Analysis of Lead in Seawater by Differential Pulse Polarography

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Lead in Seawater by Differential Pulse Polarography ANALYSIS OF LEAD IN SEAWATER BY DIFFERENTIAL PULSE POLAROGRAPHY Introduction Electrochemical methods of analysis can be used for the quantitative analysis of any electroactive species – any species that can be easily oxidized or reduced at an electrode (the “working” electrode). A powerful set of electroanalytical methods are based on voltammetry, in which the current generated by the oxidation or reduction of an analyte is measured as a function of the voltage at the working electrode. Polarography, using a mercury drop as the working electrode, is the oldest form of voltammetry. In this experiment, you will analyze a synthetic seawater sample for its lead content using a form of voltammetry called differential pulse polarography (DPP). The purpose of the experiment is to evaluate the suitability of DPP for the analysis of trace amounts of lead in seawater, a sample matrix that can pose considerable difficulty for many analytical techniques. Background The principles of voltammetry are summarized here; for more detail, please see the following references: • Harris 17.1-17.3; 18.1-18.5 • Skoog 25A-25B, 25E-25F Basis of Voltammetry Voltammetry occurs in an electrolytic cell: a potential is applied between two electrodes until a redox reaction is forced to occur. At the anode, the electrode potential is low enough to “pull” electrons from the solution (oxidation occurs) while at the cathode the potential is high enough to “force” the solution to accept them (reduction). If the redox reaction kinetics are infinitely fast, then the slope of the i vs E plot would be determined by the solution resistance: Page 1 Polarographic Analysis of Lead in Seawater Background reaction begins slope determined by solution resistance current 0 E applied Figure 1. The current passing through an electrolytic cell with an infinitely fast redox reaction is controlled by the solution resistance. Little current flows until the redox reaction begins, and then the current increases with a slope of 1/Rsoln. In actual fact, the current will be controlled by the rate of redox reaction at one (or perhaps both) of the electrodes. As more voltage is applied to the cell, the current reaches a maximum value at which the reaction is occurring as fast as possible. This phenomenon – in which the current through an electrochemical cell is limited by the rate of redox reaction at one of the electrodes – is called electrode polarization. Voltammetry is based on measuring the current limited by the rate of analyte reaction at an electrode; under certain conditions, the current will depend on the concentration of the analyte in the electrolytic cell solution. A plot of measured current as a function of applied potential is called a voltammogram. The following figure shows the characteristics of a typical voltammogram. Page 2 Polarographic Analysis of Lead in Seawater Background Figure 2. Typical voltammogram obtained during analyte reduction. As the voltage at the working electrode becomes more negative, analyte reduction begins and soon reaches its limiting rate; the resulting current is the limiting current (il) and its value is dependent on analyte concentration. The potential that yields have the maximum current is called the half-wave potential, E1/2; its value is characteristic of the analyte. Source: Skoog. As the figure depicts, a voltammogram takes on a characteristic “wave” appearance. As mentioned previously, under certain conditions the limiting current, il, will be linearly proportional to analyte concentration. The location of the wave is specific for a particular analyte; the half-wave potential, E1/2, is the potential at one-half the limiting current. The half-wave potential is approximately equal to the standard thermodynamic potential; thus, the more easily-reduced analytes will have the more positive half-wave potentials. In voltammetry, the limiting current is usually due to electrode polarization at the working electrode. Electrode polarization at the working electrode occurs when the analyte reaction rate is controlled by one of the following phenomena: 1. The rate of mass transfer to or from the electrode. This type of polarization is sometimes called concentration polarization. 