1.3.2 Weak Topological Insulators (WTI)

Total Page:16

File Type:pdf, Size:1020Kb

1.3.2 Weak Topological Insulators (WTI) Classification and characterization of topological insulators and superconductors by Roger Mong A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Joel E. Moore, Chair Professor Dung-Hai Lee Professor Michael Hutchings Spring 2012 The dissertation of Roger Mong, titled Classification and characterization of topological insulators and superconductors, is approved: Chair Date Date Date University of California, Berkeley Spring 2012 Classification and characterization of topological insulators and superconductors Copyright 2012 by Roger Mong 1 Abstract Classification and characterization of topological insulators and superconductors by Roger Mong Doctor of Philosophy in Physics University of California, Berkeley Professor Joel E. Moore, Chair Topological insulators (TIs) are a new class of materials which, until recently, have been overlooked despite decades of study in band insulators. Like semiconductors and ordinary insulators, TIs have a bulk gap, but feature robust surfaces excitations which are protected from disorder and interactions which do not close the bulk gap. TIs are distinguished from ordinary insulators not by the symmetries they possess (or break), but by topological in- variants characterizing their bulk band structures. These two pictures, the existence of gapless surface modes, and the nontrivial topology of the bulk states, yield two contrasting approaches to the study of TIs. At the heart of the subject, they are connected by the bulk-boundary correspondence, relating bulk and surface degrees of freedom. In this work, we study both aspects of topological insulators, at the same time providing an illumination to their mysterious connection. First, we present a systematic approach to the classification of bulk states of systems with inversion-like symmetries, deriving a complete set of topological invariants for such ensembles. We find that the topological invariants in all dimensions may be computed al- gebraically via exact sequences. In particular, systems with spatial inversion symmetries in one-, two-, and three-dimensions can be classified by, respectively, 2, 5, and 11 integer invariants. The values of these integers are related to physical observables such as polariza- tion, Hall conductivity, and magnetoelectric coupling. We also find that, for systems with \antiferromagnetic symmetry," there is a Z2 classification in three-dimensions, and hence a class of \antiferromagnetic topological insulators" (AFTIs) which are distinguished from ordinary antiferromagnets. From the perspective of the bulk, AFTI exhibits the quantized magnetoelectric effect, whereas on the surface, gapless one-dimensional chiral modes emerge at step-defects. Next, we study how the surface spectrum can be computed from bulk quantities. Specif- ically, we present an analytic prescription for computing the edge dispersion E(k) of a tight- binding Dirac Hamiltonian terminated at an abrupt crystalline edge, based on the bulk Hamiltonian. The result is presented as a geometric formula, relating the existence of sur- face states as well as their energy dispersion to properties of the bulk Hamiltonian. We 2 further prove the bulk-boundary correspondence for this specific class of systems, connect- ing the Chern number and the chiral edge modes for quantum Hall systems given in terms of Dirac Hamiltonians. In similar spirit, we examine the existence of Majorana zero modes in superconducting doped-TIs. We find that Majorana zero modes indeed appear but only if the doped Fermi energy is below a critical chemical potential. The critical doping is asso- ciated with a topological phase transition of vortex lines, which supports gapless excitations spanning their length. For weak pairing, the critical point is dependent on the non-abelian Berry phase of the bulk Fermi surface. Finally, we investigate the transport properties on the surfaces of TIs. While the surfaces of \strong topological insulators" { TIs with an odd number of Dirac cones in their surface spectrum { have been well studied in literature, studies of their counterpart \weak topolog- ical insulators" (WTIs) are meager, with conflicting claims. Because WTIs have an even number of Dirac cones in their surface spectrum, they are thought to be unstable to disor- der, which leads to an insulating surface. Here we argue that the presence of disorder alone will not localize the surface states, rather, presence of a time-reversal symmetric mass term is required for localization. Through numerical simulations, we show that in the absence of the mass term the surface always flow to a stable metallic phase and the conductivity obeys a one-parameter scaling relation, just as in the case of a strong topological insulator surface. With the inclusion of the mass, the transport properties of the surface of a weak topological insulator follow a two-parameter scaling form, reminiscent of the quantum Hall phase transition. i To my parents, ii Contents Acknowledgments vi List of Acronyms viii Preface ix I Introduction 1 1 Brief introduction to topological insulators 2 1.1 Quantum Hall effect . .4 1.1.1 Landau levels and band theory . .5 1.1.2 Berry phase, Chern integer, and topology . .6 1.1.3 Gapless chiral edge modes . .9 1.2 Quantum spin Hall effect . 