant

The Heating Plant is staffed 24 hours per day, 365 days per year. More than 90% of the electricity, fuel oil and natural gas used on campus pass through this facility. The Heating Plant, built in 1951, is a modern and efficient energy conversion facility. In 1987 with the installation of a “Co-Generation” system, the Heating Plant also began to generate electricity. In this system, natural gas is burned in an industrial grade gas turbine coupled to a generator producing roughly half of the electricity consumed on Campus at an efficiency of 30%. In addition, another 40% of the natural gas input is in the turbine exhaust and is converted to steam used for campus heating and cooling. When this system is not being used, campus steam needs are supplied by conventional steam boilers.

93

In the event of an unscheduled utility failure, immediate action is required to determine the cause and estimated time to complete any corrective action needed to respond to the unanticipated event.

Every attempt will be made to restore services as fast as possible. Services will be restored in the general priority below:

1. Immediate Health & Safety, including Life Safety Systems

2. Residential Life

3. Research Areas

4. Auxiliary Areas

5. Classrooms and Offices

Whenever electrical switching is to occur, which will result in one or more buildings being shutdown, the Heating Plant must be informed and included in planning and notifications.

During Primary Electrical Switching, direct communication with the heating Plant is required via cell phone immediate prior to opening or closing a switch and immediately after the operation is completed.

94

Figure 5-9.

Infrastructure Failure (non IT or electric)

Water System

The Ypsilanti Community Utilities Authority (YCUA) provides water service to Eastern

Michigan University. The Authority purchases water from the Detroit Water and Sewerage

Department (DWSD). The Authority is responsible for operation and maintenance of the public water supply facilities within the Charter Township of Ypsilanti and the City of Ypsilanti. This includes approximately 24 miles of transmission mains, approximately 297 miles of distribution

95 mains, 6 booster pump stations, 4 ground storage reservoirs with a total capacity of 15 million gallons and 2 elevated storage tanks with a total capacity of 1.25 million gallons.

YCUA Existing Water Supply System

Figure 5-10.

Eastern Michigan University uses approximately 27,732,500 cubic feet of water per year.

It is the largest consumer of water in the YCUA service area. Water is brought into the Eastern

Michigan University Ypsilanti Campus through 24” mains.

Whenever a water main shutdown, planned or unplanned, is to occur, particularly on the

West perimeter of campus, the Heating Plant must be contacted to assure that a continuous source of water is available to the plant. Loss of water will cause the plant to shut down.

96

Sanitary Sewer System

Sanitary Sewer means a sewer which carries sewage and to which storm, surface and ground waters are not intentionally admitted.

The Ypsilanti Community Utilities Authority provides sewage collection and treatment service to Eastern Michigan University. The Authority is responsible for operation and maintenance of the public wastewater facilities within the Charter Township of Ypsilanti and the

City of Ypsilanti as well as the pressure sewer pipe that transports the effluent from the wastewater treatment plant to the discharge location along the Rouge River in Wayne County.

The Authority wastewater system includes more than 200 miles of collection sewers, more than

60 miles of interceptor sewers, almost 23 miles of sanitary force mains, 32 pump stations, and the wastewater treatment plant. The wastewater treatment plant provides tertiary treatment and disinfection before discharge to the Lower Rouge River. The design treatment capacity of the wastewater treatment plant is 45.9 million gallons per day (MGD).

The Ypsilanti Community Utilities Authority (YCUA) is responsible for preventing, mitigating and repairing any situations that result in a decreased capacity to provide wastewater services.

97

YCUA Existing Wastewater System

Figure 5-11.

Steam System

The main source of heat at Eastern Michigan University is steam, which is generated at the Heating Plant located on Oakwood. When this system is not being used, campus steam needs are supplied by conventional steam boilers.

Natural Gas System

Eastern Michigan University receives its natural gas supply from Michigan Consolidated

Gas Company (MichCon). MichCon is engaged in the purchase, storage, transmission, distribution and sale of natural gas to approximately 1.2 million customers in Michigan. The company owns and operates 278 storage wells representing approximately 34 percent of the

98 underground working capacity in Michigan. There is more gas storage capacity in Michigan than in any other state.

Figure 5-12.

Hazardous Materials Incident

Hazardous materials include hundreds of substances that can potentially pose a significant risk to the general population if released. These substances may be highly toxic, reactive, corrosive, flammable, radioactive or infectious. They are present in nearly every community in the U.S., where they may be manufactured, used, stored, transported, or disposed.

Hazardous material releases may occur from any of the following:

Fixed-Site - Includes all releases involving the production and manufacturing, handling, and storage of a hazardous product at a single facility as well as any releases that may occur at a

99 designated hazardous waste disposal site. These types of releases can occur at on-campus facilities and at nearby off-campus locations

On-campus locations include the labs in Mark Jefferson Science building, art studios and physical plant storage locations. Most chemicals at these locations are of small quantity and past spills have been handled with campus resources. Off-campus, there are three facilities near the

EMU main Campus and the College of Business

1. Crown Tumbling Metals Finishing 924 Minion St., Ypsilanti, MI

2. Marsh Plating 103 North Grove Street • Ypsilanti, MI

3. Finishing Services, Inc. 877 Ann Street, Ypsilanti, Michigan

Figure 5-13.

100

All three of these facilities are involved in providing services related to coatings, cleaning, plating and pickling of metals using various chemicals classified as hazardous materials.

While incidents have been infrequent, Marsh plating did have a chemical accident in May of 2003 involving a cloud of potentially harmful vapors being released.

Based on wind direction and speed, and on the chemicals known to be on the premises, a coordinated decision was made to activate the Emergency Alert System. Citizens were advised to "shelter in-place" if they were located in the City of Ypsilanti North of Michigan Ave and East of River Street. HazMat crews were able to activate a shut-off valve to a tank of hydrochloric acid inside the facility, suspected to be responsible for the leak and subsequent vapor cloud release.

Finishing Services, Inc. is immediately adjacent the main campus, next to the Physical

Plant offices and the First Year residential complex.

Transportation - Includes all releases that occur while the product is in transit. There are major highways and state-road thoroughfares located in Ypsilanti that make the community and the campus community particularly vulnerable to hazardous materials transportation accidents.

The most vulnerable areas are major highways and interchanges including I-94, Huron

River Drive and Michigan Avenue. In particular, I-94 is the major east-west corridor for all of southeast Michigan, and large quantities of hazardous material travel this road daily.

Running parallel to Huron River Drive, and directly north of the main campus, are rail lines. Trains carrying hazardous materials use these lines daily and present the potential for a hazardous materials incident. Willow Run Airport also transports hazardous materials.

101

Intentional Spills and Releases - Includes all criminal acts and acts of terrorism in which a hazardous material is used to intentionally cause injuries and/or fatalities, damage the environment and/or property, or advance a political or social agenda.

The highest potential for a hazardous material incident is through transportation.

Hazardous materials, as well as radioactive materials, are transported in the area, which poses a hazard should there be loss of containment.

Biological Hazard Incident

Today, the nation is facing a new challenge in safeguarding the public health from dangerous biological agents or toxins. Existing standards and practices may require adaptation to ensure protection from accidental exposures or hostile acts. In addition, recent federal regulations mandate increased security within the microbiological and biomedical community in order to protect biological pathogens and toxins from theft, loss, or misuse.

The principal hazardous characteristics of a biological agent are: its capability to infect and cause disease in a susceptible human or animal host, its virulence as measured by the severity of disease, and the availability of preventive measures and effective treatments for the disease.

EMU currently operates at a Biosafety level 2 (BSL-2). The primary risk criteria used to define the four ascending levels of containment, referred to as biosafety levels 1 through 4, are infectivity, severity of disease, transmissibility, and the nature of the work being conducted.

Biosafety level 2 (BSL-2) is appropriate for handling moderate-risk agents (agents associated with human disease that is rarely serious and for which preventive or therapeutic interventions are often available).

102

Each level of containment describes the microbiological practices, safety equipment and facility safeguards for the corresponding level of risk associated with handling a particular agent.

The basic practices and equipment are appropriate for protocols common to most research and clinical laboratories. The facility safeguards help protect non-laboratory occupants of the building and the public health and environment.

Faculty and students are the first line of defense for protecting themselves, others in the laboratory, and the campus community from exposure to hazardous biological agents. Protection depends on the conscientious and proficient use of good microbiological practices and the correct use of safety equipment.

There may be hazards that require specialized personal protective equipment in addition to safety glasses, laboratory gowns, and gloves. For example, a procedure that presents a splash hazard may require the use of a mask and a face shield to provide adequate protection.

Inadequate training in the proper use of personal protective equipment may reduce its effectiveness, provide a false sense of security, and could increase the risk to the person in the laboratory.

A biological incident occurring as a result of an event on campus is considered low probability.

Radiological Materials Incident

The University uses small amounts of radiological materials in the laboratories located in the Mark Jefferson Science Complex. A Radiation Safety Officer is designated for the University and there is a Radiation Safety Committee that meets as needed.

Radiological materials incidents and subsequent radiological contamination are not events of high occurrence anywhere in the United States, however, it was considered due to the

103 fact that the EMU campus uses radiological isotopes in research activities and that there are two major hospitals nearby that receive shipments of radiological materials (radiopharmaceuticals and research isotopes) as well as having diagnostic equipment containing radiological isotopes.

Therefore, the possibility of a radiological materials incident (either fixed or transportation based) and subsequent radiological contamination was considered a possible event

Another location considered was the Fermi II Nuclear Plant; a DTE owned and operated plant. This nuclear plant has a 50 mile radius “planning zone” surrounding it EMU is located within this 50 mile planning zone. However, effects from an event at Fermi II would most likely be negligible in Ypsilanti.

Other threats include “dirty” bombs created from a radiological theft and then released at any location on campus. However, all radioactive material is accounted for by a Nuclear

Regulatory Commission (NRC) license and any loss of stolen material would be reported immediately.

Aircraft Crash on Campus

Aviation accidents can occur for a multitude of reasons from mechanical failure to poor weather conditions to intentional causes. Accidents can vary from small single engine aircraft to large commercial or military jets. The EMU Ypsilanti campus is located 4.89 miles from the

Willow Run Airport which serves cargo, corporate, and general aviation clients. The airport offers four runways 24-hour FAA Tower and U.S. Customs operations. Willow Run Airport has over 65,000 operations per year. Approximately 200 million pounds of cargo are transferred through the airport annually, making Willow Run the fourth largest airport in the state of

Michigan.

104

Willow Run’s annual air show brings vintage and acrobatic aircraft to the airport. During these events, flight paths bring planes over campus at altitudes lower than during commercial operations.

EMU is only 11 miles from Detroit Metropolitan Wayne County Airport, the largest airport in the State of Michigan. Total aircraft operations at DTW were 443,028 in 2011 with

455,169,670 lbs of cargo passed through.

Emergency helicopters serve St. Joseph Mercy Hospital which is immediately across

Huron River Drive from the University’s athletic campus.

According to the National Transportation Safety Board (NTSB), 22 percent of aircraft accidents occur during takeoff and the initial ascent which occurs within a few miles of an airport. Twenty-nine percent of aircraft accidents occur during initial approach and final approach which also occur within a few miles of the airport (NTSB 2006). The NTSB aviation accident database contains information from 1962 and later about civil aviation accidents and selected incidents within the United States.

The large volume of aircraft activity over and near the campus creates a potential risk of an aircraft related incident. However, the probability of this happening is considered infrequent

(less than one event every 10 years).

An aircraft related incident on campus would occur with little or no warning. The greatest threat an aircraft accident poses would be a direct impact to a structure which could result in fatalities or injuries and possibly a structure fire.

105

Societal Hazards

Armed Suspect/Active Shooter/ Hostage Situation

A violent crime is committed in the United States every 22 seconds and unfortunately, this crime is occurring increasingly in higher education facilities. Episodes of students, faculty, staff and visitors being assaulted, shot, or even killed are well documented.

An armed suspect refers to a suspicious individual on campus that the University reasonably believes possesses a dangerous weapon and presently dangerous to members of the campus community. This type of situation has the potential to very quickly change to a hostage or active shooter situation.

Active shooter attacks are dynamic incidents that vary greatly from one attack to another.

The Department of Homeland Security (DHS) defines an active shooter as “an individual actively engaged in killing or attempting to kill people in a confined and populated area.”

In its definition, DHS notes that, “in most cases, active shooters use firearms(s) and there is no pattern or method to their selection of victims.

A hostage situation refers to the unlawful abduction or restraint of one or more individuals with intent to restrict their freedom. These situations can be among the tensest episodes for any college campus or law enforcement operation.

While it is impossible to predict when such incidents will occur, the University has opportunities to prepare and mitigate the consequences for these types of incidents. This includes making sure that notification systems are effective for warning the campus community, outreach on response actions is provided, security assessments are conducted and training exercises are conducted on a regular basis.

106

Civil Disturbance

Also known as civil unrest or civil strife, a civil disturbance is any public movement that disrupts essential functions including: riots, looting, demonstrations or other unlawful behavior.

Civil disturbances can be due to a public event such as a sporting event; or political rallies and demonstrations. Riots have the potential to involve large numbers of people and can be a risk to the surrounding property as well as the wellbeing of those in the general vicinity.

College campuses and the surrounding communities are no stranger to the potential outbreak of civil disturbance situations. Between the increased likelihood of extreme activism and alcohol infused sports fans, communities like Eastern Michigan need to be prepared for the potential break out of such an event.

Ann Arbor and Ypsilanti, MI have the largest population centers in the county which increases the chances of being chosen by demonstrators. In addition, college sporting teams have been known to incite riots after both big wins and big losses. Within the city of Ypsilanti however, there are no significant civil unrest instances to date. Ann Arbor, MI has experienced riots in the past due primarily to sporting events; some demonstrations have caused damage in the past.

Despite the lack of past occurrences Eastern Michigan University would be remise to not prepare due to the correlation of educational institutions and situations involving civil unrest.

Colleges and Universities are often areas for demonstrations, especially of political nature.

Today, many of these occurrences surround sporting events, such as the 1999 Michigan State

University riot that occurred after MSU lost to Duke in the NCAA Final Four.

Prior to any major events on campus the EMU Police Department is involved in order to gain their advice, presence and support in needed situations. This forethought and prior

107 preparation is one method already in place to help minimize the potential outbreak of a civil disturbance. In the event an event is too large for EMU to handle on its own, it can also correlate with area police departments to enlist additional assistance.

Influenza Outbreak/Pandemic

A pandemic is a global disease outbreak. A Pandemic flu is a virulent human flu that causes a global outbreak, or pandemic, of serious illness. A flu pandemic occurs when a new influenza virus emerges for which people have little or no immunity, and for which there is no vaccine. This disease spreads easily person-to-person, causes serious illness, and can sweep across the country and around the world in very short time. The U.S. Centers for Disease Control and Prevention (CDC) has been working closely with other countries and the World Health

Organization (WHO) to strengthen systems to detect outbreaks of influenza that might cause a pandemic and to assist with pandemic planning and preparation.