2. The rate of electron transfer at the surface of the electrode; this is kinetics polarization. Quantitative analysis using voltammetry works best when the current is mass-transfer limited. At the mass transfer limit, the analyte reacts as quickly as it can get to the electrode surface. Thus, the best analytes are those that undergo rapid electron transfer at the electrode. In voltammetry, an inert electrolyte, the supporting electrolyte, is added to the solution so that the current is carried by ions other than the analyte. In the presence of supporting electrolyte, the mass-transfer limited current will be determined by the rate of analyte diffusion to/from the electrode surface. Fick’s First Law of diffusion requires that the rate of analyte diffusion to the electrode surface will be linearly proportional to the analyte concentration in the solution: the more concentrated the analyte, the Page 3 Polarographic Analysis of Lead in Seawater Background faster it diffuses to the working electrode and reacts. The diffusion-limited current for a planar electrode is described by the Cottrell equation: = DA = Cottrell eqn. id nFA !t CA kCA where n is the number of electrons transferred, F is Faraday’s constant, A is the area of the electrode surface, DA is the analyte diffusion coefficient, and CA is the analyte concentration. At any given time, the diffusion-limited current id is proportional to the analyte concentration. Let’s summarize the situation, then. A sample solution is placed in an electrolytic cell; this solution contains a relatively high concentration of inert electrolyte. A voltage is applied and the analyte reacts at one of the electrodes (the working electrode); the resulting current is measured as the voltage is changed, giving a voltammogram. Since the analyte undergoes rapid electron transfer at the working electrode, and the current is carried through the solution by the supporting electrolyte, the limiting current is determined by the rate of analyte diffusion to/from the electrode surface. According to Fick’s Law, the diffusion rate is linearly proportional to the concentration of analyte, so that doubling the analyte concentration in the sample solution would double the rate of analyte diffusion at the working electrode. Since analyte diffusion is the rate-determining step in the whole process, doubling the diffusion rate would double the rate of reaction, and double the limiting current. The relationship between the diffusion-limited current (at a planar electrode) and the analyte concentration is described by the Cottrell equation. The reaction of the analyte at the working electrode is controlled by the potential (i.e., the electron energy) at the working electrode, EWE. A more negative value of EWE means a higher electron energy, which means that we are trying to “force” the analyte to accept the electron: the conditions are more reducing. In order to control the redox conditions at the working electrode, it is essential to control the value of EWE; a three-electrode system, such as the one in the next figure, is the best way to control EWE. Page 4 Polarographic Analysis of Lead in Seawater Background i electrolytic cell WE CE FEEDBACK RE V Figure 3: simple schematic of a 3-electrode potentiostatic cell, consisting of a Working Electrode (WE), a Counter Electrode (CE) and a Reference Electrode (RE). The voltage applied to the electrolytic cell is controlled by a feedback loop from the potential difference between the working and reference electrodes. The three electrodes are: • the working electrode (WE). The analyte is reduced or oxidized here, depending on the value of EWE. • the counter electrode (CE). This is where the other half of the redox reaction occurs. If the analyte is being reduced at WE, some other species must be oxidized at CE. The vast majority of current flows through the solution between WE and CE; the electron transfer rate at WE and CE are equivalent. • the reference electrode (RE). This is the reference point for the measurement of EWE. Together, the three electrodes comprise a potentiostatic electrolysis system. Potential is applied between the working and counter electrodes to force a redox reaction. The electron energy at the working electrode is monitored by measuring the potential difference between WE and RE; the applied potential is modified by a feedback loop to obtain the desired value of EWE. The current flow along the “upper” circuit in fig 3 is measured as a function of EWE. Polarography The most common working electrode material is mercury. The analyte reaction at the working electrode is very sensitive to changes in the electrode surface; one important advantage of using mercury as the electrode is that a clean, reproducible electrode surface can always be obtained. Voltammetry using a mercury drop as the working electrode is given the special name of polarography. The following figure shows some common mercury drop electrodes. Page 5 Polarographic Analysis of Lead in Seawater Background (a) (b) (c) Figure 4. Mercury drop electrodes used for polarography: (a) Hanging Mercury Drop Electrode (HMDE); (b) Dropping Merucy Electrode (DME); and (c) Static Mercury Drop Electrode (SMDE). See text for description of the electrodes. Source: Skoog. The simplest mercury drop electrode uses a micrometer to force a reproducible volume of mercury into the drop; this is the hanging mercury drop electrode (HMDE). After a drop is formed, the experiment is performed and the drop is discarded. The dropping mercury electrode (DME) is a little more complicated. The DME consists of a narrow capillary through which mercury is constantly flowing. Drops grow at the end of the capillary; every 2-4 seconds, the drop falls off and the process begins again. A mechanical knocker may be employed to dislodge the drop at reproducible intervals.