10 1.2.1 Z2 classification and edge states . 11 1.3 Topological insulators in 3D . 13 1.3.1 Strong topological insulators (STI) . 15 1.3.2 Weak topological insulators (WTI) . 17 1.4 Topological superconductors . 18 1.4.1 Symmetries, Altland-Zirnbauer classification . 18 1.4.2 Realizing topological superconductors . 23 1.5 Applications and outlook . 24 2 Overview of thesis 26 II Classification of Band Insulators 28 Notation and conventions 29 Contents iii 3 Topology of Hamiltonian spaces 31 3.1 Topological classification of band structures . 33 3.2 Classification with Brillouin zone symmetries . 40 4 Inversion symmetric insulators 47 4.1 Summary of results . 50 4.2 Classifying inversion symmetric insulators . 57 4.2.1 Outline of the argument . 59 4.2.2 Topology of the space of Hamiltonians . 61 4.2.3 Hamiltonians, classifying spaces and homotopy groups . 62 4.2.4 Relative homotopy groups and exact sequences . 63 4.2.5 One-dimension . 65 4.2.6 Two-dimensions . 67 4.2.7 Going to higher dimensions . 71 4.3 Physical properties and the parities . 74 4.3.1 A coarser classification: grouping phases with identical responses . 75 4.3.2 Constraint on parities in gapped materials . 78 4.3.3 Polarization and Hall conductivity . 81 4.3.4 Magnetoelectric response . 84 4.4 Parities and the entanglement spectrum . 85 4.5 Conclusions . 92 5 Antiferromagnetic topological insulators 94 5.1 Z2 topological invariant . 95 5.1.1 Relation to the time-reversal invariant topological insulator . 97 5.1.2 Magnetoelectric effect and the Chern-Simons integral . 98 5.1.3 Invariance to choice of unit cell . 99 5.2 Construction of effective Hamiltonian models . 101 5.2.1 Construction from strong topological insulators . 101 5.2.2 Construction from magnetically induced spin-orbit coupling . 102 5.3 Surface band structure . 104 5.4 Surfaces with half-integer quantum Hall effect . 107 5.5 Conclusions and possible physical realizations . 110 III Edge Spectrum and the Bulk-Boundary Correspondence 112 6 Computing the edge spectrum in Dirac Hamiltonians 113 6.1 Characterization of the nearest-layer Hamiltonian . 114 6.2 Edge state theorem . 115 6.2.1 Edge state energy . 116 6.2.2 Discussion . 118 Contents iv 6.3 Proof by Green's functions . 118 6.3.1 Bulk Green's function . 119 6.3.2 Green's function of the open system . 121 6.3.3 Existence and spectrum of edge modes . 122 2 6.3.4 Constraints on hk and E ........................ 122 6.3.5 Sign of the energy . 125 6.4 Proof by transfer matrices . 125 6.4.1 Relation between left-right boundaries . 126 6.4.2 Algebraic relation between λa, λb and E ................ 127 6.4.3 Introducing functions L, L¯ ........................ 128 6.4.4 Edge state energy . 128 6.4.5 Existence of edge states . 129 6.4.6 Sign of edge state energy . 130 6.4.7 Effective surface Hamiltonian . 131 6.5 Bulk Chern number and chiral edge correspondence . 131 6.5.1 Discussion . 134 6.6 Applications of Theorem 1 . 134 6.6.1 Example: graphene . 134 6.6.2 Example: p + ip superconductor (lattice model) . 135 6.6.3 Example: 3D topological insulator . 136 6.7 Continuum Hamiltonians quadratic in momentum . 138 6.7.1 Discussion . 139 6.7.2 Example: p + ip superconductor (continuum model) . 139 6.7.3 Proof for continuum Hamiltonians . 140 6.8 Outlook . 142 7 Majorana fermions at the ends of superconductor vortices in doped topo- logical insulators 143 7.1 A vortex in superconducting topological insulators . 144 7.2 Vortex phase transition in models and numerical results . 146 7.2.1 Lattice model . 146 7.2.2 Continuum model . 148 7.3 General Fermi surface Berry phase condition . 149 7.3.1 Summary of the argument and results . 149 7.3.2 Bogoliubov-de Gennes Hamiltonian . 150 7.3.3 Pairing potential . 151 7.3.4 Projecting to the low energy states . 153 7.3.5 Explicit solution with rotational symmetry . 154 7.3.6 General solution without rotational symmetry . 156 7.3.7 Vortex bound states . 159 7.4 Candidate materials . 160 7.4.1 CuxBi2Se3 with s-wave pairing . 160 Contents v 7.4.2 p-doped TlBiTe2, p-doped Bi2Te3 and PdxBi2Te3 ........... 162 7.4.3 Majorana zero modes from trivial insulators . 162 IV Surface Transport 164 8 Quantum transport on the surface of weak topological insulators 165 8.1 Hamiltonian and disorder structure . 166 8.1.1 Chirality of the Dirac cones . 168 8.1.2 Constructing the mass for an arbitrary even number of Dirac cones .