Most recently, health professionals are concerned by the possibility of an Avian (or bird) flue pandemic associated with a highly pathogenic avian H5N1 virus. Since 2003, Avian

Influenza has been spreading through Asia. A growing number of human H5N1 cases contracted directly from handling infected poultry have been reported in Asia, Europe, and Africa, and more than half the infected people have died. There has been no sustained human-to-human transmission of the disease, but the concern is that H5N1 will evolve into a virus capable of human-to-human transmission.

An especially sever influenza pandemic could lead to high levels of illness, death, social disruption, and economic loss. Impacts can range from school and business closings to the interruption of basic services such as public transportation and food delivery. For EMU, the most important issues will be the impacts of absenteeism and supply disruption on the campus.

108

Past Occurrences

1918-19 Spanish Flu (H1N1). This flu is estimated to have sickened 20-40% of the world’s population, and over 20 million people died. Between September 1918 and April 1919, 500,000

Americans died. It spread rapidly; many died within a few days of infection, others from secondary complications. The attack rate and mortality was highest among adults 20-50 years old, although the reasons for this are uncertain.

1957-58 Asian Flu (H2N2). This virus was quickly identified due to advances in technology, and a vaccine was produced. Infection rates were highest among school children, young adults, and pregnant women. The elderly had the highest rates of death. A second wave developed in

1958. In total, there were about 70,000 deaths in the United States. Worldwide deaths were estimated between 1,000,000 to - 2,000,000.

1968-69 Hong Kong Flu (H3N2). This strain caused approximately 34,000 deaths in the

U.S. and 700,000 + deaths worldwide. This virus was first detected in Hong Kong in early

1968 and spread to the United States later that year. Those over age 65 were most likely to die.

This virus returned in 1970 and 1972 and still circulates today.

2009 -10 Swine Flu (H1N1). This was an influenza pandemic, and the second of the two pandemics involving H1N1 virus (the first of them was the 1918 flu pandemic), albeit in a new version. First described in April 2009, the virus appeared to be a new strain of H1N1 which resulted when a previous triple reassortment of bird, swine and human flu viruses further combined with a Eurasian pig flu virus, leading to the term "swine flu" to be used for this pandemic.

Unlike most strains of influenza, H1N1 does not disproportionately infect adults older than 60 years; this was an unusual and characteristic feature of the H1N1 pandemic. Initially

109 coined an "outbreak", it began in the state of Veracruz, Mexico, with evidence that there had been an ongoing epidemic for months before it was officially recognized as such. In June, the

World Health Organization (WHO) and the US Centers for Disease Control and Prevention

(CDC) stopped counting cases and declared the outbreak a pandemic.

The pandemic began to taper off in November 2009, and by May 2010, the number of cases was in steep decline. On 10 August 2010, the Director-General of the World Health

Organization announced the end of the H1N1 pandemic, and announced that the H1N1 influenza event has moved into the post-pandemic period. According to the latest WHO statistics (July

2010), the virus has killed more than 18,000 people since it appeared in April 2009, however they state that the total mortality (including deaths unconfirmed or unreported) from the H1N1 strain is "unquestionably higher".

Likelihood of Future Occurrences

No one predicted the emergence of the 2009 H1N1 pandemic virus and it is doubtful that anyone will be able to accurately predict any future pandemic either, including when or where it will occur, what subtype it will be, and what morbidity/mortality impact it will have. While concern over the emergence of an H5N1 pandemic is clearly warranted, if for no other reason than its current high case fatality rate, many other possibilities for future pandemic emergence must also be anticipated and planned for.

The majority of the world's population (those younger than age 41) has no protective immunity to the H2 subtype-bearing influenza viruses that circulated between 1957 and 1968.

Isolates of H2N2 viruses from that era are still maintained in countless laboratory freezers, while circulating human-adapted H3N2 viruses presumably remain susceptible to importation of avian

H2 by reassortment; this suggests obvious potential origins of future pandemics. Current H9N2

110 viruses, some with the ability to bind to human receptors, and already capable of causing human disease, are another potential source of a future pandemic.

Evidence suggests that H5N1 viruses are evolving rapidly; however, the direction of this evolution, which is driven by incompletely understood selection pressures, is unclear. While current strains of Southeast Asian H5N1 HPAI viruses are descendants of the 1996 Chinese epizootic virus, significant genetic and antigenic evolution has since occurred, involving drift in the H5 HA, mutations in other genes, and reassortment with other avian influenza viruses.

Nevertheless, there are limited data relating to whether any H5N1 influenza strain is evolving in the direction of human adaptation.

Food Contamination

There are many forms and causes of contamination. Contamination can occur naturally, by human error or intentionally. The main concern with food contamination is the possibility of a food-borne illness outbreak.

Current estimates indicate that almost 50 million cases of food-borne illness occur annually in the United States, of which the infectious agents norovirus, Salmonella,

Campylobacter, Shiga toxin-producing E. coli, and Shigella are the principal known causes.

Produce, followed by fish, poultry, meat, and shellfish, are the leading vehicles of recent food- borne outbreaks. Fresh fruits and vegetables have become major vehicles of food-borne illnesses in the United States and Europe. About one-fourth of food-borne outbreaks reported in the U.S. in 2006 were associated with produce, and most were from leafy greens that were fresh-cut, bagged, and ready-to-eat.

An outbreak of the vomiting, diarrhea and stomach cramp-inducing Norovirus caused

Hope College's campus to be shut down for three days in November of 2008. More than 400

111 students reported flu-like symptoms throughout the weekend, according to an article by The

Grand Rapids Press. The outbreak on the campus of 3,200 prompted Hope to close for an investigation by the Ottawa County Health Department.

Public Health Emergency

A public health emergency involves a widespread and/or severe epidemic, incident of contamination or other situation that presents a danger to or otherwise impacts the general health and well-being of the public.

Communicable disease is a concern for campuses across the nation. With students coming from all over the country and internationally, the chances for disease spread increases.

Communal living in residence halls also increases the risk of communicable disease. Residential and social circumstances within the college environment create a high risk environment for transmission or exposure if an outbreak were to occur. Communicable diseases of concern to college campuses include chickenpox, diphtheria, seasonal influenza, influenza strains, measles, mumps and rubella, bacterial meningitis, meningococcal disease, infectious mononucleosis, pertussis (whooping cough), severe acute respiratory syndrome (SARS), Norovirus and tuberculosis.

The most serious communicable disease on U.S. campuses is meningococcal disease.

Meningococcal disease is a potentially life threatening bacterial infection. The disease is most commonly expressed as either meningococcal meningitis, an inflammation of the membranes surrounding the brain and spinal cord, or meningococcemia, a presence of bacteria in the blood.

It is estimated that 100 to 125 cases of meningococcal disease occur annually on college campuses and 5 to 15 students die as a result. The U.S. Department of Public Health and Human

Services Center for Disease Control (CDC) reports that freshman living in residence halls are the

112 highest risk group and are six times more likely than any other risk group to contract meningococcal disease (CDC 1999).

Communicable disease has not had a significant impact on the EMU campus in recent years. A major communicable disease outbreak on campus would have direct impacts to the health of students, staff, and faculty. The percentage of the campus population affected by an outbreak and the number of fatalities would be highly dependent on the disease itself and amount of advanced warning of a possible outbreak. A major communicable disease outbreak could also disrupt the ability of the school to conduct classes. In the case of a severe outbreak event, the campus would shut down. This could result in a significant economic impact to the students, faculty, and staff and the region.

Improvised Explosive Device Detonation

IEDs are technically defined as “…devices placed or fabricated in an improvised manner incorporating destructive, lethal, noxious, pyrotechnic or incendiary chemicals, designed to destroy, disfigure, distract or harass. They may incorporate military stores, but are normally devised from non-military components.”8 More generally speaking, IEDs are bombs constructed from readily available materials, which may include conventional or homemade explosives.

While the term “conventional explosives” generally refers to commercial products or military ordnance, IEDs can include explosive materials or other components scavenged from such sources, or they may be fashioned using legitimate consumer products and materials intended for innocuous use, such as propane, diesel fuel, and fertilizer.

8 Director for Operational Plans and Joint Force Development, Joint Chiefs of Staff. Joint Publication 1-02, Department of Defense Dictionary of Military and Associated Terms. April 12, 2001. As amended through November 9, 2006. Washington, DC: United States Department of Defense.

113

Improvised Explosive Devices (IEDs) are relatively simple to assemble and employ, and provide perpetrators an operational flexibility that poses great challenges for those responsible with preventing their use or mitigating their effects. Furthermore, tactics used to employ IEDs are continually evolving. Suicide bombers, vehicle-borne devices, simultaneous and coordinated attacks, and the targeting of emergency responders with secondary devices are a few of the creative methods used to increase the disruption and fear caused by IEDs.

Figure 5-14.

Past efforts to mitigate the effects of an IED on campus included training for the campus police department. EMU arranged for the New Mexico Tech’s Energetic Materials Research and

Testing Center (EMRTC) to provide training on campus in 2010. EMRTC delivered two courses:

 Initial Response to Terrorist Bombings  Prevention and response to Suicide Bombing Incidents

Invitation to attend the classes was extended to other agencies and institutions in Michigan and the classes were well attended.

Bomb Threat

A bomb threat is an effective means of disrupting university functions. The problems are intensified when the incident involves an actual explosive or incendiary device. Although there is no foolproof means of securing a premises against a bomb threat (or bomb attack), good security

114 and response plans, will enable the University to deal with an incident properly. Examples of the impacts of bomb threats can be found by reviewing recent events at other institutions

The 145 bomb threats that occurred over the course of 10 weeks at the University of

Pittsburgh presented a unique challenge to university and law enforcement officials. Starting in mid-February 2012, dozens of bomb threats at the University of Pittsburgh disrupted classes and dormitory life and prompted some students to find housing off campus just weeks before the semester ends. Since the first warning about a hidden explosive device was found scrawled on the wall of a public women’s bathroom on Feb. 13, there have been 56 more — some written on walls and some sent by anonymous e-mail to Pittsburgh news outlets.

From strictly a monetary perspective, the cost of bomb searches, increased security, and teaching hours lost will likely bump this series of threats into the million-dollar range. But considering the impact in the unlikely event of an actual bomb detonation, the University probably saw this as a fair trade-off.

In August 2007 Middle Tennessee State University (MTSU) in Murfreesboro was among five universities across the country to receive bomb threats on the first day of the fall semester.

Three MTSU employees received e-mails saying there were explosive devices on campus.

Authorities checked several buildings, but didn't find anything. Princeton University, Clemson

University, Carnegie Mellon University and the University of Alaska at Anchorage also received bomb threats. (News Channel5.Com, Bomb Threat Raises Concern on Local College Campus,

August 27, 2007).

On March 12, 2008, administrators and police at the Levelland campus of South Plains

College in Texas evacuated three buildings after an unknown person made two phone calls to

Levelland police saying there were bombs in three on-campus buildings. South Plains College

115 administrators and local police evacuated the administration building, science building and technical arts building in response to the threat. Police, however, did not find bombs after a thorough search of the buildings, said Tom McCain, assistant chief of the Levelland Police

Department. Though all three buildings had been cleared by the Lubbock Sheriff's Department's bomb squad and bomb-sniffing dogs, administrators canceled afternoon classes in the buildings.

(The Daily Toreador, Bomb threat causes evacuations, class cancellations at South Plains

College by Matt McGowan, March 12, 2008)

On January 26, 2009, fire fighters say a plastic bottle containing chemicals exploded in a dormitory stairwell at Wittenberg University in Springfield, Ohio. No one was injured when the homemade device exploded in a residence hall. Assistant Springfield Fire Chief Nick Heimlich said the device consisted of a plastic water bottle containing over-the-counter ingredients such as drain cleaner, and the bottle exploded when the combined ingredients created an expanding gas.

(WDN2.Com, Bottle bomb explodes on college campus, January 27, 2009).

Planning efforts for bomb threats begin with a vulnerability assessment of the facilities.

An estimate of the risk of attack is required, based on location, past threats, and current trends.

Management must establish procedures before an incident occurs, so that a bomb threat can be handled with the least risk of creating panic. Employees must be trained in the proper procedures to follow in handling bomb threats, conducting bomb searches and evacuating a building.

In the past, the majority of bomb threats turned out to be hoaxes. However, today more of the threats are materializing. Thus, the University’s first consideration must be for the safety of people. It is practically impossible to determine immediately whether a bomb threat is real or a hoax.

116

Hazard Priority Rating

The first step in any disaster preparedness activity for the University is an assessment of its risks. It is impossible to prepare for everything and limited resources make it important that the energy in preparing for an event be reflective of the likelihood of that event occurring. A risk assessment must also consider the resilience, or coping capabilities, of the University.

Risk is defined as the product of probability of the hazard and its potential impact.

Risk =Probability x Impact / Resilience

Probability

Probability may be expressed as the likelihood of an event occurring within a given time period; for example, the probability of event x occurring at a given location in the next year is y.

For the assessment survey, probability was defined as the likelihood of a specific type of emergency situation happening on campus and used the following rating scale:

1 2 3 4 5 Will not Unlikely Possible Likely Almost Certain occur

Impact

The impact of each hazard is considered in three categories: human impact, impact on property (general building stock including critical facilities), and business impact. The three categories are defined as follows:

 Human Impact: The impact in terms of loss of life, injuries, and suffering imposed upon

individuals or groups within the campus community.

117

 Property Impact: The impact in terms of loss of buildings, class space, research

facilities, equipment, infrastructure and other physical assets of the university.

 Business Impact: The impact in terms of interruption or loss of critical business

functions based on duration, availability of alternative processes, and impact of not

performing the functions. This can be measured against regulatory, legal, financial,

operations or customer service requirements.

An impact rating was assigned for each hazard of concern based on the following scale:

1 2 3 4 5 None Low Moderate High Critical

In addition, a weighting factor is assigned to each impact category: three (3) for population, two (2) for property, and one (1) for economy. This gives the impact on population the greatest weight in evaluating the impact of a hazard. Most events will impact the University and the campus community to varying degrees. An overall impact rating gives a picture of the effect on the University.

Human Impact(x3) + Property Impact(x2) + Business Impact(x1) = Overall Impact Resilience

Resilience is the ability of the campus community to respond and recover from an emergency/disaster. A higher level of response capability present on campus and in off-campus contributes to resiliency in the provision of critical services and the restoration of lifelines, thus reducing the impact.

 Internal Response Resources: Those resources and capabilities available within the

university’s departments and units to address an emergency event.

118

 External Response Resources: Those resources and capabilities available from off-

campus organizations, or through mutual aid, to address an emergency event.

1 2 3 4 5 None Marginal Adequate Strong Very Strong

Normally, available internal response resources can be accessed quicker than external resources, especially if an emergency impacts the off-campus community as well as campus.