Recommended publications
  • Polarography.Pdf
    Polarography UNIT V !1. Polarography Principle The simple principle of polarography is the study of solutions or of electrode processes by means of electrolysis with two electrodes, one polarizable and one unpolarizable, the former formed by mercury regularly dropping from a capillary tube. Polarography is a specific type of measurement that falls into the general category of linear-sweep voltammetry where the electrode potential is altered in a linear fashion from the initial potential to the final potential. As a linear sweep method controlled by convection/diffusion mass transport, the current vs. potential response of a polarographic experiment has the typical sigmoidal shape. What makes polarography different from other linear sweep voltammetry measurements is that polarography makes use of the dropping mercury electrode (DME) or the static mercury drop electrode. Ilkovic Equation Ilkovic equation is a relation used in polarography relating the diffusion current (id) and the concentration of the depolarizer (c), which is the substance reduced or oxidized at the dropping mercury electrode. The Ilkovic equation has the form id = k n D1/3m2/3t1/6c Where k is a constant which includes Faraday constant, π and the density of mercury, and has been evaluated at 708 for max current and 607 for average current, D is the diffusion coefficient of the depolarizer in the medium (cm2/s), n is the number of electrons exchanged in the electrode reaction, m is the mass flow rate of Hg through the capillary (mg/sec), and t is the drop lifetime in seconds, and c is depolarizer concentration in mol/cm3. The equation is named after the scientist who derived it, the Slovak chemist, Dionýz Ilkovič 1907-1980).
    [Show full text]
  • 07 Chapter2.Pdf
    22 METHODOLOGY 2.1 INTRODUCTION TO ELECTROCHEMICAL TECHNIQUES Electrochemical techniques of analysis involve the measurement of voltage or current. Such methods are concerned with the interplay between solution/electrode interfaces. The methods involve the changes of current, potential and charge as a function of chemical reactions. One or more of the four parameters i.e. potential, current, charge and time can be measured in these techniques and by plotting the graphs of these different parameters in various ways, one can get the desired information. Sensitivity, short analysis time, wide range of temperature, simplicity, use of many solvents are some of the advantages of these methods over the others which makes them useful in kinetic and thermodynamic studies1-3. In general, three electrodes viz., working electrode, the reference electrode, and the counter or auxiliary electrode are used for the measurement in electrochemical techniques. Depending on the combinations of parameters and types of electrodes there are various electrochemical techniques. These include potentiometry, polarography, voltammetry, cyclic voltammetry, chronopotentiometry, linear sweep techniques, amperometry, pulsed techniques etc. These techniques are mainly classified into static and dynamic methods. Static methods are those in which no current passes through the electrode-solution interface and the concentration of analyte species remains constant as in potentiometry. In dynamic methods, a current flows across the electrode-solution interface and the concentration of species changes such as in voltammetry and coulometry4. 2.2 VOLTAMMETRY The field of voltammetry was developed from polarography, which was invented by the Czechoslovakian Chemist Jaroslav Heyrovsky in the early 1920s5. Voltammetry is an electrochemical technique of analysis which includes the measurement of current as a function of applied potential under the conditions that promote polarization of working electrode6.