Recommended publications
  • Edge States in Topological Magnon Insulators
    PHYSICAL REVIEW B 90, 024412 (2014) Edge states in topological magnon insulators Alexander Mook,1 Jurgen¨ Henk,2 and Ingrid Mertig1,2 1Max-Planck-Institut fur¨ Mikrostrukturphysik, D-06120 Halle (Saale), Germany 2Institut fur¨ Physik, Martin-Luther-Universitat¨ Halle-Wittenberg, D-06099 Halle (Saale), Germany (Received 15 May 2014; revised manuscript received 27 June 2014; published 18 July 2014) For magnons, the Dzyaloshinskii-Moriya interaction accounts for spin-orbit interaction and causes a nontrivial topology that allows for topological magnon insulators. In this theoretical investigation we present the bulk- boundary correspondence for magnonic kagome lattices by studying the edge magnons calculated by a Green function renormalization technique. Our analysis explains the sign of the transverse thermal conductivity of the magnon Hall effect in terms of topological edge modes and their propagation direction. The hybridization of topologically trivial with nontrivial edge modes enlarges the period in reciprocal space of the latter, which is explained by the topology of the involved modes. DOI: 10.1103/PhysRevB.90.024412 PACS number(s): 66.70.−f, 75.30.−m, 75.47.−m, 85.75.−d I. INTRODUCTION modes causes a doubling of the period of the latter in reciprocal space. Understanding the physics of electronic topological in- The paper is organized as follows. In Sec. II we sketch the sulators has developed enormously over the past 30 years: quantum-mechanical description of magnons in kagome lat- spin-orbit interaction induces band inversions and, thus, yields tices (Sec. II A), Berry curvature and Chern number (Sec. II B), nonzero topological invariants as well as edge states that are and the Green function renormalization method for calculating protected by symmetry [1–3].
    [Show full text]
  • Implied Volatility Modeling
    Implied Volatility Modeling Sarves Verma, Gunhan Mehmet Ertosun, Wei Wang, Benjamin Ambruster, Kay Giesecke I Introduction Although Black-Scholes formula is very popular among market practitioners, when applied to call and put options, it often reduces to a means of quoting options in terms of another parameter, the implied volatility. Further, the function σ BS TK ),(: ⎯⎯→ σ BS TK ),( t t ………………………………(1) is called the implied volatility surface. Two significant features of the surface is worth mentioning”: a) the non-flat profile of the surface which is often called the ‘smile’or the ‘skew’ suggests that the Black-Scholes formula is inefficient to price options b) the level of implied volatilities changes with time thus deforming it continuously. Since, the black- scholes model fails to model volatility, modeling implied volatility has become an active area of research. At present, volatility is modeled in primarily four different ways which are : a) The stochastic volatility model which assumes a stochastic nature of volatility [1]. The problem with this approach often lies in finding the market price of volatility risk which can’t be observed in the market. b) The deterministic volatility function (DVF) which assumes that volatility is a function of time alone and is completely deterministic [2,3]. This fails because as mentioned before the implied volatility surface changes with time continuously and is unpredictable at a given point of time. Ergo, the lattice model [2] & the Dupire approach [3] often fail[4] c) a factor based approach which assumes that implied volatility can be constructed by forming basis vectors. Further, one can use implied volatility as a mean reverting Ornstein-Ulhenbeck process for estimating implied volatility[5].