Therefore a weighting factor of x2 is assigned to internal response resources.

Internal Response Resources Value (x2) + External Response Resources = Overall Response Value

Total Risk Score

The risk ranking for each hazard is then calculated by multiplying the numerical value for probability of occurrence by the sum of the numerical values for impact. The equation is as follows:

Probability Value (1,2, 3,4 or 5) X Overall Impact Value (6 to 30) = Total Risk Score Overall Response Capability Value (3 to 15)

119

Hazard Summary

The following chart displays the results of the hazard priority ranking. Based on the total for each hazard, a priority ranking is assigned to each hazard of concern (high, medium, or low).

Population Property Business Response Total Rank Hazard Probability Impact Value Impact Value Impact Value Capability Risk (Weighted 3) (Weighted 2) (Weighted 1) Value (/) Rating Severe Snow Storm 4.58 2.95 2.98 3.47 9.88 8.47 Ice Storm 4.23 2.94 3.19 3.45 9.96 7.92 Tornado/Microburst 3.52 3.31 4.06 3.68 10.47 7.30

Wind Storm 3.73 2.78 3.34 3.19 9.67 7.02

IT Systems Failure* 3.98 2.68 2.47 3.85 9.9 6.76 HIGH Fire-Structural 3.31 3.62 4.25 3.91 11.47 6.71 Armed Suspect on 3.68 3.94 2.2 3.61 11.51 6.34 Campus Civil Disturbance 3.39 3.28 2.71 3.34 10.61 5.94 Influenza 3.27 3.72 1.9 3.47 10.27 5.86 Outbreak/Pandemic Food Contamination 3.23 3.55 1.94 3.1 9.75 5.84 Electric Infrastructure 3.19 2.89 3.08 3.83 10.28 5.79

Failure

Infrastructure Failure (non IT or 3.25 2.72 2.84 3.67 9.93 5.73

electric)** MEDIUM Bomb Threat 3.12 3.65 3.1 3.58 11.29 5.72 Public Health 3.11 3.56 2.09 3.47 10.31 5.53 Emergency Chemical Hazard 2.9 3.53 3.12 3.6 10.97 5.40 Incident Active Shooter 2.83 4.51 2.38 3.92 11.9 5.28 Improvised Explosive Device 2.5 3.86 3.92 3.92 11.14 5.24 Detonation Biological Hazard 2.75 3.74 2.96 3.7 11.11 5.16 Incident

Hostage Situation 2.69 4.01 2.24 3.65 11.6 4.68 Flood/Riverine LOW 2.31 2.76 3.45 3.32 9.94 4.30 Urban Runoff Radiological Hazard 2.26 3.44 3.02 3.64 10.6 4.26 Incident Aircraft Crash on 1.99 3.92 4.13 3.99 11.63 4.11 Campus Earthquake 1.85 3 3.91 3.59 10.83 3.50 Table 5-9.

120

The results show that the top eight (high) priority hazards for Eastern Michigan University include:

 Severe Snow Storm

 Ice Storm

 Tornado/Microburst

 Wind Storm

 IT Systems Failure

 Fire-Structural

 Armed Suspect on Campus

 Civil Disturbance

This is not to say that the remaining hazards will not occur and that their potential impact would not be detrimental but simply that those within the ‘High’ category will be the primary focus of mitigation activities.

Section 6: Mitigation Strategies  Introduction  Eastern Michigan University Mitigation Goals  Identification and Analysis of Mitigation Actions  Recommendation and Prioritization of Mitigation Actions  Potential Funding Sources

Introduction

In the last decade, disasters have affected university and college campuses with disturbing frequency, sometimes causing death and injury, but always imposing monetary losses and disruption of the institution’s teaching, research, and public service.

121

The effects from natural, human caused and technological hazards directly impact the safety and wellbeing of university faculty, staff and students.

Depending on the degree of severity, disasters can result in loss of educational time for students and economic hardship for the university and community. Significant losses can result from damage to campus buildings and infrastructure as well as interruption to the institutional mission. These losses can be measured by faculty and student departures, decreases in research funding, and increases in insurance premiums. While most hazards cannot be eliminated, the effects and losses can be substantially reduced through comprehensive pre-disaster planning and mitigation actions.

This section presents mitigation actions for FEMA definitions – the University to reduce potential exposure and losses Goals: general guidelines that identified as concerns in the Risk Assessment portion explain what should be achieved. Goals are usually broad, long-term, of this plan. The mitigation strategies were developed policy statements, and represent a global vision. through a collaborative group process and consist of Objectives: strategies or goals, objectives, and mitigation actions. implementation steps to attain mitigation goals. Unlike goals, Hazard mitigation reduces the potential objectives are specific and measurable, where feasible. impacts of, and costs associated with, emergency and Mitigation Actions: specific actions disaster related events. Mitigation actions address a that help to achieve the mitigation goals and objectives. range of impacts, including impacts on the population, property, the economy, and the environment. Mitigation actions can include activities such as: revisions to and enforcement of best practices in building and land use, training and education, and structural and nonstructural safety measures.

122

Eastern Michigan University Mitigation Goals

The purpose of this section is to provide an outline for Eastern Michigan University to follow to become less vulnerable to hazards. EMU’s mitigation goals were derived from descriptions of potential damage from hazards in the hazard profile section, discussions with

University Physical Plant personnel, members of the Health & Safety Committee/Mitigation

Advisory Committee and City and County emergency management representatives.

Through the preparation of the mitigation plan, emergency management considered

EMU’s overall risk, vulnerability, and capacity to mitigate the effects of identified hazards.

There was careful consideration of undertaking feasible mitigation projects.

The mitigation goals provide an outline for Eastern Michigan University to follow to become less vulnerable to identified hazards. EMU’s mitigation goals are broad statements, but are achieved through more specific objectives and implementation steps. They are based upon the results of the risk assessment and a review of goals and objectives from other state and local plans, specifically, the Michigan Multi-Hazard Mitigation Plan, the Washtenaw County

Mitigation Plan and the City of Ypsilanti Mitigation Plan.

Going through the process, the University was guided by four principles for mitigation.

These four principles provide a foundation for mitigation by establishing the key elements by which mitigation aims to manage risk with the goal of reducing risk and increasing resilience throughout the campus community.

123

1. Resilience and Sustainability

Preparing the campus community, its property and critical infrastructure resources

to absorb the impact of a threatening event and bounce back in a manner that sustains it

mission and functions in the aftermath of a disaster, makes it more resilient.

Sustainability employs a longer-term approach through plans, policies, and

actions that reflect a comprehensive understanding of the economic, social, and

environmental systems within the campus community and its host communities.

2. Leadership and Campus-focused Implementation

Mitigation empowers university leaders and members to embrace their ownership

of building a resilient and sustainable campus. Effective, ongoing mitigation is led by the

campus community, working together to identify, plan for, and reduce vulnerabilities and

promote long-term personal and community resilience and sustainability. Everyday

discussions and actions can have unexpected implications for risk management and

therefore should be viewed through the mitigation lens.

3. Partnerships and Inclusiveness

Mitigation is advanced through the collective actions of many groups. No one

entity can accomplish these goals. These partnerships may include: staff, faculty,

students, local government, the private sector and area non-profit organizations.

Establishing trusted relationships prior to a disaster is essential to campus

resilience and sustainability. These relationships enhance and strengthen day-to-day

mitigation efforts and are critical for timely and effective response and recovery activities

during and after a disaster event.

124

4. Risk-conscious Culture

The campus community is bolstered and made more resilient by anticipating,

communicating, and preparing for threats and hazards—both internal and external—

through comprehensive and deliberate risk management. The value of a risk management

approach or strategy to decision makers is not in the promotion of a particular course of

action, but rather in the ability to distinguish between various risk management choices

for accepting, avoiding, reducing, or transferring the risk within the larger context.

A risk-conscious culture involves providing clear, meaningful, consistent, accessible

(including for those with limited English proficiency and individuals with functional

needs) messaging, so that the whole campus community embraces mitigation and

reduces its exposure and vulnerability to risk.

EMU’s mitigation goals were derived from descriptions of potential damage from hazards in the hazard profile section, discussions with Physical Plant personnel and other departments, input from the Mitigation Advisory Committee (aka Health & Safety Committee) and City and County emergency management representatives. The goals are listed, but not prioritized, below:

125

Goal 1: Create a safe and secure environment for students, faculty, staff and visitors.

Objective 1-1: Implement mitigation actions that will assist in protecting lives and property by making buildings, infrastructure, critical facilities and individuals more resistant to hazards.

Objective 1-2: Better characterize hazard events by conducting additional hazard studies.

Objective 1-3: Review existing university policies, plans and procedures, safety inspection procedures, and other processes to help ensure that they address the most recent and generally accepted standards for the protection of buildings and environmental resources.

Objective 1-4: Implement mitigation actions that encourage environmental stewardship and protection of the environment.

Objective 1-5: Implement mitigation programs that protect critical university facilities and services and promote reliability of lifeline systems to minimize impacts from hazards, maintain operations, and expedite recovery in an emergency.

126

Goal 2: Enhance emergency communications systems to provide the campus community with appropriate protective action and mitigation information.

Objective 2-1: Harden communications capabilities to ensure post event functionality.

Objective 2-2: Enhance alert and notification procedures/system to improve notice to the campus community and off-campus partners.

Objective 2-3: Establish and maintain good working relationships with off-campus departments and agencies in identifying warning sources and coordinating emergency notifications.

Goal 3: Strengthen University continuity of operations through integration with emergency response plans and procedures, including the mitigation plan.

Objective 3-1: Encourage the establishment of policies to help ensure the prioritization and implementation of mitigation actions and/or projects designed to benefit essential facilities, services, and infrastructure.

Objective 3-2: Where appropriate, coordinate and integrate hazard mitigation actions with existing University and local emergency operations plans.

Objective 3-3: Implement mitigation actions that enhance the technological capabilities of the University to better profile and assess exposure of hazards.

127

Goal 4: Be proactive in identifying mitigation opportunities into capital improvement and infrastructure planning projects and other campus functions and programs.

Objective 4-1: Identify and pursue funding opportunities to develop and implement mitigation activities.

Objective 4-2: Strengthen communication, coordination, and community partnerships to foster hazard mitigation actions and/or projects.

Objective 4-3: Identify the need for, and acquire, any special emergency services, training, or equipment to enhance response capabilities for specific hazards.

Goal 5: Enhance emergency preparedness, increase awareness, and promote risk reduction activities through education of and outreach to the campus community.

Objective 5-1: Develop and implement additional education and outreach programs to increase campus community awareness of the risks associated with hazards and to educate the public on specific, individual preparedness activities.

Objective 5-2: Provide information on tools, partnership opportunities, funding resources, and current initiatives to assist in implementing mitigation activities.

Objective 5-3: Provide comprehensive information to the campus community, local emergency service providers, the media and the public during and following disaster and hazard events.

128

Identification & Analysis of Mitigation Actions

Mitigation strategies have been developed and prioritized to address the vulnerabilities identified in the plan. Going through the process, the University was guided by four principles for mitigation. These four principles provide a foundation for mitigation by establishing the key elements by which mitigation aims to manage risk with the goal of reducing risk and increasing resilience throughout the campus community.

1. Resilience and Sustainability

Preparing the campus community, its property and critical infrastructure resources to

absorb the impact of a threatening event and bounce back in a manner that sustains it

mission and functions in the aftermath of a disaster, makes it more resilient.

Sustainability employs a longer-term approach through plans, policies, and actions that

reflect a comprehensive understanding of the economic, social, and environmental

systems within the campus community and its host communities.

2. Leadership and Campus-focused Implementation

Mitigation empowers university leaders and members to embrace their ownership of

building a resilient and sustainable campus. Effective, ongoing mitigation is led by the

campus community, working together to identify, plan for, and reduce vulnerabilities and

promote long-term personal and community resilience and sustainability. Everyday

discussions and actions can have unexpected implications for risk management and

therefore should be viewed through the mitigation lens.

129

3. Partnerships and Inclusiveness

Mitigation is advanced through the collective actions of many groups. No one entity can

accomplish these goals. These partnerships may include: staff, faculty, students, local

government, the private sector and area non-profit organizations.

Establishing trusted relationships prior to a disaster is essential to campus resilience and

sustainability. These relationships enhance and strengthen day-to-day mitigation efforts

and are critical for timely and effective response and recovery activities during and after a

disaster event.

4. Risk-conscious Culture

The campus community is bolstered and made more resilient by anticipating,

communicating, and preparing for threats and hazards—both internal and external—

through comprehensive and deliberate risk management. The value of a risk management

approach or strategy to decision makers is not in the promotion of a particular course of

action, but rather in the ability to distinguish between various risk management choices

for accepting, avoiding, reducing, or transferring the risk within the larger context.

A risk-conscious culture involves providing clear, meaningful, consistent, accessible

(including for those with limited English proficiency and individuals with functional

needs) messaging, so that the whole campus community embraces mitigation and

reduces its exposure and vulnerability to risk.

A wide range of mitigation actions can be considered in order to help achieve established

mitigation goals to create a feasible mitigation strategy and action plan. Mitigation

activities can fall into a number of categories, including preventative measures, property

130 protection, public education & awareness, natural resource protection, emergency services, and structural projects.

The following is an overview of potential activities by category:

1. Preventative Measures

Preventative measures protect new development from hazards and ensure that

potential loss is not increased. Preventative measures are guided through University

programs and policies or external enforcement actions that influence the way campus

open space is developed, buildings are constructed, or how people respond.

Prevention activities can be particularly effective where development has not yet

occurred or where capital improvements have not been significant. Preventative

mitigation activities include:

 Planning & Design

 Stormwater Management

 Public Safety

 Facilities Construction

 Capital Improvement Programming

2. Property Protection

Property protection measures prevent a hazard from damaging a building.

Property protection measures are typically implemented by the university, but

government can often provide technical and sometimes financial assistance. There are

five general activities that can be classified as property protection:

 Building Relocation/Building Elevation

 Retrofitting (security enhancements, wind-proofing, fireproofing, etc.)

131

 Insurance Coverage

 Demolition

 Barriers (safe rooms, impact resistant glass)

3. Public Education and Awareness

Public education and awareness is a mitigation strategy that has a broad reaching

impact across both the university and community. Activities that provide university

faculty, staff, students, visitors and the off-campus community with information on

how to protect themselves and others from potential hazards that may have the

greatest impact on people to protect their own property and lives. Examples of public

education include:

 Outreach Projects

 Speaker Series

 Training & Exercises

 Hazard Map Information

4. Natural Resource Protection

Resource protection mitigation activities are a way to enable land to function in a

natural way. Because many natural areas have been affected by development and will

be affected by development in the future, there are a number of ways to protect and

restore the environment. This measure is important when considering activities for the

Eagle Crest Golf Center, the EMU Parsons Center in Lake Ann and the EMU Kresge

Environmental Center (Fish Lake) in Lapeer.