    [Show full text]
  • Chapter 3: Experimental
    Chapter 3: Experimental CHAPTER 3: EXPERIMENTAL 3.1 Basic concepts of the experimental techniques In this part of the chapter, a short overview of some phrases and theoretical aspects of the experimental techniques used in this work are given. Cyclic voltammetry (CV) is the most common technique to obtain preliminary information about an electrochemical process. It is sensitive to the mechanism of deposition and therefore provides informations on structural transitions, as well as interactions between the surface and the adlayer. Chronoamperometry is very powerful method for the quantitative analysis of a nucleation process. The scanning tunneling microscopy (STM) is based on the exponential dependence of the tunneling current, flowing from one electrode onto another one, depending on the distance between electrodes. Combination of the STM with an electrochemical cell allows in-situ study of metal electrochemical phase formation. XPS is also a very powerfull technique to investigate the chemical states of adsorbates. Theoretical background of these techniques will be given in the following pages. At an electrode surface, two fundamental electrochemical processes can be distinguished: 3.1.1 Capacitive process Capacitive processes are caused by the (dis-)charge of the electrode surface as a result of a potential variation, or by an adsorption process. Capacitive current, also called "non-faradaic" or "double-layer" current, does not involve any chemical reactions (charge transfer), it only causes accumulation (or removal) of electrical charges on the electrode and in the electrolyte solution near the electrode. There is always some capacitive current flowing when the potential of an electrode is changing. In contrast to faradaic current, capacitive current can also flow at constant 28 Chapter 3: Experimental potential if the capacitance of the electrode is changing for some reason, e.g., change of electrode area, adsorption or temperature.
    [Show full text]
  • Unit 1 Introduction to Electro- Analytical Methods
    Introduction to UNIT 1 INTRODUCTION TO ELECTRO- Electroanalytical ANALYTICAL METHODS Methods Structure 1.1 Introduction Objectives 1.2 Basic Concepts Electrical Units Basic Laws of Electrochemistry Electrode Potential Liquid-Junction Potentials Electrochemical Cells The Nernst Equation Cell Potential 1.3 Classification and an Overview of Electroanalytical Methods Potentiometry Voltammetry Polarography Amperometry Electrogravimetry and Coulometry Conductometry 1.4 Classification and Relationships of Electroanalytical Methods 1.5 Summary 1.6 Terminal Questions 1.7 Answers 1.1 INTRODUCTION This is the first unit of this course. This unit deals with the fundamentals of electrochemistry that are necessary for understanding the principles of electroanalytical methods discussed in this Unit 2 to 9. In this unit we have also classified of electroanalytical methods and briefly introduced of some important electroanalytical methods. More details of these elecroanalytical methods will be discussed in the consecutive units. Objectives After studying this unit, you will be able to: • name the different units of electrical quantities, • define the two basic laws of electrochemistry, • describe the single electrode potential and the potential of a galvanic cell, • derive the Nernst expression and give its applications, • calculate the electrode potentials and cell potentials using Nernst equation, • describe the basis for classification of the electroanalytical techniques, and • explain the basis principles and describe the essential conditions of the various electroanalytical techniques. 1.2 BASIC CONCEPTS Before going in detail of different electroanalytical techniques, let’s recapitulate some basic concepts which you have studied in your undergraduate classes. 7 Electroanalytical 1.2.1 Electrical Units Methods -I Ampere (A): Ampere is the unit of current.