    [Show full text]
  • Topological Insulators Physicsworld.Com Topological Insulators This Newly Discovered Phase of Matter Has Become One of the Hottest Topics in Condensed-Matter Physics
    Feature: Topological insulators physicsworld.com Topological insulators This newly discovered phase of matter has become one of the hottest topics in condensed-matter physics. It is hard to understand – there is no denying it – but take a deep breath, as Charles Kane and Joel Moore are here to explain what all the fuss is about Charles Kane is a As anyone with a healthy fear of sticking their fingers celebrated by the 2010 Nobel prize – that inspired these professor of physics into a plug socket will know, the behaviour of electrons new ideas about topology. at the University of in different materials varies dramatically. The first But only when topological insulators were discov- Pennsylvania. “electronic phases” of matter to be defined were the ered experimentally in 2007 did the attention of the Joel Moore is an electrical conductor and insulator, and then came the condensed-matter-physics community become firmly associate professor semiconductor, the magnet and more exotic phases focused on this new class of materials. A related topo- of physics at University of such as the superconductor. Recent work has, how- logical property known as the quantum Hall effect had California, Berkeley ever, now uncovered a new electronic phase called a already been found in 2D ribbons in the early 1980s, and a faculty scientist topological insulator. Putting the name to one side for but the discovery of the first example of a 3D topologi- at the Lawrence now, the meaning of which will become clear later, cal phase reignited that earlier interest. Given that the Berkeley National what is really getting everyone excited is the behaviour 3D topological insulators are fairly standard bulk semi- Laboratory, of materials in this phase.
    [Show full text]
  • An Efficient Lattice Algorithm for the LIBOR Market Model
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Xiao, Tim Article — Accepted Manuscript (Postprint) An Efficient Lattice Algorithm for the LIBOR Market Model Journal of Derivatives Suggested Citation: Xiao, Tim (2011) : An Efficient Lattice Algorithm for the LIBOR Market Model, Journal of Derivatives, ISSN 2168-8524, Pageant Media, London, Vol. 19, Iss. 1, pp. 25-40, http://dx.doi.org/10.3905/jod.2011.19.1.025 , https://jod.iijournals.com/content/19/1/25 This Version is available at: http://hdl.handle.net/10419/200091 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu AN EFFICIENT LATTICE ALGORITHM FOR THE LIBOR MARKET MODEL 1 Tim Xiao Journal of Derivatives, 19 (1) 25-40, Fall 2011 ABSTRACT The LIBOR Market Model has become one of the most popular models for pricing interest rate products.
    [Show full text]
  • On the Topological Immunity of Corner States in Two-Dimensional Crystalline Insulators ✉ Guido Van Miert1 and Carmine Ortix 1,2
    www.nature.com/npjquantmats ARTICLE OPEN On the topological immunity of corner states in two-dimensional crystalline insulators ✉ Guido van Miert1 and Carmine Ortix 1,2 A higher-order topological insulator (HOTI) in two dimensions is an insulator without metallic edge states but with robust zero- dimensional topological boundary modes localized at its corners. Yet, these corner modes do not carry a clear signature of their topology as they lack the anomalous nature of helical or chiral boundary states. Here, we demonstrate using immunity tests that the corner modes found in the breathing kagome lattice represent a prime example of a mistaken identity. Contrary to previous theoretical and experimental claims, we show that these corner modes are inherently fragile: the kagome lattice does not realize a higher-order topological insulator. We support this finding by introducing a criterion based on a corner charge-mode correspondence for the presence of topological midgap corner modes in n-fold rotational symmetric chiral insulators that explicitly precludes the existence of a HOTI protected by a threefold rotational symmetry. npj Quantum Materials (2020) 5:63 ; https://doi.org/10.1038/s41535-020-00265-7 INTRODUCTION a manifestation of the crystalline topology of the D − 1 edge 1234567890():,; Topology and geometry find many applications in contemporary rather than of the bulk: the corresponding insulating phases have physics, ranging from anomalies in gauge theories to string been recently dubbed as boundary-obstructed topological 38 theory. In condensed matter physics, topology is used to classify phases and do not represent genuine (higher-order) topological defects in nematic crystals, characterize magnetic skyrmions, and phases.