132

Resource protection activities can include:

 Wetlands Protection

 Erosion & Sedimentation Control

 Watershed Management

 Best Forest & Vegetation Management Practices

 Habitat Preservation

There are many benefits to naturally functioning watersheds, floodplains, and

wetlands and they can include:

 Reduction in runoff from rainwater and snowmelt

 Infiltration and velocity control during overland flow

 Filtering of excess nutrients, pollutants and sediments

 Floodwater storage

 Water quality improvement

 Groundwater recharge

 Habitat availability

 Recreation and aesthetic qualities

5. Emergency Services

A thorough emergency services program addresses all hazards and involves all

response departments and facilities, including those beyond the university in the

community. While not typically considered a “mitigation” technique, emergency

service measures do minimize the impact of a hazard event on people and property.

133

There are a number of components to emergency services and they include:

 Threat Recognition

 Warning

 Response

 Critical Facilities Protection

 Post-Disaster Recovery & Mitigation

6. Structural Projects

Structural projects are intended to protect people and infrastructure from damage

due to natural hazards. The complexity and cost of structural projects can vary greatly

and are dependent on individual circumstances. Structural projects are undertaken

where non-structural measures would not be effective. Structural projects may

include:

 Reservoirs and Detention Areas

 Roadway & Pedestrian Pathway Improvements

 Drainage and Storm water Improvements/Maintenance

Recommendation & Prioritization of Mitigation Actions

The mitigation strategy includes a wide range of mitigation actions that will reduce vulnerabilities to hazard events. Mitigation actions are typically presented in general terms without specific project details. Developing a mitigation project from these mitigation actions may require a great deal of effort. Not all mitigation actions identified in the plan will necessarily

134 become fully developed projects. Some actions may be deleted from the mitigation strategy or deferred for implementation when the plan is updated.

After plan approval and implementation, when mitigation opportunities arise, the

University will follow a seven-step process for developing proposed mitigation actions into well- defined mitigation projects.

The first step in the process is a review of the actions specified in the mitigation strategy and the information contained in the Risk Assessment section of the hazard mitigation plan to identify opportunities to develop mitigation projects.

The second step in the process is to specify the problem and identify alternative projects that will solve the problem.

The third step is to conduct a feasibility review to identify obstacles to implementing the project and to determine the best alternative for the community. The feasibility review should include a preliminary evaluation of mitigation funding opportunities to determine whether funding beyond existing community resources might be available. Potentially negative environmental impacts of the proposed project should be identified at this stage of the process.

The fourth step is to select a project and to fully develop the project scope of work by establishing the exact specifications and costs of the project.

The fifth step is to obtain sufficient funding to implement and maintain the proposed mitigation project. This step may entail completing and submitting an application for funding to

FEMA or another agency.

The sixth step is to implement, manage, and maintain the mitigation project.

Communities receiving FEMA Hazard Mitigation Assistance must also comply with all reporting and administrative requirements.

135

The seventh and final step is to update the community’s hazard mitigation plan.

Selected mitigation actions will be evaluated using various criteria as recommended by

FEMA. This includes using the “STAPLEE”9 evaluation criteria.

STAPLEE Evaluation Criteria

Socially Acceptable Is the proposed activity socially acceptable to the University community? Is the activity compatible with present and future University values? Are there disparity issues that would leave one part of the University community adversely affected?

Technically Feasible Will the proposed activity be effective in the long run? Will it create negative secondary impacts? Will it create more problems than it solves? Will it solve the problem or only the symptom?

Administratively Possible Does the University have the capability to implement the proposed activity? Is there someone who will coordinate, implement, and maintain the activity?

Politically Acceptable Is there political support to implement the proposed activity? Is there enough University and/or community support to ensure the success of the activity?

Legal Does the University have the authority to implement the proposed activity? Is there a clear legal precedent, and are there any potential legal consequences of the activity?

Economically Sound Are there current sources of funding to implement the proposed activity? Do the benefits outweigh the costs of the activity? Is the activity compatible with other economic goals of the University?

Environmentally Sound How will the proposed activity affect the environment? Will this activity comply with local, state, and federal environmental laws and regulations? Is the activity consistent with University environmental goals?

Table 6-1.

9 Using the Hazard Mitigation Plan to Prepare Successful Mitigation Projects: State and Local Mitigation Planning Guide. FEMA 386-9. August 2008. p.15.

136

Mitigation Actions

Goals/Objectives Mitigation Actions Responsibility Supported Provide outreach and awareness campaigns to the campus community to promote Goal 5, Obj.5-1 & Emergency mitigation and preparedness efforts. 5-4 Management Office

Expand Mass Notification capabilities to high use/critical facilities such as the Goal 1, Obj.1-1 Emergency Student Center, Convocation Center, Goal 2, Obj.2-2 Management Office McKenny Union and Fletcher School.

Identify structural fire suppression measures Goal 1, Obj.1-1 in residence halls.10 Physical Plant

Identify critical facilities/infrastructure Physical Plant needing backup power sources and means to Goal 3, Obj.3-1 provide backup power. Goal 4, Obj.4-3 Emergency

Management Office

Expand hazard identification and risk Goal 1, Obj.1-1 assessment and mitigation planning to Fish Emergency Goal 3, Obj.3-1 Lake and Parsons Center. Management Office

Identify opportunity for the creation of a dual-use storm shelter for the athletic Physical Plant (West) campus. Goal 1, Obj.1-1 Athletics Goal 3, Obj.3-1 Emergency Management Office

Identify opportunity for installation on an Emergency automated lightning detection system for Management Office the athletic (west) campus, main campus Goal 1, Obj.1-1 mall and Eagle Crest. Goal 3, Obj.3-1 Physical Plant

10 Tracking pending legislation - H.R. 3250: Honorable Stephanie Tubbs Jones College Fire Prevention Act. 112th Congress, 2011–2012 to establish the Honorable Stephanie Tubbs Jones Fire Suppression Demonstration Incentive Program within the Department of Education to promote installation of fire sprinkler systems, or other fire suppression or prevention technologies, in qualified student housing and dormitories, and for other purposes.

137

Goals/Objectives Mitigation Actions Responsibility Supported Identify storm water projects such as rain Physical Plant gardens and detention areas to help reduce Goal 1, Obj.1-4 and control runoff and to promote Emergency protection of the Huron River Watershed Management Office

Review and revise the Multi-Hazard Goal 1, Obj.1-3 Mitigation Plan to reflect changes in development, progress in mitigation efforts, and changes in priorities on an annual basis. Emergency Resubmit to state and FEMA every 5 years. Goal 3, Obj.3-1 Management Office

Table 6-2.

Benefit-Cost Analysis

Projects identified and selected for implementation will be selected based on a cost- benefit review to maximize benefits. Benefits can be classified as avoided damages and losses.

To calculate the benefit of implementing mitigation recommendations, one would first calculate the likely damage without the mitigation action. Next, one would calculate the likely damage after the implementation of the mitigation recommendation. Then, the losses after mitigation are subtracted from the losses without mitigation to calculate net benefits. Finally, the useful life of the project and the time value of money (discount rate) are used to convert those average annual losses to their present value using the following Net Present Value (NPV) equation:

NPV = -M + B*[(1-(1 + i)-T ) / i]

Where M is the cost of the mitigation measure, B is the net benefit (loss without mitigation - loss with mitigation), T is the useful life of the asset (years), and i is the interest rate to calculate the present day value (%).

138

The net benefits of mitigation are compared to the direct costs of implementing the mitigation action. This relationship is expressed as the ratio of benefits to costs.

Benefit / Cost = (NPV of expected benefit) / (mitigation cost)

A ratio of greater than 1.0 is considered a worthwhile mitigation investment.

Since the Benefit-Cost Analysis is an integral part of obtaining grant money from the

Federal Emergency Management Agency for mitigation efforts, the University will follow the requirements for classifying benefits for select mitigation projects as outlined in FEMA’s

Using Benefit-Cost Review in Mitigation Planning, State and Local Mitigation Planning How-To

Guide Number Five, FEMA 386-5 May 2007.

While specific mitigation actions are identified to prevent future losses; current funding is not identified for all of these actions at present. The University has limited resources to take on new responsibilities or projects. The implementation of these mitigation actions is dependent on the approval this plan, the securing of funding and the approval of the University’s executive leadership.

In general, mitigation actions ranked as high priorities will be addressed first. However, medium or even low priority mitigation actions will be considered for concurrent implementation. Therefore, the ranking levels should be considered as a first-cut, preliminary ranking and will evolve based on input from University departments and representatives, the City of Ypsilanti, Washtenaw County, EMHSD, and FEMA as the plan is implemented.

139

The Mitigation Advisory Committee will initially prioritize mitigation actions using the following worksheet:

Mitigation Action (Describe): .

 Preventative Measures Category:  Property Protection  Public Education and Awareness  Natural Resource Protection  Emergency Services  Structural Projects Hazard(s):

Lead Division/Department:

Estimated Cost:

Funding Method:

Implementation Schedule:

 High Priority:  Medium  Low

Socially Acceptable  Yes No Note:

Technically Feasible  Yes No Note:

Administratively Possible  Yes No Note:

Politically Acceptable  Yes No Note:

Legal  Yes No Note:

Economically Sound  Yes No Note:

Environmentally Sound  Yes No Note: Table 6-3.

140

Potential Funding Sources

A number of governmental and non-governmental sources provide funding assistance for qualifying mitigation projects. Each funding source has its own criteria for eligibility and evaluative criteria for awarding funds. The following list is intended to provide examples of funding sources for future mitigation projects and should not be considered comprehensive. New sources for mitigation funding will be added as they are identified.

Creative financing is encouraged and is made possible when partnering with other agencies or businesses to achieve common or complementary goals. There may be opportunities for mitigation funding through foundations or philanthropic organizations.

 The Pre-Disaster Mitigation (PDM) Program11: is a competitive grant program

developed to assist communities implement hazard mitigation related activities in order

to avert future disasters. PDM is a proactive program that aims to reduce natural and

technological risks to populations and structures before a disaster occurs.

 Flood Mitigation Assistance (FMA) Program - A federal program that provides annual

funding for projects to protect flooded structures that are insured by the National Flood

Insurance Program.

 Hazard Mitigation Grant Program (HMGP) - A federal, post-disaster program that

funds projects to protect public or private property from future disasters.

 Repetitive Flood Claims Program (RFC) - A competitive federal program that provides

non-disaster funding for flood mitigation projects at 100% federal funding in

communities that meet certain eligibility limitations.

11 The grant is targeted for elimination as a grant in 2013. It possibly will be combined with the Hazard Mitigation grant Program.

141

 Severe Repetitive Loss (SRL) Program - A federal program created to mitigate NFIP-

insured residential buildings that have experienced severe flood damage.

 Homeland Security Grants (through Region 2) - Multiple grants that provide funding

for homeland security activities.

 Assistance to Firefighters Grants - Provides funding for fire prevention and safety

activities and firefighting equipment (possible partnership opportunity with the City of

Ypsilanti).

 Public Assistance (PA) Program – Provides supplemental assistance to States, local

governments, and certain nonprofit organizations to alleviate suffering and hardship

resulting from major disasters or emergencies declared by the President. Under Section

406, PA funds may be used to mitigate the impact of future disasters.

 Emergency Watershed Protection (USDA/NRCS) – Provides emergency technical and

financial assistance to install or repair structures that reduce runoff and prevent soil

erosion to safeguard life and property.

 Watershed Protection and Flood Prevention (USDA/NRCS) – Provides technical and

financial assistance in planning and executing works of improvement to protect, develop,

and use land and water resources in small watersheds.

142

Section 7: Plan Implementation and Maintenance Procedures  Adoption and Implementation  Monitoring, Reviewing and Amending  Continued Public Involvement

Adoption & Implementation

Adoption and implementation are critical to the mitigation plan’s overall success. While the plan makes many important recommendations, the University will need to decide which action(s) to undertake first. Two factors will help with making that decision: the priority assigned the actions in the planning process and funding availability.

Adoption of the plan is accomplished by the approval the President and promulgation of the plan to the campus community.

An important implementation mechanism that is highly effective and low-cost is incorporation of the hazard mitigation plan recommendations and their underlying principles into other plans and mechanisms such as University comprehensive plans, continuity of operations plans, and capital improvement planning and budgeting.

Mitigation is most successful when it is incorporated in the day-to-day functions and priorities of the university. This integration can be accomplished through identifying multi- objective, win-win programs and projects and through the routine actions of monitoring agendas, attending meetings, and promoting a safe, sustainable campus environment.

Simultaneous to these efforts, it is important to maintain a constant monitoring of funding opportunities that can be leveraged to implement some of the more costly recommended actions.

This will include creating and maintaining a bank of ideas on how to meet local match or participation requirements. When funding does become available, the University will be in a position to capitalize on the opportunity.

143

Monitoring, Reviewing & Amending

The plan maintenance process shall include monitoring, evaluating, and updating the mitigation plan within a five-year cycle. The long-term success of the Eastern Michigan

University Multi-Hazard Mitigation Plan depends first on the success in implementing the plan and, second, in establishing a process to ensure that the plan is monitored, evaluated, and updated on a periodic basis. Responsibility for the overall maintenance of the mitigation plan rests primarily with the EMU Emergency Management Office. The office will review the goals, objectives, and action items listed in the plan on a yearly basis. Campus community feedback will be solicited during the annual review process. A five-year written update of the plan will be submitted to the Michigan Emergency Management & Homeland Security Division and FEMA

Region V, unless disaster or other circumstances (e.g., changing regulations) require a change to this schedule.

Evaluation of progress can be achieved by monitoring changes in vulnerabilities identified in the plan. Changes in vulnerability can be identified by noting:

 Decreased vulnerability as a result of implementing recommended actions

 Increased vulnerability as a result of failed or ineffective mitigation actions

 Increased vulnerability as a result of new development, renovation projects or changes in

the campus community profile.

Updates to this plan will:

 Consider changes in vulnerability due to action implementation,

 Document success stories where mitigation efforts have proven effective,

 Document areas where mitigation actions were not effective,

 Document any new hazards that may arise or were previously overlooked,

144

 Incorporate new data or studies on hazards and risks,

 Incorporate new capabilities or changes in capabilities,

 Incorporate new action recommendations or changes in action prioritization.

To best evaluate any changes in vulnerability as a result of plan implementation, ongoing participation of the Hazard Mitigation Committee (Health & Safety Committee) will be solicited.

Changes will be made to the plan to accommodate for actions that have failed or are not considered feasible after a review of their consistency with established criteria, timeframe, priorities or funding resources.

Continued Public Involvement

Continued public involvement is critical to the successful implementation of the plan.

Eastern Michigan University invited university departments, the City of Ypsilanti and

Washtenaw County to participate in the planning process. At kick-off and review meetings, the broader campus community was invited to the meetings. As the plan is revised and updated, the

EMU Emergency Management Office will hold a public meeting to present the changes and give participants an opportunity to comment and provide input to the process.