    [Show full text]
  • Square-Wave Protein-Film Voltammetry: New Insights in the Enzymatic Electrode Processes Coupled with Chemical Reactions
    Journal of Solid State Electrochemistry https://doi.org/10.1007/s10008-019-04320-7 ORIGINAL PAPER Square-wave protein-film voltammetry: new insights in the enzymatic electrode processes coupled with chemical reactions Rubin Gulaboski1 & Valentin Mirceski2,3 & Milivoj Lovric4 Received: 4 April 2019 /Revised: 9 June 2019 /Accepted: 9 June 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Redox mechanisms in which the redox transformation is coupled to other chemical reactions are of significant interest since they are regarded as relevant models for many physiological systems. Protein-film voltammetry, based on surface confined electro- chemical processes, is a methodology of exceptional importance, which is designed to provide information on enzyme redox chemistry. In this work, we address some theoretical aspects of surface confined electrode mechanisms under conditions of square-wave voltammetry (SWV). Attention is paid to a collection of specific voltammetric features of a surface electrode reaction coupled with a follow-up (ECrev), preceding (CrevE) and regenerative (EC’) chemical reaction. While presenting a collection of numerically calculated square-wave voltammograms, several intriguing and simple features enabling kinetic char- acterization of studied mechanisms in time-independent experiments (i.e., voltammetric experiments at a constant scan rate) are addressed. The aim of the work is to help in designing a suitable experimental set-up for studying surface electrode processes, as well as to provide a means for determination of kinetic and/or thermodynamic parameters of both electrode and chemical steps. Keywords Kinetics of electrode reactions and chemical reactions . Surface EC′ catalytic mechanism . Surface ECrev mechanism . Surface CrevE mechanism . Square-wave voltammetry Introduction modulation applied, however, SWV is seldom explored as a technique for mechanistic evaluations.
    [Show full text]
  • 17. Electrogravimetric Determination of Copper in Alloys
    17. Electrogravimetric determination of copper in alloys Electrogravimetry is electroanalytical method based on gravimetric determination of metallic elements, which are isolated on the cathode in form of metal or on the anode in form of metal oxide during electrolysis. This method employs two or three electrodes, and either a constant current or a constant potential is applied to the preweighed working electrode. An electrode (half-cell) is a structure consisting of two conductive phases – one of these is a metal or a different solid conductor, and the other consists of electrolyte. Between the metal or any other solid conductor (electrode) and the solution, electrode processes take place, which are redox reactions. Electrolysis is decomposition of electrolyte as a result of impact of direct current flowing through the electrolyzer. This term encompasses: the actual electrochemical reaction taking place on the metallic electrodes, which is associated with transport of charge, transport of ions to and from the electrode surface, secondary chemical reactions taking place near the electrode. In electrogravimetry, we use electrolytic cells or structures consisting of two electrodes immersed in an electrolyte solution, to which an external source of electrical energy is connected. The electrode connected to the positive pole of this external source is the anode, while the electrode connected to the negative pole is the cathode. On the cathode, the reduction reaction takes place (ox1 + z1e red1), and on the anode – the oxidation reaction (red2 ox2 +z2e). In order to make sure that the reduction and oxidation reactions are taking place at the sufficient speed, it is necessary to apply the appropriate potential from the external source of electric energy.
    [Show full text]
  • Stationary Electrode Voltammetry and Chronoamperometry in an Alkali Metal Carbonate-Borate Melt
    AN ABSTRACT OF THE THESIS OF DARRELL GEORGE PETCOFF for the Doctor of Philosophy (Name of student) (Degree) in Analytical Chemistry presented onC (O,/97 (Major) (Date) Title: STATIONARY ELECTRODE VOLTAMMETRY AND CHRONOAMPEROMETRY IN AN ALKALI METAL CARBONATE - BORATE. MFT T Abstract approved: Redacted for Privacy- Drir. reund The electrochemistry of the lithium-potassium-sodium carbonate-borate melt was explored by voltammetry and chrono- amperometry. In support of this, a controlled-potential polarograph and associated hardware was constructed.Several different types of reference electrodes were tried before choosing a porcelain mem- brane electrode containing a silver wire immersed in a silver sulfate melt.The special porcelain compounded was used also to construct a planar gold disk electrode.The theory of stationary electrode polarography was summarized and denormalized to provide an over- all view. A new approach to the theory of the cyclic background current was also advanced. A computer program was written to facilitate data processing.In addition to providing peak potentials, currents, and n-values, the program also resolves overlapping peaks and furnishes plots of both processed and unprocessed data. Rapid-scan voltammetry was employed to explore the electro- chemical behavior of Zn, Co, Fe, Tl, Sb, As, Ni, Sn, Cd, Te, Bi, Cr, Pb, Cu, and U in the carbonate-borate melt. Most substances gave reasonably well-defined peaks with characteristic peak potentials and n-values.Metal deposition was commonly accompanied by adsorp- tion prepeaks indicative of strong adsorption, and there was also evi- dence of a preceding chemical reaction for several elements, sug- gesting decomplexation before reduction.