    [Show full text]
  • Option Prices Under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities∗
    Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities∗ Massimo Guidolin† Allan Timmermann University of Virginia University of California, San Diego JEL codes: G12, D83. Abstract This paper shows that many of the empirical biases of the Black and Scholes option pricing model can be explained by Bayesian learning effects. In the context of an equilibrium model where dividend news evolve on a binomial lattice with unknown but recursively updated probabilities we derive closed-form pricing formulas for European options. Learning is found to generate asymmetric skews in the implied volatility surface and systematic patterns in the term structure of option prices. Data on S&P 500 index option prices is used to back out the parameters of the underlying learning process and to predict the evolution in the cross-section of option prices. The proposed model leads to lower out-of- sample forecast errors and smaller hedging errors than a variety of alternative option pricing models, including Black-Scholes and a GARCH model. ∗We wish to thank four anonymous referees for their extensive and thoughtful comments that greatly improved the paper. We also thank Alexander David, Jos´e Campa, Bernard Dumas, Wake Epps, Stewart Hodges, Claudio Michelacci, Enrique Sentana and seminar participants at Bocconi University, CEMFI, University of Copenhagen, Econometric Society World Congress in Seattle, August 2000, the North American Summer meetings of the Econometric Society in College Park, June 2001, the European Finance Association meetings in Barcelona, August 2001, Federal Reserve Bank of St. Louis, INSEAD, McGill, UCSD, Universit´edeMontreal,andUniversity of Virginia for discussions and helpful comments.
    [Show full text]
  • Topological Insulators: Electronic Structure, Material Systems and Its Applications
    Network for Computational Nanotechnology UC Berkeley, Univ. of Illinois, Norfolk(NCN) State, Northwestern, Purdue, UTEP Topological Insulators: Electronic structure, material systems and its applications Parijat Sengupta Network for Computational Nanotechnology Electrical and Computer Engineering Purdue University Complete set of slides from my final PhD defense Advisor : Prof. Gerhard Klimeck A new addition to the metal-insulator classification Nature, Vol. 464, 11 March, 2010 Surface states Metal Trivial Insulator Topological Insulator 2 2 Tracing the roots of topological insulator The Hall effect of 1869 is a start point How does the Hall resistance behave for a 2D set-up under low temperature and high magnetic field (The Quantum Hall Effect) ? 3 The Quantum Hall Plateau ne2 = σ xy h h = 26kΩ e2 Hall Conductance is quantized B Cyclotron motion Landau Levels eB E = ω (n + 1 ), ω = , n = 0,1,2,... n c 2 c mc 4 Plateau and the edge states Ext. B field Landau Levels Skipping orbits along the edge Skipping orbits induce a gapless edge mode along the sample boundary Question: Are edge states possible without external B field ? 5 Is there a crystal attribute that can substitute an external B field Spin orbit Interaction : Internal B field 1. Momentum dependent force, analogous to B field 2. Opposite force for opposite spins 3. Energy ± µ B depends on electronic spin 4. Spin-orbit strongly enhanced for atoms of large atomic number Fundamental difference lies under a Time Reversal Symmetric Operation Time Reversal Symmetry Violation 1. Quantum
    [Show full text]