Comments from the public on the plan will be received by the Emergency Management

Office and forwarded to the MHMP planning committee for discussion. Education efforts for hazard mitigation will be ongoing. The public will be notified of periodic planning meetings through notices in EMU Today (campus online news and event calendar).

After approval and final adoption of the approved pan, the plan will be made available online. Hard copy for review and comment by the public, other agencies and interested stakeholders, will be made available by request.

145

Section 8: References

Documents Hazard Mitigation Plan for the City of Ypsilanti

Hazard Mitigation Plan for Washtenaw County

Michigan Hazard Mitigation Plan

Eastern Michigan University, Emergency Response Procedures (ERP)

The EMU Comprehensive Emergency Management Plan (CEMP)

The EMU Continuity of Operations Plan (COOP)

EMU Building Emergency Plans (BEP)

The EMU Crisis Communications Plan

EMU Emergency Alert Systems Policy and Procedures

The State of Michigan Hazard Analysis

2000 and 2010 US census data

EMU Statement of Values

Eastern Michigan University's Annual Security Report and Annual Fire Safety Report

Building a Disaster Resistant University (FEMA 443)

Getting Started: Building Support for Mitigation Planning (FEMA386-1)

Understanding Your Risks: Identifying Hazards and Estimating Losses (FEMA 386-2)

Developing the Mitigation Plan: Identifying Mitigation Actions and Implementation Strategies

(FEMA 386-3)

Bringing the Plan to Life: Implementing the Hazard Mitigation Plan (FEMA 386-4)

Using Benefit-Cost Review in Mitigation Planning (FEMA 386-5),

Websites

146 www.emich.edu http://cityofypsilanti.com/Government/Departments/PoliceDepartment http://cityofypsilanti.com/Government/Departments/FireDepartment http://www.fema.gov/news/disasters.fema

2012-2014 FEMA Mitigation and Insurance Strategic Plan http://www.fema.gov/government/mitigation.shtm http://www.emich.edu/maps/ http://www.cityofypsilanti.com/ www.michigan.gov http://www.fema.gov/pdf/hazard/map/declarationsmap2000_07.pdf http://www.fema.gov/plan/prevent/saferoom/tsfs02_torn_activity.shtm

147

Section 9: Appendices

EMU 2011 Risk Assessment Survey

EMU Hazard Mitigation Risk Assessment Results 2011

Department of Public Safety Emergency Management Office 1200 Oakwood, Suite 204 Ypsilanti, Michigan 48197 (734) 487-0799 [email protected]

Prepared by Cat Griebe, GA July 2011

 This survey, supporting activities and the subsequent plan were funded by FEMA and the Michigan Homeland Security and Emergency Management Division through a Hazard Mitigation Grant.

148

Introduction

Eastern Michigan University is subject to a broad range of natural and human- caused hazards that threaten life and health and can cause significant property damage to the campus community. To better understand these hazards and their impacts on the University community, and to identify ways to reduce those impacts, the Emergency Management Office has put forth an integrated approach to addressing hazards and their impacts. The first step was to survey the campus community. The Eastern Michigan University Emergency Management Office conducted an online hazard assessment survey from January 27, 2011 until February 26, 2011. The survey was made available for students, staff and faculty via www.surveymonkey.com an online survey hosting website. The purpose of the survey was to identify relevant threats to the campus community. The information gathered from the responses to this survey supports the development of the Eastern Michigan University Hazard Mitigation Plan.

The survey was sent out to various members of email mailing lists, was posted on EMU Today and word of mouth was used to increase awareness of the surveys existence. In total there were 350 respondents, which included faculty, staff and both undergraduate and graduate students. The survey consisted of 12 multiple choice questions and 1 optional question regarding additional commentary suggesting any improvements the university might be able to make in the area of emergency preparedness and mitigation.

The results of this survey, used in conjunction with previously existing data from the City of Ypsilanti and Washtenaw County Hazard Mitigation Plans and data from past natural and manmade events that have occurred on and around campus, provide the main body of information in developing the hazard identification and threat assessment for Eastern Michigan University. The survey supports the creation of an extensive profile of potential hazards affecting the University based on historical accounts, existing emergency plans, and knowledge of students, faculty, and staff. The various hazards identified through the risk assessment process will then be prioritized based on the likelihood of occurrence, severity of the hazard and cost of damage to the University.

149

Survey Design

The survey consisted of four parts: 1. Demographics o What is your role on campus? o Gender o Where do you work or live on campus?

2. Probabilities o What is the likelihood of certain events happening on campus?

3. Level of Impact o What impact do you believe certain events will have on the universities internal response resources? o What impact do you believe certain events will have on the universities need for external response resources?

4. Preparedness/Suggestions o How prepared is EMU to deal with an emergency situation? o Any suggestions?

Impact Areas For the purpose of this hazard assessment survey, impacts were assessed along three aspects of how the hazard being considered will affect the ability of eastern Michigan University to deliver an appropriate level of service: the human impact, the property impact and the business impact.

The following definitions and ratings were used in conducting the assessment:

 Type of Hazard: A source or a situation with a potential for harm in terms of human injury or ill-health, damage to property, damage to the environment, or a combination of these. Universities that anticipate and understand types of hazards are able to ensure that appropriate resources are in place during a crisis. Four categories encompass the wide range of hazards that pose threats to the campus. Each requires different considerations for preparation, impact, relief, and recovery. The categories are natural disasters, health emergencies, terrorism/random acts of violence, and technical hazards.

 Probability: The likelihood of a specific type of emergency situation happening on campus.

1 2 3 4 5 Will not Unlikely Possible Likely Almost Certain occur

 Human Impact: The impact in terms of loss of life, injuries, and suffering imposed upon individuals or groups within the campus community.

150

 Property Impact: The impact in terms of loss of buildings, class space, research facilities, equipment, infrastructure and other physical assets of the university.

 Business Impact: The impact in terms of interruption or loss of critical business functions based on duration, availability of alternative processes, and impact of not performing the functions. This can be measured against regulatory, legal, financial, operations or customer service requirements.

1 2 3 4 5 None Low Moderate High Critical

An overall impact rating then gives a picture of the effect on the University. Most events will impact both the University and the campus community to varying degrees. For the final Mitigation Plan, a risk rating matrix will utilize the assessment results in the following rating:

Likelihood* Unlikely Possible Likely Almost Certain Catastrophic Moderate High Critical Critical Major Moderate Moderate High Critical Moderate Moderate Moderate Moderate High

Minor Low Moderate Moderate Moderate Impact Severity of of Severity Insignificant None Low Low Moderate * If identified as Will Not Occur, hazard was not rated.

Probability + Human Impact + Property Impact + Business Impact = Overall Impact

Response Capabilities  Internal Response Resources: Those resources and capabilities available within the university’s departments and units to address an emergency event.

 External Response Resources: Those resources and capabilities available from off- campus organizations, or through mutual aid, to address an emergency event.

1 2 3 4 5 None Marginal Adequate Strong Very Strong

151

Demographics 350 members of the Eastern Michigan University campus community completed this survey. Below a breakdown of the respondent’s roles and general makeup can be found.

152

“Other” can include employees who work for non-academic departments as well as faculty members who work either across departments or in a department not listed as an option.

153

A majority of respondents indicated that they commute to EMU. Employees obviously commute, by a variety of means, to work. But, a majority of students also commute to and from campus. This information leads to an assumption that a large portion of the campus community is not on campus for extended periods of time. A majority of classes are offered before 5 p.m. as of the 2010 winter semester, leaving only about 25% of total classes held to be offered after the 5 p.m. timeslot.

154

Likelihood of Event Occurring

Respondents were asked to rate the likelihood of occurrence of 23 potential hazards both natural and manmade. The options ranged from ‘Will Not Occur’ (1) to ‘Almost Certain’ (5).

* IT includes categories such as fiber optic systems, servers, computing capability, communications, and internet. ** Loss of drinking water, wastewater, steam supplies, fuel supplies, financial services, other agency services.

155

The top 5 will likely be the main focus of the mitigation strategies developed however, this is not the only tool used to identify hazards. An example would be areas of campus susceptible to flooding will likely be addressed as well when looking to mitigate common campus hazards. Below is a copy of the findings from the previous survey to demonstrate the change in opinion from the first survey to the current one.

***It is important to note that the current survey did offer more options than the previous so the change in results may partially be due to the new options available. Also take into account

the fact that both surveys were conducted during winter months.

4 of the top 5 remain the same including; severe snow storm, sever winds/wind storm, ice storm and IT systems failure. New to the top 5 is armed suspect on campus.

156

Below is simply the same information from the current survey but broken down by sections of the respondents; student, faculty and staff.

For this portion of respondents the only difference in the top 5 is that ‘Civil Disturbance’ made the top 5, while ‘Armed Suspect on Campus’ is noticeably absent.

157

For this portion the top 5 is a match for the findings from the total respondents.

158

From the staff section (which had the largest number of respondents’ total) the top 5 includes the same findings as the initial chart. The only difference here is that ‘Armed Suspect on Campus’ and ‘Wind Storm’ are in differing places.

It was found that severe snow storm were most likely to occur. This is a logical top response considering that this year alone the University was forced to close one more than one occasion due to severe winter storms.

Ice storms were found to be the 2nd most likely hazard. An ice storm is a type of winter storm which is characterized by precipitation which upon falling to ground level immediately will freeze and blanket the area with ice. It is different than the occurrence of patchy black ice or sleet which is simply a freezing rain.

159

The other weather related hazard dealt with wind storms and came in at number 4. Wind storms can lead to down power lines, tree branches and even damage to campus buildings depending on the severity of the storm. Obviously, this can endanger the wellbeing of building, power availability and of course most importantly the lives of those living and working in the campus community.

Power outages and IT failures occur on a fairly regular basis throughout the county and EMU is not absent from this event which accounts for potential hazard number 3; IT systems failure. This hazard is a reality of living in a technologically dependent age and should be taken seriously as a threat to the campus community.

Completing the top 5 is the potential for an armed suspect on campus, new to the top hazard list from the survey conducted just over a year prior to this survey. Following the devastating campus shootings that have occurred across the country, it is a well-known fact that they can happen anywhere and at any time. To date on college campuses alone (meaning, excluding shootings which have taken place at middle and high schools) there have been over 20 campus shootings in the United States including of course the most deadly in 2007 at Virginia Tech. Respondents want to ensure that the campus is aware of this reality and that the community is as knowledgeable and prepared as possible in the event that EMU is ever exposed to this deadly risk.

Aside from the top hazards of the survey it is important to now that EMU has experienced many of the other hazards on multiple occasions. In recent years the campus has been exposed to an influenza pandemic involving the H1N1 virus in 2009. Living in a dorm environment involves close quarters where germs can easily and rapidly spread from person to person. Even if one does not live on campus, the risk for a disease to rapidly spread is still very real for those who simply work in the environment. Related is the potential for illness related to contaminated food, about 4 years ago EMU Dinning Services did suffer from 2 two food contamination incidents which of course acts as a reminder for the potential disaster that could result if a larger portion of campus were impacted.

Again, despite being in the lower portion of the likelihood results flooding and water damage is a very real threat to the daily operations of EMU. Eastern Michigan is situated at a fairly high level however flooding due to rapid winter thaw or a severe thunderstorm is a tangible threat. In addition to that threat water damage to buildings due to pipes bursting, sprinkler leaks and simple building aging is a reality of a maturing campus. In 2006 a water sprinkler leaked causing damage in due to lines hit during construction and in 2008 a pipe burst leading to a flood in McKinney hall; these two instances demonstrate the reality of the possibility for damage on a larger scale.

The potential for a fire to occur on campus is fairly high as to date there have been multiple occurrences. Sherzer Observatory for example has had multiple large fires including one in 1989 which destroyed over 70% of the building. In November of 2005 there was a fire in King Hall and in December of 2009 there was a fire in Mark Jefferson Hall. Both were extinguished fairly quickly however post-fire one needs to deal with repairs and any smoke damage in the surrounding areas.

160

Despite it being in the bottom tier of the survey, there is also the threat for an air craft crash on or near campus, this could endanger lives as well as the campuses power and response resources. Main campus is located under the flight paths of Willow Run Airport and Detroit Metro Airport. The increased air traffic in the area creates a higher likelihood of an aviation accident occurring on or near campus.

Level of Impact

Respondents were next asked a series of multiple choice questions to determine the level of human, property and business impact they believe each event could have in each situation. The choices were from ‘None’ (1) to ‘Critical’ (5).

161

162

163

While it is important to gauge what the most likely hazards are it is also crucial to have an understanding of the potential impact each situation may have. When looking to address and plan for these events gauging their magnitude will assist in knowing what measures should be taken to minimize the potential damage.

164

Additionally, in order to plan to address these hazards one must have an accurate idea for the level of internal response resources needed in order to address each situation. Also, depending on the extent of the damage or potential damage resulting from an event it should also be understood that some situations may call for outside resources in order to most effectively deal with the repercussions of the event.

165

166

Preparedness

The final multiple choice question that was asked was; ‘How well do you feel that EMU as a whole is prepared and trained to properly respond to an emergency situation?’ The choices ranged from ‘Not Prepared’ (1) to ‘Extremely Prepared’ (5). The answers have been compiled to show the overall findings as well as the findings per respondent roles. Also, there is a copy of the preparedness chart from the previous survey in order to gauge the progress to date.

167

It can be seen from the above charts that the sense the conclusion of the previous survey respondents seem to believe that the University is more prepared to deal with emergent situations at this time. Below is the breakdown chart which reveals the results of the current survey by respondent roles.

Finally, respondents were given the optional choice to respond to an open-ended question. The question was simply, ‘What improvements can be made?’ 78 participants chose to answer this question which is about 22% of the total survey respondents. Answers did vary in detail, however, below a small sampling is shown to get an idea of what people had to say. Overall comments focused on the importance of successful communication, continuing to build on what is already in place. They stated that it is important to ensure that faculty, staff and students alike remain connected and informed as quickly as possible regarding any situations on and immediately around campus. People were also interested in seeing more of a police and SEEUS presence on campus as it increases the level of safety people feel. They also were interested in more AED units and ER phones around campus. Additionally, respondents seemed

168 interested in increasing the training available to the campus community, as well as making the training already available more visible for all to know about.

A few other general comments that appeared to repeat dealt with concern over the reliability of the IT system in place and dealing with a potential on campus shooter. Overall, it should be noted that making sure the campus community is aware of the options currently available would probably assist in much of the concerns stated. There is a certain level of personal responsibility that individuals and individual office need to step up and accept because training options are offered. The amount cannot increase until there is a need to justify the increase; a prime example would be the CERT group which is always looking to accept more members and provides a wide array of training opportunities.

Sampling of the Open Ended Responses

 “Improved safety patrols in public areas, particularly parking lots after dark.”