    [Show full text]
  • Thesis-1961-B586i.Pdf
    INVESTIGATION OF SOME POSSIBILITIES FOR AMPEROMETRIC TITRATION OF CERTAIN METAL IONS WITH OXINE By Donald George Biechler I I Bachelor of Science University of Wisconsin Madison, Wisconsin 1956 Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1961 INVESTIGATION OF SOME POSSIBILITIES FOR AMPEROMEI'RIC TITRATION OF CERTAIN MEI'AL IONS WITH OXINE Thesis Approved: Thesis Adviser i i OKLAHOMA STATE UNIVERSITY llBRARY JAN 2 1962 PREFACE Oxine (8-hydroxyquinoline) is most generally used in analytical chemistry as a precipitant for metals and is known to form water- insoluble chelates with better than thirty metal ions (3). There exists in solutions of oxine a tautomeric equilibrium of the fol- lowing type: C C C C /~/'\ ,c/""/~ C C f ij 1 I II I C C C C C C ~/"'/C N ~/C "+/N r . _I I 0 H 0--------H Chelation of a metal ion involves replacement of the proton and for- mation of a coordinate bond with the nitrogen to form a stable 5 membered ring compound. Thus nickel, a bivalent cation, would form a compound with the following structure: 4810 90 iii iv The oxinates can be ignited and weighed as such or they may be further ignited to the metal oxides and then weighed. Alternately the oxinates may be dissolved in acid and quantitatively brominated (7)0 Considering the number of metal ions that are precipitated by oxine, it seemed that possibly more use could be made of the reagent in volumetric analysis.
    [Show full text]
  • COULOMETRY for the DETERMINATION of URANIUM and PLUTONIUM: PAST and PRESENT by M.K
    BARC/2012/E/001 BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division 2012 BARC/2012/E/001 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2012 BARC/2012/E/001 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series : BARC External 05 Report type : Technical Report 06 Report No. : BARC/2012/E/001 07 Part No. or Volume No. : 08 Contract No. : 10 Title and subtitle : Coulometry for the determination of uranium and plutonium: past and present 11 Collation : 34 p., 2 figs., 7 tabs. 13 Project No. : 20 Personal author(s) : M.K. Sharma; J.V. Kamat; A.S. Ambolikar; J.S. Pillai; S.K. Aggarwal 21 Affiliation of author(s) : Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate author(s) : Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Fuel Chemistry Division, BARC, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type : Government Contd... BARC/2012/E/001 30 Date of submission : December 2011 31 Publication/Issue date : January 2012 40 Publisher/Distributor : Head, Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution : Hard copy 50 Language of text : English 51 Language of summary : English, Hindi 52 No.