  • Option Prices and Implied Volatility Dynamics Under Ayesian Learning
    T|L? hUit @?_ W4T*i_ VL*@|*|) #)?@4Ut ?_ih @)it@? wi@h??} @tt4L B_L*? **@? A44ih4@?? N?iht|) Lu @*uLh?@c 5@? #i}L a?i 2bc 2fff Devwudfw Wklv sdshu vkrzv wkdw pdq| ri wkh hpslulfdo eldvhv ri wkh Eodfn dqg Vfkrohv rswlrq sulflqj prgho fdq eh h{sodlqhg e| Ed|hvldq ohduqlqj hhfwv1 Lq wkh frqwh{w ri dq htxloleulxp prgho zkhuh glylghqg qhzv hyroyh rq d elqrpldo odwwlfh zlwk xqnqrzq exw uhfxuvlyho| xsgdwhg suredelolwlhv zh gh0 ulyh forvhg0irup sulflqj irupxodv iru Hxurshdq rswlrqv1 Ohduqlqj lv irxqg wr jhqhudwh dv|pphwulf vnhzv lq wkh lpsolhg yrodwlolw| vxuidfh dqg v|vwhpdwlf sdwwhuqv lq wkh whup vwuxfwxuh ri rswlrq sulfhv1 Gdwd rq V)S 833 lqgh{ rswlrq sulfhv lv xvhg wr edfn rxw wkh sdudphwhuv ri wkh xqghuo|lqj ohduqlqj surfhvv dqg wr suhglfw wkh hyroxwlrq lq wkh furvv0vhfwlrq ri rswlrq sulfhv1 Wkh sursrvhg prgho ohdgv wr orzhu rxw0ri0vdpsoh iruhfdvw huuruv dqg vpdoohu khgjlqj huuruv wkdq d ydulhw| ri dowhuqdwlyh rswlrq sulflqj prghov/ lqfoxglqj Eodfn0Vfkrohv1 Zh zlvk wr wkdqn Doh{dqghu Gdylg/ Mrvh Fdpsd/ Ehuqdug Gxpdv/ Fodxglr Plfkhodffl/ Hq0 ultxh Vhqwdqd dqg vhplqdu sduwlflsdqwv dw Erffrql Xqlyhuvlw|/ FHPIL/ Ihghudo Uhvhuyh Edqn ri Vw1 Orxlv/ LQVHDG/ PfJloo/ XFVG/ Xqlyhuvlw| ri Ylujlqld dqg Xqlyhuvlw| ri \run iru glvfxvvlrqv dqg khosixo frpphqwv1 W?|hL_U|L? *|L} *@U! @?_ 5UL*it< Eb. uLh4*@ hi4@?t |i 4Lt| UL44L?*) ti_ LT |L? ThU?} 4L_i* ? ?@?U@* 4@h!i|tc @ *@h}i *|ih@|hi @t _LU4i?|i_ |t t|hL?} i4ThU@* M@tit Lt| UL44L?*)c tU M@tit @hi @ttLU@|i_ | |i @TTi@h@?Ui Lu t)t|i4@|U T@||ih?t Et4*it Lh t!it ? |i 4T*i_ L*@|*|) thu@Ui ThL_Ui_ M) ?ih|?}
    [Show full text]
  • A Topological Insulator Surface Under Strong Coulomb, Magnetic and Disorder Perturbations
    LETTERS PUBLISHED ONLINE: 12 DECEMBER 2010 | DOI: 10.1038/NPHYS1838 A topological insulator surface under strong Coulomb, magnetic and disorder perturbations L. Andrew Wray1,2,3, Su-Yang Xu1, Yuqi Xia1, David Hsieh1, Alexei V. Fedorov3, Yew San Hor4, Robert J. Cava4, Arun Bansil5, Hsin Lin5 and M. Zahid Hasan1,2,6* Topological insulators embody a state of bulk matter contact with large-moment ferromagnets and superconductors for characterized by spin-momentum-locked surface states that device applications11–17. The focus of this letter is the exploration span the bulk bandgap1–7. This highly unusual surface spin of topological insulator surface electron dynamics in the presence environment provides a rich ground for uncovering new of magnetic, charge and disorder perturbations from deposited phenomena4–24. Understanding the response of a topological iron on the surface. surface to strong Coulomb perturbations represents a frontier Bismuth selenide cleaves on the (111) selenium surface plane, in discovering the interacting and emergent many-body physics providing a homogeneous environment for deposited atoms. Iron of topological surfaces. Here we present the first controlled deposited on a Se2− surface is expected to form a mild chemical study of topological insulator surfaces under Coulomb and bond, occupying a large ionization state between 2C and 3C 25 magnetic perturbations. We have used time-resolved depo- with roughly 4 µB magnetic moment . As seen in Fig. 1d the sition of iron, with a large Coulomb charge and significant surface electronic structure after heavy iron deposition is greatly magnetic moment, to systematically modify the topological altered, showing that a significant change in the surface electronic spin structure of the Bi2Se3 surface.