 “Everyone should know our emergency plan. Most students and faculty probably don't.”

 “Traffic flow is poor even in non-emergency situations. Mass evacuation not possible. Not enough campus police to enforce a lock-down in the event of, say, a shooter.”

 “More visible walking and bicycle patrols, inside buildings and outside. It's comforting to see them.”

 “It would really help if the university maintained buildings properly. We have had several floods, power outages, etc. in Mark Jefferson over the past six years. I sincerely doubt we are alone in this difficulty.”

 “Actually consult and follow advice of public safety/police/fire personnel before building and renovating.”

 “In training for faculty and staff in how to handle emergency situations when students are involved; mock drills, especially in situations where guns are involved, might be a wise move.”

 “Cross training with faculty - same page in case of an emergency instead of everyone doing their own thing or what they think is right.”

 “Better job of letting the campus community know what the campus' plan is for all hazards preparedness and individual responsibilities. Training for individuals and departments. Annual Campus wide table top exercise. Coordination and eventually exercises with local, county, state and federal resources, to fully understand where we stand in the priority list for assistance, and resources...and a realistic plan to address any shortfalls exposed by this information. Better funding and support for the Office of Emergency Preparedness. Fully equipped, mobile command post for DPS. Exercises in the EOC, alternate EOC, and mobile command post, with a full after action report and

169

support to correct deficiencies exposed by the exercises...I do not believe our current EOC is large enough and functional in a real emergency. Do we have an alternate EOC? An assessment of current resources on campus and our ability to function for at least 3-4 days before outside assistance can get to us in a real disaster. More support and resources for the Office of Emergency Preparedness. Again, more support and resources of the Office of Emergency Preparedness. Remember, if it is predictable, it is preventable.” *This answer was cut down a bit for space reasons.

 “Security in all areas i.e., video, foot patrols, building locks, adding card swipes instead of keys, etc. Aging buildings desperately need repairing which means one small area of damage could condemn an entire building. Using the Pray-Harrold relocation as an example of what would happen if more than one building were condemned.”

Conclusion

It is clear that a majority of respondents feel generally safe on the campus of Eastern Michigan University. It seems that preparedness is less of an issue than simply making people aware of how the University is already prepared and what resources are already available to students, faculty and staff. Communicating the plans in place, assigning specific tasks and repetitive training seem to be the focus of improvements that the public wishes to see at this time. The top threats to the campus community according to respondents are as follows; severe snow storm, ice storm, IT systems failure, wind storm and armed suspect on campus. However, it is acknowledged that there are many additional threats outside of the top five and the campus needs to prepare and respond accordingly to all threats to the campus community. EMU has taken many strides to communicate their response plans as well as pertinent timely information to the community; a push for enrollment in the email/text alert system (RAVE) should be made a priority for EMU. Aside from RAVE, the University can continue to utilize print media, social media and of course the Universities website itself to communicate with the campus community.

170

Mass Notification and Emergency Communications

Eastern Michigan University’s emergency communication and alerting capabilities consist of the following systems. A combination of methods may be utilized depending on the nature, duration and severity of the emergency. Key systems are: a) EMU Outdoor Speaker Array This seven (7) speaker array system operates as part of Emergency Alert system, transmitting voice intelligible emergency messages and alert tones to the outdoor campus environment. It is not designed to penetrate buildings, but will be audible above normal street noise. Outdoor Speaker Arrays Coverage

Figure 9-1

171

b) In-Building Speakers - Voice over Fire Alarm (VoFA) Current upgrades in the EMU fire alarm platform allow for the use of voice audio communications in addition to the fire alarm indicators inside of buildings on campus over the existing fire alarm infrastructure backbone. This system is currently available in a limited number of buildings (19). As funding allows, the University may expand the number of buildings with this capability. c) EMU RAVE Text Alerting Rave alert is a broadcast alerting interface that allows the University to quickly send emergency notifications and important announcements via text messages, email or recorded voice messages to register subscribers of the service. d) Eaglemail Eaglemail can be used to broadcast notification and information on situations to all campus community members with an emich.edu email account. e) EMU Website The EMU website can be used to provide information in support of an alert and notification activation. Message can be posted to the official EMU website or the EMU Homepage can be replaced with an emergency website that has already been developed. f) Outdoor LED Displays The outdoor LED displays reach students and visitors with an electronic medium that allows the University to display text and images at key gateways to the EMU campus.

172

Washtenaw County Outdoor Warning Siren System

The Emergency Management Division is responsible for the activation of thirty-nine designated outdoor warning sirens throughout Washtenaw County: Three of the sirens are located on EMU Property. The University has no control of the sirens.

Except for scheduled testing, these sirens will be activated when significant severe weather has been detected (a tornado or a severe thunderstorm with damaging winds confirmed to be in excess of 70 MPH); when a hazardous materials accident occurs that requires immediate protective action by the public or for other critical events such homeland security emergencies.

Washtenaw County Outdoor Warning Siren Coverage as of August 2008

Figure 9-2.

173

Emergency Alert System (EAS) The Emergency Alert System (EAS) is a national warning system, superseding the

Emergency Broadcast System. EAS has become part of IPAWS- the Integrated Public

Alert and Warning System, a program of the Federal Emergency Management Agency

(FEMA). The system is designed to provide rapid, reliable and effective communication to the public in case of major emergencies such as natural disasters and terrorist attacks.

WEMU 89.1 FM is the primary EAS station (LP-1) for Washtenaw County. WEMU will activate the EAS for any emergency identified in the EAS Operational Area Plan, which includes EAS activation requests from authorized local, state and federal officials.

174

Mitigation Meetings

Meetings

175

176

177

178

HEALTH AND SAFETY COMMITTEE MINUTES September 17, 2010

Attendees: Susan Campbell, UAW 1976 & ORD Ellen Bernard - EHS Joanne Hansen- Woman's Commission Arlene Cook - CORR Jason Smith - Emergency Mgmt. Kevin Lawson - Student Center Kathryn Wilhoff - EHS Mark Wesley - Emergency Mgmt.

Absent: Kevin Abbasse, Sonya Alvarado, Nancy Bowman, Michelle Campbell, Diana Good, Caroline Gould, Nick Graham, Norman Harrington, Erica Healander, Chad Humble, Steve Moore, Greg O'Dell, Steve Pernecky, Ray Sowers, Toni Taylor, Eric Ward,

1. Kathryn Wilhoff distributed the activity summary for August/September. Discussion was held.

2. Kathryn Wilhoff reported the staff in Starkweather still has indoor air quality concerns. Additional air monitoring was conducted and the results are expected next week.

3. Kathryn Wilhoff informed the committee about visiting the Parsons Center. It is beautiful and everyone should take the opportunity to see it.

4. Kathryn Wilhoff reported on the continuing lack of hot water at the Northwest Center. She is working with the management company to resolve the issue.

5. Kevin Lawson reported that windows in the Student Center have been cleaned but the contractor will be back out to address some issues.

6. Kevin Lawson stated that he is working with Mark Wesley on the building emergency procedures. Kevin also reported that there was an issue with a computer user not leaving the building when the fire alarm sounded.

7. Kevin Lawson inquired about the removal of the fire extinguisher sign on the first floor directly north of Sabbaros. EHS will follow up.

8. Kevin Lawson inquired about the installation of wall covering in the cooler area following the mold abatement. EHS will follow up to determine if this is a maintenance or new construction project.

9. Mark Wesley reported that Emergency Management is close to having 18 building emergency plans completed.

179

10. Mark Wesley informed the committee that a meeting with Executive Council regarding continuity of operations is scheduled for next week. Jason Smith will be the lead for this project. Mark also stated that the Board of Reagent is requesting this and there is an eighteen (18) month time line for completion, excluding testing and training.

11. Mark Wesley reported that the Emergency Flipcharts have been ordered and are due by October 8, 2010. He also stated that over 8500 Emergency Guide cards have been given out.

12. Mark Wesley stated that the comprehensive plan for the university has been drafted. Mark requested feedback on the plan and would like to enlist the help of the H&S Committee for that.

13. Mark Wesley informed the committee the RAVE system will be tested on Thursday, September 30, 2010, at noon.

14. Mark Wesley reported a grad student has been selected to work on the Mitigation Grant. The targeted completion is June 2011.

15. Jason Smith reported that currently the CERT has 90 members. There are 10 - 12 people registered for the next class beginning October 1 in Halle.

16. Arlene Cook informed the committee that COOR has received notification that they have received the asbestos training grant again.

17. Susan Campbell inquired about the calcification on the repaired wall at the bottom of the stairs in Starkweather, the inability of the basement Custodial Closet door to close and the outdoor ramp needing a railing. EHS will check into these issues.

18. Joanne Hansen reported that there is still the emergency exit sign in Halle in the South Commons that is deceptive and should be removed. EM and EHS will follow up.

19. Joanne Hansen reported that a couple of slabs of the sidewalk on the south side of Halle are sinking below the curb and one is cracked causing a trip hazard. Grounds was contacted and it is believed the cause is that the construction trucks are driving over this area of sidewalk. EHS will contact Grounds for additional follow-up.

20. Kathryn Wilhoff reported that an AED program has been drafted which will standardize the AED type, identify AED locations and coordinate AED maintenance. The program still needs budget approval. Dr Keller will be the Advisory Committee Chair and EHS will maintain the program.

The next meeting is Friday October 15, 2010 at 9 a.m. in room 104 Student Center

180

HEALTH AND SAFETY COMMITTEE MINUTES October 15, 2010

Attendees: Ellen Bernard - EHS Susan Campbell, UAW 1976 & ORD Arlene Cook - CORR Joanne Hansen- Women's Commission Christine Kropelnyckyj - Emer. Mgmt. Kevin Lawson - Student Center Mark Monarch - Physical Plant Steve Pernecky - AAUP Mark Wesley - Emergency Mgmt. Kathryn Wilhoff - EHS

Absent: Kevin Abbasse, Sonya Alvarado, Nancy Bowman, Michelle Campbell, Diana Good, Caroline Gould, Nick Graham, Norman Harrington, Erica Healander, Chad Humble, Steve Moore, Greg O'Dell, Jason Smith, Ray Sowers, Toni Taylor, Eric Ward,

1. Kathryn Wilhoff distributed the activity summary for September/October. Discussion was held.

2. Kathryn Wilhoff informed the committee about the two cases of Whooping Cough. Kathryn and Dr. Keller are conducting site visits to the classes with affected students and faculty to provide information and answer questions on the disease.

3. Kathryn Wilhoff reported on the continuing lack of hot water at the Northwest Center. She is working with the management company to resolve the issue.

4. Kathryn Wilhoff reported on the additional asbestos abatement needed in Pray-Harrold.

5. Kathryn Wilhoff stated that the chemical move at Mark Jefferson is planned in December. After everything is moved renovation to the basement, 1st and 2nd floors will start. Kathryn commented that this is very involved and complicated move. Some areas will have to move several times before the project is complete.

6. Arlene Cook inquired about the crossing at College Place. Students are just walking out into the street because they think of it as a crosswalk. Mark Monarch stated that this is a City street and that he will discuss the issue with Scott Storrar. It was suggested that markings and crosswalk signage should be installed.

7. Joanne Hansen reported the need for additional bike racks due to increased usage. Bikes are being chained to any immovable object. Mark Monarch said that he will discuss this issue with Dieter Otto and Steve Moore.

H&S Committee Minutes - 10/10 Page 1 of 3

181

8. Mark Wesley reported Emergency Management (EM) has hired grad student, Catherine Griebe, for the mitigation grant. Catherine will be reaching out to the campus to develop strategies regarding flooding, among other things. Once these plans are approved this will open up other opportunities for funding. Mark anticipates it will take a year to complete the work. Mark also discussed having the Health & Safety Committee as a mitigation grant advisory committee.

9. Mark Wesley informed the committee that EM is working with the Autism Center regarding their emergency plan. They are currently looking at the Village Commons as an evacuation site but there will need to be transportation assistance. This plan will have to be revisited once the Children's Institute moves into the Fletcher Building.

10. Mark Wesley reported that the Emergency Flipcharts are due in any day. EM is looking at ways to distribute them. In addition, 1500 of the old flipcharts have been found and these may be distributed in the residence halls and class rooms. Mark also stated there is no conflict between the old and new charts.

11. Mark Wesley stated that the comprehensive plan for the university has been drafted. Mark also stated he would like to conduct a mass casualty exercise in May 2011. This will take a lot of coordination and training. The support of the divisions and departments will need to be obtained. This is part of the EHME grant requirement that needs to be completed.

12. Mark Wesley informed the committee that grant activities are going well and that approval by the Department of Education has been received regarding modifications to the grant. Instead of conducting drills in 57 buildings emergency plans will be developed for 30 buildings.

13. Mark Wesley reported a drill with the IT department was conducted on October 1, 2010. Issues identified during the drill are being addressed.

14. Susan Campbell inquired about the air monitoring in Starkweather. Kathryn Wilhoff reported additional air monitoring for mold was conducted and the results are expected next week. Testing for temperature, humidity, carbon dioxide and carbon monoxide have been running for a week and results will be available on Monday. VOC testing resulted in nothing unusual. EHS is trying to arrange to have all of the pipes in the crawl insulated and the dirt covered with visqueen.

15. Susan Campbell inquired about the calcification on the repaired wall at the bottom of the stairs in Starkweather. Kathryn Wilhoff reported that the wall was being cleaned today and EHS is trying to get a dehumidifier for the area.

H&S Committee Minutes - 10/10 Page 2 of 3

182

16. Mark Monarch reported that the Pray-Harrold project is on schedule. Mark stated that the west mechanical room is empty and the hallway on the 2nd floor is all open. The penthouse is in the process of being emptied.

17. Mark Monarch stated that Mark Jefferson is getting ready for the next phase of renovation. Mark informed the committee that the contractors from the previous phase will not be working on the next phase. This will result in additional training for these new contractors.

18. Mark Monarch informed the committee that installation of the new kiln at the Sculpture Studio is underway.

19. Joanne Hansen reported that the "No Smoking" signs have not been replaced since the completion of the construction at the front entrance to Halle. Due to the examination to the smoking policy it might be prudent to hold off on ordering new signage. Kevin Lawson stated that he would look to see if he has any leftover signs that were used at the Student Center. Mark Monarch will contact Travis Temeyer regarding the sign replacement.

The next meeting is Friday November 19, 2010 at 9 a.m. in room 104 Student Center

183

HEALTH AND SAFETY COMMITTEE MINUTES April 15, 2011

Attendees: Ellen Bernard - EHS Susan Campbell, UAW 1976 & ORD Arlene Cook - CORR Joanne Hanson - Women's Commission Christine Kropelnyckyj - Emer. Mgmt. Kevin Lawson - Student Center Steve Moore - Physical Plant Steve Pernecky - AAUP Mark Wesley - Emer. Mgmt. Kathryn Wilhoff - EHS

Absent: Kevin Abbasse, Sonya Alvarado, Michelle Campbell, Diana Good, Caroline Gould, Norman Harrington, Erica Healander, Chad Humble, Mark Monarch, Greg O'Dell, Jason Smith, Ray Sowers, Toni Taylor, Mike Turner, Eric Ward.