    [Show full text]
  • ALS Product Catalog Information
    ALS Product Catalog Instrumentation Vol. 019A Working Electrodes Working Variety of products line up for research purposes Counter Electrodes RRDE-3A Reference ElectrodesReference Cells Voltammetry Flow Cells Model2325 SEC2020 Spectroelectrochemistry Others Electrochemistry General Catalog Information Technical notes and Movie library ALS technical notes and movie https://www.als-japan.com/technical-note.html frontpage --> Technical note ALS website has a "Technical note" and "Movie library" section, where you will find useful information and introduction movie of the products. For the instrument, set up and application movies will help you in the choose of the accessories. We will be always producing and releasing new movies, attending the demands of spectators. Inspection data sheet download service https://www.als-japan.com/dl/ Inspection data sheet link frontpage --> Support --> Electrode data ALS working and reference electrodes are tested and inspected before shipment, and the check data could be confirmed through the website. In the instruction manual, for the product which the check data is available, you will find the website direction. Product manual download service Instrumentation ALS Instruments instruction manual https://www.als-japan.com/support-instrument-manual.html Manual download link frontpage --> Support --> Instrument Manual Electrodes ALS support product manual https://www.als-japan.com/support-product-manual.html Manual download link frontpage --> Support --> Products Manual ALS product manual is available for download
    [Show full text]
  • Voltammetry (Chapter 25) Electrochemistry Techniques Based on Current (I) Measurement As Function of Voltage (Eappl)
    Voltammetry (Chapter 25) Electrochemistry techniques based on current (i) measurement as function of voltage (Eappl) Voltage Supply - + Variable Resistor max min Cell I Working Counter Electrode Electrode V Reference Electrode Working electrode (microelectrode) place where redox occurs surface area few mm2 to limit current flow Reference electrode constant potential reference (SCE) Counter electrode inert material (Hg, Pt) plays no part in redox but completes circuit Supporting electrolyte alkali metal salt does not react with electrodes but has conductivity CEM 333 page 12.1 Why not use 2 electrodes? OK in potentiometry - very small currents. Now, want to measure current (larger=better) but • potential drops when current is taken from electrode (IR drop) • must minimize current withdrawn from reference electrode surface Potentiostat (voltage source) drives cell • supplies whatever voltage needed between working and counter electrodes to maintain specific voltage between working and reference electrode NOTE: • Almost all current carried between working and counter electrodes • Voltage measured between working and reference electrodes • Analyte dissolved in cell not at electrode surface! CEM 333 page 12.2 Excitation signals (Fig 25-2) CEM 333 page 12.3 Microelectrodes C, Au, Pt, Hg each useful in certain solutions/voltage ranges Fig 25-4 At -ve limit, oxidation of water + - 2H2O ® 4H + O2(g) + 4e At +ve limit, reduction of water - - 2H2O + 2e ® H2 + 2OH CEM 333 page 12.4 Varies with material/solution due to different overpotentials Overpotential
    [Show full text]
  • Electrogravimetry and Coulometry
    Electrogravimetry and Coulometry • Based on an analysis that is carried out by passing an electric current for a sufficient length of time to ensure complete oxidation or reduction of the analyte to a single product of known composition • Moderately sensitive, more accurate, require no preliminary calibration against standards i.e. Absolute analysis is possible 4/16/202 1 0 2 Electrogravimetry - The product is weighed as a deposit on one of the electrodes (the working electrode) • Constant Applied Electrode Potential • Controled Working Electrode Potential Coulometry - • The quantity of electrical charge needed to complete the electrolysis is measured • Types of coulometric methods Controlled- potential coulometry Coulometric titrimetry 4/16/202 2 0 3 Electrogravimetric Methods • Involve deposition of the desired metallic element upon a previously weighed cathode, followed by subsequent reweighing of the electrode plus deposit to obtain by difference the quantity of the metal • Cd, Cu, Ni, Ag, Sn, Zn can be determined in this manner • Few substances may be oxidized at a Pt anode to form an insoluble and adherent precipitate suitable for gravimetric measurement 3 e.g. oxidation of lead(II) to lead dio4/1xi6/20d2 e in HNO acid 3 0 4 • Certain analytical separations can be accomplished Easily reducible metallic ions are deposited onto a mercury pool cathode Difficult-to-reduce cations remain in solution Al, V, Ti, W and the alkali and alkaline earth metals may be separated from Fe, Ag, Cu, Cd, Co, and Ni by deposition of the latter group of elements onto mercury 4/16/202 4 0 5 Constant applied potential (no control of the working electrode potential) Electrogravimetric methods Controlled working electrode potential 4/16/202 5 0 6 Constant applied potential electrogravimetry • Potential applied across the cell is maintained at a constant level throughout the electrolysis • Need a simple and inexpensive equipment • Require little operator attention • Apparatus consists of I).
    [Show full text]