    [Show full text]
  • Topological Insulator Interfaced with Ferromagnetic Insulators: ${\Rm{B}}
    PHYSICAL REVIEW MATERIALS 4, 064202 (2020) Topological insulator interfaced with ferromagnetic insulators: Bi2Te3 thin films on magnetite and iron garnets V. M. Pereira ,1 S. G. Altendorf,1 C. E. Liu,1 S. C. Liao,1 A. C. Komarek,1 M. Guo,2 H.-J. Lin,3 C. T. Chen,3 M. Hong,4 J. Kwo ,2 L. H. Tjeng ,1 and C. N. Wu 1,2,* 1Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany 2Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan 3National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan 4Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (Received 28 November 2019; revised manuscript received 17 March 2020; accepted 22 April 2020; published 3 June 2020) We report our study about the growth and characterization of Bi2Te3 thin films on top of Y3Fe5O12(111), Tm3Fe5O12(111), Fe3O4(111), and Fe3O4(100) single-crystal substrates. Using molecular-beam epitaxy, we were able to prepare the topological insulator/ferromagnetic insulator heterostructures with no or minimal chemical reaction at the interface. We observed the anomalous Hall effect on these heterostructures and also a suppression of the weak antilocalization in the magnetoresistance, indicating a topological surface-state gap opening induced by the magnetic proximity effect. However, we did not observe any obvious x-ray magnetic circular dichroism (XMCD) on the Te M45 edges. The results suggest that the ferromagnetism induced by the magnetic proximity effect via van der Waals bonding in Bi2Te3 is too weak to be detected by XMCD, but still can be observed by electrical transport measurements.
    [Show full text]
  • Topological Insulator Materials for Advanced Optoelectronic Devices
    Book Chapter for <<Advanced Topological Insulators>> Topological insulator materials for advanced optoelectronic devices Zengji Yue1,2*, Xiaolin Wang1,2 and Min Gu3 1Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia 2ARC Centre for Future Low-Energy Electronics Technologies, Australia 3Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, Victoria 3001, Australia *Corresponding email: [email protected] Abstract Topological insulators are quantum materials that have an insulating bulk state and a topologically protected metallic surface state with spin and momentum helical locking and a Dirac-like band structure.(1-3) Unique and fascinating electronic properties, such as the quantum spin Hall effect, topological magnetoelectric effects, magnetic monopole image, and Majorana fermions, are expected from topological insulator materials.(4, 5) Thus topological insulator materials have great potential applications in spintronics and quantum information processing, as well as magnetoelectric devices with higher efficiency.(6, 7) Three-dimensional (3D) topological insulators are associated with gapless surface states, and two-dimensional (2D) topological insulators with gapless edge states.(8) The topological surface (edge) states have been mainly investigated by first-principle theoretical calculation, electronic transport, angle- resolved photoemission spectroscopy (ARPES), and scanning tunneling microscopy (STM).(9) A variety of compounds have been identified as 2D or 3D topological insulators, including HgTe/CdTe, Bi2Se3, Bi2Te3, Sb2Te3, SmB6, BiTeCl, Bi1.5Sb0.5Te1.8Se1.2, and so on.(9-12) On the other hand, topological insulator materials also exhibit a number of excellent optical properties, including Kerr and Faraday rotation, ultrahigh bulk refractive index, near-infrared frequency transparency, unusual electromagnetic scattering and ultra-broadband surface plasmon resonances.
    [Show full text]
  • Term Structure Lattice Models
    Term Structure Models: IEOR E4710 Spring 2005 °c 2005 by Martin Haugh Term Structure Lattice Models 1 The Term-Structure of Interest Rates If a bank lends you money for one year and lends money to someone else for ten years, it is very likely that the rate of interest charged for the one-year loan will di®er from that charged for the ten-year loan. Term-structure theory has as its basis the idea that loans of di®erent maturities should incur di®erent rates of interest. This basis is grounded in reality and allows for a much richer and more realistic theory than that provided by the yield-to-maturity (YTM) framework1. We ¯rst describe some of the basic concepts and notation that we need for studying term-structure models. In these notes we will often assume that there are m compounding periods per year, but it should be clear what changes need to be made for continuous-time models and di®erent compounding conventions. Time can be measured in periods or years, but it should be clear from the context what convention we are using. Spot Rates: Spot rates are the basic interest rates that de¯ne the term structure. De¯ned on an annual basis, the spot rate, st, is the rate of interest charged for lending money from today (t = 0) until time t. In particular, 2 mt this implies that if you lend A dollars for t years today, you will receive A(1 + st=m) dollars when the t years have elapsed.
    [Show full text]