1. Kathryn Wilhoff distributed the activity summary for March/April. Discussion was held.

2. Kevin Lawson inquired about the status of the AED program. Kathryn Wilhoff reported that the program/policy and budget proposal has been prepared and submitted to John Lumm. The policy addresses standardization of equipment. There is a need to address the Life Packs at DPS due to their age. Kathryn Wilhoff also reported that DPS officers saved a life in March using an AED.

3. Arlene Cook asked about the broken fluorescent bulbs. Kathryn Wilhoff stated that one had been broken in an office and the employees were concerned. EHS will create a clean-up procedure.

4. Kevin Lawson requested information regarding Bake Sales. Kathryn Wilhoff reported that a draft procedure and form identifying various requirements had been supplied to Larry Gates for review. Upon completion EHS will supply the information to the student organizations and building administrators, and place a notice in EMU Today. The Bake Sale procedure can be found at the EHS website: http://www.emich.edu/publicsafety/healthand safety/ under Written Plans.

5. Kevin Lawson inquired about the ladder marking in DC1. Kathryn Willhoff stated EHS had placed markings on the floor and a wall sign under the ladder to the penthouse in DC1 to prevent equipment from being stored there. This was due to an employee's fall. Steve Moore will provide the location of other wall ladders in need of marking to EHS.

H&S Committee Minutes - 4/11 Page 1 of 2 184

6. Christine Kropelnyckyj reported Emergency Management received information regarding the handling of threats to and security of students working with animals. Christine Kropelnyckyj will send Susan Campbell an electronic copy of a paper for her to forward to the Animal Care Committee.

7. Mark Wesley asked the Health and Safety Committee members if they would review and provide feedback on the mitigation plans that EM has researched and prepared. EM would like comments regarding the goals and priorities of these plans.

8. Steve Moore reported that a small bottle bomb had gone off on campus during the previous weekend, and a custodian was asked to clean it up. Mark Wesley will investigate this and work with DPS regarding procedures.

9. Steve Moore stated that the Mark Jefferson and Pray-Harrold projects are on schedule. Updates to the electrical systems on campus will result in some digging and various building power outages. Sherzer will be closed this summer for the installation of a new HVAC system. Bowen Lot will be closed for reconfiguration, resurfacing and installation of new storm drains. M-DOT will be improving the intersection of Oakwood & Washtenaw for 6 weeks to 2 months this summer.

10. Arlene Cook reported that the Asbestos and Lead Awareness make-up trainings will take place on 4/28 and 5/4, and Hazwoper training for all campus police officers and EM on 4/21.

11. Arlene Cook inquired about a sexual assault at EMU that was reported on the news and no warning was issued. This concern was referred to DPS. DPS responded in this case, the suspect was arrested and lodged in jail. If there is no on-going threat to the University community, such as when an arrest is made, no alert will be issued.

12. Susan Campbell inquired about the lack of being able to enter work request in Mr. Greenwrench for grounds issues. Steve Moore confirmed the situation and stated that the entire system is being examined. Steve will check further into it.

The next meeting is Friday May 20, 2011 at 9 a.m. in room 104 Student Center

185

H&S Committee Minutes - 4/11 Page 2 of 2

186

187

188

189

190

191 Washtenaw County EM Partners Meeting Ann Arbor EM Office March 26, 2012

Purpose: Each organization was asked to bring their Hazard Vulnerability Assessment for review and discussion. The intent was to validate hazard rankings for the organizations in Washtenaw County. All were in general alignment of hazard rankings.

192

Eastern Michigan University Multi-Hazard Mitigation Plan Review- Campus Community Presentation June 14, 2012 10:00 am Rm. 104 EMU Student Center

Agenda

1. Welcome & Introductions

2. Overview of Mitigation Planning Process

3. Presentation of Final Draft Plan

4. Goals/ Objectives/ Mitigation Actions

5. Questions & Participant Feedback

Attachment: Mitigation Action Worksheet Example

193 EMU Mitigation Action Worksheet

Mitigation Action

Division/ Unit Name:

Action Item (Describe):

Category:

Hazard(s):

Lead Division/Department Responsible:

Estimated Cost:

Funding Method:

Implementation Schedule:

Priority:

194 Instructions for Completing the Mitigation Action Worksheet

a. Division/Department/Unit Name: Be sure to identify your Division/Departmment/Unit name. b. Action Item: Identify a specific action that, if accomplished, will reduce vulnerability and risk in the impact area. Actions may be in the form of university policies, programs or structural mitigation projects and should be consistent with any pre-identified mitigation goals and objectives. c. Category: Indicate the most appropriate category for the proposed action (Prevention; Property Protection; Natural Resource Protection; Structural Projects; Emergency Services; or Public Education and Awareness). d. Hazard(s): List the hazard(s) the proposed action is designed to mitigate. e. Lead Division/Department/Unit Responsible: Identify the division, department or unit that is best suited to implement the proposed action. f. Estimated Cost: If applicable, indicate what the total cost will be to accomplish this action. This amount will, of course, have to be an estimate until actual final dollar amounts can be determined. Some actions may only cost “staff time” and should be noted so. g. Funding Method: If applicable, indicate how the cost to complete the action will be funded. For example, funds may be provided from existing operating budgets or general funds, a previously established contingency fund, a cost-sharing federal or state grant program, etc. h. Implementation Schedule: Indicate when the action will begin and when the action is expected to be completed. Remember that some actions will require only a minimum amount of time, while others may require a long-term or continuous effort. i. Priority: Indicate whether the action is a “high” priority, “moderate” priority or “low” priority. Prioritization should be based on the following STAPLEE (previous attachment) 1. Effect on overall risk to life and property. 2. Ease of implementation. 3. Project costs vs. benefits 4. Political and community support. 5. Funding availability.

195 Campus Community Notice of Mitigation Plan Presentation

196 197

198

199

200

201 EASTERN MICHIGAN UNIVERSITY HAZARD MITIGATION PLAN EXECUTIVE SUMMARY

Hazard Mitigation Grant Program FEMA Hazard Mitigation Grant Program (HMGP-1777.DR). Funded through the Federal Emergency Management Agency (FEMA) and the Emergency Management & Homeland Security Division of the Michigan State Police (EMHSD).

Project #: 1777.10 Grant #: FEMA-DR-1527-MI- Project 1771.1P Mitigation Plan for Eastern Michigan University Sub grantee: Eastern Michigan University Grant Award Date: March 10, 2010 Project Completion Date: June 30, 2012 Original Grant Award: $44,167  $29,997 Federal  $14,170 EMU (Provided as in-kind soft match) Amount Expended on Project: $38,385.54 (project completed under budget)

Development Team and Authors Mark Wesley, EMU Emergency Management Director Catherine Griebe, Graduate Assistant, EMU Public Administration Program Robert Morford, Student Employee, EMU Emergency Management Office

Hazard Mitigation Advisory Committee for Project (2010-2012) Kevin Abbasse, EMU Physical Plant Cat Griebe, Mitigation GA Sonya Alvarado, EMU Federation of Joanne Hansen, Women's Commission Teachers Erica Healander, Risk Management Ellen Bernard, EMU Environmental Robert Heighes, EMU Department of Health and Safety Public Safety Marc Breckenridge, Washtenaw County Barbara Hopkins, Center for Emergency Management Organization Risk Reduction Elizabeth Bucciarelli, American Jon Ichesco, Chief, Ypsilanti Fire Association of University Professors Department Susan Campbell, PT Union/Office of Ken Kelly, Washtenaw County Research & Development Emergency Management Akosua Dow, Provost’s Office & Thomas Kovacs, American Association Academic Affairs of University Professors John Foley, Huron River Watershed Kevin Lawson, EMU Student Center Nick Graham, AFSCME/Physical Plant Mark Monarch, EMU Physical Plant Steve Moore, EMU Physical Plant Mark Wesley, EMU Emergency Steve Pernicky, American Association of Management University Professors Kathryn Wilhoff, Environmental Health Bilal Sarsour, EMU Physical Plant and Safety Toni Taylor, Clerical Union/Academic Gregg Wilmes, American Association of Advising University Professors Eric Ward, University Health Services

202

Hazard Mitigation Overview Hazard mitigation is defined by FEMA as “any sustained action taken to reduce or eliminate long-term risk to human life and property from a hazard event.” The results of a three-year, congressionally mandated independent study to assess future savings from mitigation activities provides evidence that mitigation activities are highly cost-effective. On average, each dollar spent on mitigation saves society an average of $4 in avoided future losses in addition to saving lives and preventing injuries (National Institute of Building Science Multi-Hazard Mitigation Council 2005).

The Eastern Michigan University Multi-Hazard Mitigation Plan was created to work towards developing a proactive campus community. The goal of the plan is to identify risks to the campus community and to educate university officials of the risks and possible actions to minimize associated damages from both natural and manmade hazards.

It was prepared with input from various university departments and administrators as well as from the City of Ypsilanti and Washtenaw County emergency programs. The plan was developed with the support of the State of Michigan Emergency Management & Homeland Security Division (EMHSD) and the Federal Emergency Management Agency (FEMA).

The Eastern Michigan University Multi-Hazard Mitigation Plan has been created in accordance with current federal rules and regulations governing local hazard mitigation planning. The plan was prepared pursuant to the requirements of the Disaster Mitigation Act of 2000 (Public Law 106-390) and the implementing regulations set forth by the Interim Final Rule published in the Federal Register on February 26, 2002, (44 CFR §201.6) and finalized on October 31, 2007.

As of 2005, universities must compete with states, Indian Tribal governments and local governments to attain funding. An approved plan is required to receive post-disaster mitigation funds under the Hazard Mitigation Grant Program, information can be found in 44 CFR, Part 201 of the Code of Federal Regulations (Revised November 2006). The Eastern Michigan multi-hazard mitigation plan is designed to meet the requirements laid out by FEMA. As a result the university will successfully be eligible to obtain mitigation funding before and after disasters strike the EMU campus community.

Plan Overview The plan is divided into 9 sections including appendices, figures and tables. Below is a summation of the sections.

Section 1: Introduction The introduction provides a brief history on not only hazard mitigation planning but also on the Disaster Resistant University initiative as laid out by FEMA. It connects the generalized information on mitigation planning with the specifics of Eastern Michigan University and the risks associated with the campus environment.

Section 2: Community Profile Within the Community Profile, the location and demographic information specific to Eastern Michigan University can be found. In addition, an overview of the community surrounding the university is provided.

203

Section 3: University Profile This section provides a brief history and a current description of the University and information regarding the university’s impact on the region.

Section 4: Planning Process The planning process section details the specific steps taken by the University to create the plan. It details the process used to identify and rank the hazards to the campus community.

Section 5: Hazard Identification, Risk Analysis and Vulnerability Assessment Details of the potential natural and manmade hazards to the community are found within this section. A risk assessment was conducted that accounted for both the probability and potential impact level of identified hazards. From this data, the potential risks were ranked and categorized, the highest of which are addressed within the multi-hazard mitigation plan.

Section 6: Mitigation Strategy The mitigation strategy identifies Eastern Michigan’s mitigation goals in response to the highest potential risks to the campus. It identifies objectives that the university can pursue to reduce potential losses.

Section 7: Implementation and Plan Preservation This section details how Eastern Michigan will follow through on keeping an up to date plan and suggested mitigation actions.

Section 8: References This section identifies the sources that contributed to the compilation of the plan.

Section 9: Appendices This section contains additional information useful to the plan.

Planning Process Eastern Michigan University modeled its planning process on the Building a Disaster-Resistant University guide published in August 2003 by the Federal Emergency Management Agency. The process included:  Convening a Hazard Mitigation Advisory Committee comprised of the pre-existing University Health & Safety Committee and off-campus emergency management officials.  Gathering and analyzing information on past and potential future impacts of hazards on Eastern Michigan University.  Developing a capability assessment to determine the existing capabilities of Eastern Michigan University in administering a hazard mitigation program.  Creating goals and mitigation strategies to address the risks and vulnerabilities identified in the planning process.  Convening public forums to gather input from a broad group of stakeholders.

Hazard Identification and Risk Assessment The purpose of the Hazard Identification and Risk Assessment (HIRA) is to:  Identify and rank the hazards that could affect the EMU campus area.  Profile hazard events and determine what buildings and other assets are the most vulnerable to damage from these hazards  Estimate losses and quantify potential risks to Eastern Michigan University.

204 Analysis of some hazards lent itself to quantitative methods while other hazards were analyzed using qualitative methods. The following table demonstrates the priority of the identified hazards and the type of analysis used in this plan.

Population Property Business Response Total Rank Hazard Probability Impact Value Impact Value Impact Value Capability Risk (Weighted 3) (Weighted 2) (Weighted 1) Value (/) Rating Severe Snow Storm 4.58 2.95 2.98 3.47 9.88 8.47 Ice Storm 4.23 2.94 3.19 3.45 9.96 7.92 Tornado/Microburst 3.52 3.31 4.06 3.68 10.47 7.30

Wind Storm 3.73 2.78 3.34 3.19 9.67 7.02

IT Systems Failure* 3.98 2.68 2.47 3.85 9.9 6.76 HIGH Fire-Structural 3.31 3.62 4.25 3.91 11.47 6.71 Armed Suspect on 3.68 3.94 2.2 3.61 11.51 6.34 Campus Civil Disturbance 3.39 3.28 2.71 3.34 10.61 5.94 Influenza 3.27 3.72 1.9 3.47 10.27 5.86 Outbreak/Pandemic Food Contamination 3.23 3.55 1.94 3.1 9.75 5.84 Electric Infrastructure 3.19 2.89 3.08 3.83 10.28 5.79

Failure

Infrastructure Failure (non IT or 3.25 2.72 2.84 3.67 9.93 5.73

electric)** MEDIUM Bomb Threat 3.12 3.65 3.1 3.58 11.29 5.72 Public Health 3.11 3.56 2.09 3.47 10.31 5.53 Emergency Chemical Hazard 2.9 3.53 3.12 3.6 10.97 5.40 Incident Active Shooter 2.83 4.51 2.38 3.92 11.9 5.28 Improvised Explosive Device 2.5 3.86 3.92 3.92 11.14 5.24 Detonation Biological Hazard 2.75 3.74 2.96 3.7 11.11 5.16 Incident

Hostage Situation 2.69 4.01 2.24 3.65 11.6 4.68

LOW Flood/Riverine 2.31 2.76 3.45 3.32 9.94 4.30 Urban Runoff Radiological Hazard 2.26 3.44 3.02 3.64 10.6 4.26 Incident Aircraft Crash on 1.99 3.92 4.13 3.99 11.63 4.11 Campus Earthquake 1.85 3 3.91 3.59 10.83 3.50

205 Mitigation Strategies

EMU’s mitigation goals were derived from descriptions of potential damage from hazards in the hazard profile section, discussions with University Physical Plant personnel, members of the Health & Safety Committee/Mitigation Advisory Committee and City and County emergency management representatives.

The mitigation goals provide an outline for Eastern Michigan University to follow to become less vulnerable to identified hazards. EMU’s mitigation goals are broad statements, but are achieved through more specific objectives and implementation steps. They are based upon the results of the risk assessment and a review of goals and objectives from other state and local plans, specifically, the Michigan Multi-Hazard Mitigation Plan, the Washtenaw County Mitigation Plan and the City of Ypsilanti Mitigation Plan. The goals are listed, but not prioritized, below:

Goal 1: Create a safe and secure environment for students, faculty, staff and visitors.  Objective 1-1: Implement mitigation actions that will assist in protecting lives and property by making buildings, infrastructure, critical facilities and individuals more resistant to hazards.  Objective 1-2: Better characterize hazard events by conducting additional hazard studies.  Objective 1-3: Review existing university policies, plans and procedures, safety inspection procedures, and other processes to help ensure that they address the most recent and generally accepted standards for the protection of buildings and environmental resources.  Objective 1-4: Implement mitigation actions that encourage environmental stewardship and protection of the environment.  Objective 1-5: Implement mitigation programs that protect critical university facilities and services and promote reliability of lifeline systems to minimize impacts from hazards, maintain operations, and expedite recovery in an emergency.

Goal 2: Enhance emergency communications systems to provide the campus community with appropriate protective action and mitigation information.  Objective 2-1: Harden communications capabilities to ensure post event functionality.  Objective 2-2: Enhance alert and notification procedures/system to improve notice to the campus community and off-campus partners.  Objective 2-3: Establish and maintain good working relationships with off-campus departments and agencies in identifying warning sources and coordinating emergency notifications.

Goal 3: Strengthen University continuity of operations through integration with emergency response plans and procedures, including the mitigation plan.  Objective 3-1: Encourage the establishment of policies to help ensure the prioritization and implementation of mitigation actions and/or projects designed to benefit essential facilities, services, and infrastructure.  Objective 3-2: Where appropriate, coordinate and integrate hazard mitigation actions with existing University and local emergency operations plans.  Objective 3-3: Implement mitigation actions that enhance the technological capabilities of the University to better profile and assess exposure of hazards.

Goal 4: Be proactive in identifying mitigation opportunities into capital improvement and infrastructure planning projects and other campus functions and programs. 206  Objective 4-1: Identify and pursue funding opportunities to develop and implement mitigation activities.  Objective 4-2: Strengthen communication, coordination, and community partnerships to foster hazard mitigation actions and/or projects.  Objective 4-3: Identify the need for, and acquire, any special emergency services, training, or equipment to enhance response capabilities for specific hazards.

Goal 5: Enhance emergency preparedness, increase awareness, and promote risk reduction activities through education of and outreach to the campus community.  Objective 5-1: Develop and implement additional education and outreach programs to increase campus community awareness of the risks associated with hazards and to educate the public on specific, individual preparedness activities.  Objective 5-2: Provide information on tools, partnership opportunities, funding resources, and current initiatives to assist in implementing mitigation activities.  Objective 5-3: Provide comprehensive information to the campus community, local emergency service providers, the media and the public during and following disaster and hazard events.

Recommended Mitigation Actions  Provide outreach and awareness campaigns to the campus community to promote mitigation and preparedness efforts.

 Expand Mass Notification capabilities to high use/critical facilities such as the Student Center, Convocation Center, McKenny Union and Fletcher School.

 Identify structural fire suppression measures in residence halls.

 Identify critical facilities/infrastructure needing backup power sources and means to provide backup power.

 Expand hazard identification and risk assessment and mitigation planning to Fish Lake and Parsons Center.

 Identify opportunity for the creation of a dual-use storm shelter for the athletic (West) campus.

 Identify opportunity for installation on an automated lightning detection system for the athletic (west) campus, main campus mall and Eagle Crest.

 Identify storm water projects such as rain gardens and detention areas to help reduce and control runoff and to promote protection of the Huron River Watershed

 Review and revise the Multi-Hazard Mitigation Plan to reflect changes in development, progress in mitigation efforts, and changes in priorities on an annual basis. Resubmit to state and FEMA every 5 years.

207

FW: Eastern Michigan University Plan

From : Mitchel A. Graham (MSP) Mon, Jan 07, 2013 09:12 AM Subject : FW: Eastern Michigan University Plan 1 attachment

To : Mark Wesley ([email protected])

Hi Mark,

Here is the copy of the favorable FEMA plan review of the Eastern Michigan University HMP. Tom Smith was deployed in New York because of Hurricane Sandy for over a month, which explains why there was a long delay in the plan review.

Mitch Graham Hazard Mitigation Planner MSP/EMHSD517-333-5022

From: Smith, Thomas [mailto:[email protected]] Sent: Friday, January 04, 2013 6:17 PM To: Graham, Mitchel A. (MSP) Cc: Sobocinski, Mike A. (MSP) Subject: Eastern Michigan University Plan

Mitch and Mike:

Attached is the plan review for Eastern Michigan University’s hazard mitigation plan. I apologize for the delay. Due to Hurricane Sandy, I was deployed to New York for over a month.

The EMU plan looks good. I think you folks should ask all the state universities to inventory the buildings on their campuses. The EMU inventory describes the building size, age, history of any major renovations, it’s estimated value, and the value of the building’s content.

I will prepare the “meets requirement” letter for our division director’s signature. After you get the “meets requirement” letter, then the university can move forward with the plan adoption. I will e-mail the meets requirement letter.

Tom Smith Community Planner Mitigation Division

FEMA, Region V

208

FEMA MITIGATION PLAN REVIEW WORKSHEET

Jurisdiction: Title of Plan: Date of Plan:

Eastern Michigan University EMU Multi-Hazard Mitigation Summer, 2012

Plan

Local Point of Contact: Address:

Mark Wesley 204c Public Safety Building

Title: Eastern Michigan University

Emergency Management Director Ypsilanti, MI 48197

Agency:

Eastern Michigan University

Phone Number: E-Mail:

734-487-0799 [email protected]

State Reviewer: Title: Date:

Mitch Graham Local Hazard Mitigation 10-15-2012

Planner

209 FEMA Reviewer: Title: Date:

Tom Smith Community Planner

1/3/2013

Date Received in FEMA Region (insert 10/25/2012

#)

Plan Not Approved

Plan Approvable Pending Adoption XX

Plan Approved

1. REGULATION CHECKLIST Location in Plan Met Not Regulation (44 CFR 201.6 Local Mitigation Plans) Met (section and/or ELEMENT A. PLANNING PROCESS

page number) A1. Does the Plan document the planning process, including how it was prepared Section 4, Planning and who was involved in the process for each jurisdiction? (Requirement §201.6(c)(1)) Process, pp. 42-50 and X Section 9, Appendices,

pp.172-197

A2. Does the Plan document an opportunity for neighboring communities, local and Section 4, Hazard regional agencies involved in hazard mitigation activities, agencies that have the authority to regulate development as well as other interests to be involved in the Mitigation Planning and planning process? (Requirement §201.6(b)(2)) X Advisory Committee

Information, pp. 49-50.

210 1. REGULATION CHECKLIST Location in Plan Met Not Regulation (44 CFR 201.6 Local Mitigation Plans) Met (section and/or A3. Does the Plan document how the public was involved in the planning process Section 5, Initial Hazard during the drafting stage? (Requirement §201.6(b)(1)) Identification,page number) pp.51- 52. X Survey of student faculty,

and staff.

A4. Does the Plan describe the review and incorporation of existing plans, studies, Section 4, Supporting reports, and technical information? (Requirement §201.6(b)(3)) Plans and Procedures,

pp. 44-47; Section 8,

References, pp. 147-148 X and see Table, 5-1, page

53. Table compares

University’s plan to state,

county, and city plans.

A5. Is there discussion of how the community (ies) will continue public participation Section 7, Continued in the plan maintenance process? (Requirement §201.6(c)(4)(iii)) Public Involvement, X

page 146.

A6. Is there a description of the method and schedule for keeping the plan current Section 7, Monitoring,

(monitoring, evaluating and updating the mitigation plan within a 5-year cycle)? Reviewing, and

(Requirement §201.6(c)(4)(i)) Amending, pp. 144-146.

Annual plan review and X documentation of

successes, failures and

areas needing

improvement.

211 1. REGULATION CHECKLIST Location in Plan Met Not Regulation (44 CFR 201.6 Local Mitigation Plans) Met ELEMENT A: REQUIRED REVISIONS (section and/or

page number)

ELEMENT B. HAZARD IDENTIFICATION AND RISK ASSESSMENT

B1. Does the Plan include a description of the type, location, and extent of all Section 5, Natural natural hazards that can affect each jurisdiction(s)? (Requirement §201.6(c)(2)(i)) Hazards, pp. 63-83: X severe snow, ice storms,

tornadoes, wind storms,

flooding, and

earthquakes.

B2. Does the Plan include information on previous occurrences of hazard events Section 5, snow storms, and on the probability of future hazard events for each jurisdiction? (Requirement §201.6(c)(2)(i)) page 63; flooding, pp. 73- X 74; earthquake, page 78;

B3. Is there a description of each identified hazard’s impact on the community as Mostly anecdotal well as an overall summary of the community’s vulnerability for each jurisdiction? (Requirement §201.6(c)(2)(ii)) information—NCDC loss X data related to ice storms;

university closings

related to snow storms:

and damage to

surrounding communities

from flooding.

212 1. REGULATION CHECKLIST Location in Plan Met Not Regulation (44 CFR 201.6 Local Mitigation Plans) Met (section and/or B4. Does the Plan address NFIP insured structures within the jurisdiction that have Section 5, been repetitively damaged by floods? (Requirement §201.6(c)(2)(ii)) Flood/Riverinepage number) and X Urban Runoff, page 75.

No repetitive loss

properties on the campus.

ELEMENT B: REQUIRED REVISIONS

ELEMENT C. MITIGATION STRATEGY

C1. Does the plan document each jurisdiction’s existing authorities, policies, Section 2, University programs and resources and its ability to expand on and improve these existing policies and programs? (Requirement §201.6(c)(3)) Development and Local X Zoning Ordinances,

page 28 and Section 2,

Police, Fire and

Emergency Facilities,

pp. 34-36.

C2. Does the Plan address each jurisdiction’s participation in the NFIP and Section 5, continued compliance with NFIP requirements, as appropriate? (Requirement §201.6(c)(3)(ii)) Flood/Riverine and X Urban Runoff, page 77.

The University does not

participate in the NFIP

but both the City of

Ypsilanti and Ypsilanti

Charter Township do.

213 1. REGULATION CHECKLIST Location in Plan Met Not Regulation (44 CFR 201.6 Local Mitigation Plans) Met (section and/or C3. Does the Plan include goals to reduce/avoid long-term vulnerabilities to the Section 6, EMU’s identified hazards? (Requirement §201.6(c)(3)(i)) Mitigationpage Goals number), pp. X 123-134.

C4. Does the Plan identify and analyze a comprehensive range of specific mitigation Table 6-2, pp. 137-138. actions and projects for each jurisdiction being considered to reduce the effects of hazards, with emphasis on new and existing buildings and infrastructure? (Requirement §201.6(c)(3)(ii)) X

C5. Does the Plan contain an action plan that describes how the actions identified Section 6, will be prioritized (including cost benefit review), implemented, and administered by each jurisdiction? (Requirement §201.6(c)(3)(iv)); (Requirement §201.6(c)(3)(iii)) Recommendation and X Prioritization of

Mitigation Actions, pp.

134-135; and Section 6,

Benefit-Cost Analysis,

pp. 139-140; and

C6. Does the Plan describe a process by which local governments will integrate the Plan describes how requirements of the mitigation plan into other planning mechanisms, such as mitigation actions will be X comprehensive or capital improvement plans, when appropriate? (Requirement integrated in to the

§201.6(c)(4)(ii)) operations, planning, and

budgeting of university

departments or agencies.

ELEMENT C: REQUIRED REVISIONS

ELEMENT D. PLAN REVIEW, EVALUATION, AND IMPLEMENTATION (applicable to plan updates only)

D1. Was the plan revised to reflect changes in development? (Requirement Not Applicable. §201.6(d)(3))

D2. Was the plan revised to reflect progress in local mitigation efforts? Not Applicable. (Requirement §201.6(d)(3))

214 1. REGULATION CHECKLIST Location in Plan Met Not Regulation (44 CFR 201.6 Local Mitigation Plans) Met (section and/or D3. Was the plan revised to reflect changes in priorities? (Requirement Not Applicable. §201.6(d)(3)) page number) ELEMENT D: REQUIRED REVISIONS

ELEMENT E. PLAN ADOPTION

E1. Does the Plan include documentation that the plan has been formally adopted Pending by the governing body of the jurisdiction requesting approval? (Requirement §201.6(c)(5)) E2. For multi-jurisdictional plans, has each jurisdiction requesting approval of the Not Applicable. plan documented formal plan adoption? (Requirement §201.6(c)(5))

ELEMENT E: REQUIRED REVISIONS

ELEMENT F. ADDITIONAL STATE REQUIREMENTS (OPTIONAL FOR STATE REVIEWERS

ONLY; NOT TO BE COMPLETED BY FEMA)

F1.

F2.

ELEMENT F: REQUIRED REVISIONS

215

Plan Strengths A. Excellent Inventory of University Facilities and Assets. 1. The plan includes an inventory of university facilities including a description of the size of the building (i.e. number of stories and square footage); date of a building’s construction; history of major renovations; and estimated replacement value. The plan highlights the length of time since the building’s last major renovation. 2. The inventory includes an estimated value of the contents of each building. 3. The inventory include estimates of the value of other assets including parking structures, library holdings, radio towers, electrical substations and other assets.

B. Thoughtful Hazard Priority Rating System 1. The plan describes the factors consider used to identify hazard priorities. The rating system includes consideration of probability, impacts (i.e. impacts on lives, property and business operations), and the university’s ability to respond and recover from events.

C. Realistic Mitigation Strategies 1. The plan includes a modest list of mitigation strategies (Table 6-2) but most of the proposed actions appear realistic and valuable. The priorities include: a. Expanding the university’s mass notification system. b. Upgrading fire suppression systems in residence halls. c. Identifying critical facilities that need back-up power sources. d. Development of athletic and recreation facilities that can serve as a “dual-use” facility including serving as a storm shelter in the event of major summer or winter storms. e. Development of new rain gardens, stormwater detention facilities and other greening systems that can help control run-off and flooding. f. Automated lightning systems for portions of campus with safety concerns.

216