Orden STOMATOPODA Manual

Total Page:16

File Type:pdf, Size:1020Kb

Orden STOMATOPODA Manual Revista IDE@-SEA, nº 84 (30-06-2015): 1-10. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Malacostraca Orden STOMATOPODA Manual CLASE MALACOSTRACA Orden Stomatopoda Pere Abelló1 & Guillermo Guerao2 1 Institut de Ciències del Mar (CSIC), Passeig Marítim 37-49, 08003 Barcelona (España) [email protected] 2 Passeig Fabra i Puig 344, 08031 Barcelona (España) 1. Breve definición del grupo y principales caracteres diagnósticos Los estomatópodos o galeras son crustáceos marinos bentónicos de talla relativamente grande y hábitos depredadores, restringidos principalmente a las aguas someras tropicales, aunque algunas especies habitan el talud continental hasta profundidades de unos 1500 m (Manning, 1991). Su cuerpo es alargado y una de sus principales características morfológicas es la presencia del segundo par de apéndices torá- cicos modificados en forma de pinza subquelada prensil de morfología similar a la de las mantis religio- sas. Se conocen en la actualidad un total de casi 500 especies pertenecientes en la actualidad a un único suborden, los Unipeltata, constituido por siete superfamilias: Bathysquilloidea, Erythrosquilloidea, Eurys- quilloidea, Gonodactyloidea, Lysiosquilloidea, Parasquilloidea y Squilloidea (Ahyong & Schram, 2013). En la actualidad se reconocen un total de 17 familias de estomatópodos. El registro fósil nos indica que el origen de los estomatópodos se encuentra en el Devónico. Este orden se encuentra actualmente en pleno estudio, tanto a nivel biológico, fisiológico y ecológico como a nivel de sistemática y filogenia. Diagnosis: El pleon (abdomen) está más desarrollado que el cefalotórax, de apariencia reducida (no cubre todos los segmentos torácicos); los ojos suelen ser pedunculados y lobulados; las anténulas pre- sentan tres flagelos; la escama antenal o escafocerito tiene dos artejos, el basal generalmente pequeño; los toracópodos o apéndices torácicos tienen protopodios tri-segmentados (pre-coxa, coxa y basis) y endópodos (o rama interna) con cuatro segmentos; las branquias, dendrobranquiadas, se originan en las bases de los pleópodos. 1.1. Morfología El cuerpo está constituido por tres tagmas: céfalon o cabeza, pereion o tórax y pleon o abdomen. El céfa- lon está constituido por cinco somitos (excluyendo el acron), el pereion por ocho y el pleon por seis (ex- cluyendo el telson). El telson está bien desarrollado y se encuentra ocasionalmente fusionado con el sexto somito abdominal formando un pleotelson. Posteriormente al acron o somito oftálmico se presentan los cinco somitos cefálicos (con anténulas, antenas y apéndices bucales: mandíbulas, maxílulas y maxilas). Los cinco primeros segmentos torácicos se denominan a veces maxilípedos, mientras que los tres restantes constituyen los toracópodos o patas marchadoras. El caparazón está bien desarrollado y cubre dorsalmente el céfalon (excepto el acron o región pre- segmental y el somito antenular) y la mitad anterior del pereion. Los ojos son pedunculados y compuestos y presentan la córnea lobulada. El ojo compuesto de los es- tomatópodos es muy complejo, y en algunas especies tropicales ha sido considerado como el ojo más complejo y diverso de la biosfera (Marshall, 1988; Bok et al., 2013). Revista IDE@-SEA, nº 84 (30-06-2015): 1-10. ISSN 2386-7183 2 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Malacostraca Orden STOMATOPODA Manual Fig. 1. Morfología externa de la galera, Squilla mantis; (a) vista dorsal; (b) vista lateral. (original de G. Guerao); publicado en Abelló & Guerao (2004). Los ojos de los estomatópodos presentan distintos tipos de fotoreceptores sensibles a la intensidad de luz y a longitudes de onda que van desde el ultravioleta hasta casi prácticamente el infrarrojo. Además, algunos fotoreceptores son sensibles a la polarización de la luz. La estructura física y molecular de estos fotoreceptores es extremadamente compleja. La visión en color es importante en la comunicación entre individuos, así como en el comportamiento reproductor y territorial. El ojo típico de un estomatópodo se presenta estructurado en tres lóbulos, con dos hemisferas, dor- sal y ventral, separadas por una banda media de varias filas de omatidios especializados. Los omatidios de ambas hemisferas poseen básicamente la estructura típica de los ojos compuestos de aposición pre- sentes en los crustáceos. Las principales modificaciones y especializaciones características y únicas de los estomatópodos se presentan en la banda media. La orientación de los omatidios permite obtener una imagen a partir de tres áreas distintas e independientes del ojo. Adicionalmente a la visión solapada de los tres campos visuales, cada ojo puede presentar movimientos independientes dirigidos a distintas áre- as del campo visual presente en cada momento. En algunas familias, los ojos pueden presentar distintas Revista IDE@-SEA, nº 84 (30-06-2015): 1-10. ISSN 2386-7183 3 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Malacostraca Orden STOMATOPODA Manual áreas especializadas, con alta sensibilidad a longitudes de onda diferenciadas o con estructuras dirigidas al aumento de la agudeza visual. En las retinas de los estomatópodos se han detectado un mínimo de once tipos distintos de rodopsi- nas (pigmentos visuales), el máximo número detectado en cualquier otro grupo zoológico. Adicionalmen- te, los fotoreceptores poseen filtros para minimizar ruido y optimizar la sensibilidad a longitudes de onda específicas. El somito antenular suele estar cubierto por la placa rostral, articulada con el caparazón. Las anté- nulas son trisegmentadas y terminan en tres flagelos. Las antenas están formadas por un protopodio anterior o pedúnculo bisegmentado, por un exopodio bisegmentado y por un endopodio trisegmentado provisto de un flagelo. El segmento terminal del exopo- dio es ancho y constituye el escafocerito. Los restantes somitos cefálicos y los cuatro primeros somitos torácicos están cubiertos dorsalmente por el caparazón. Éste presenta normalmente tres surcos en su superficie: uno cervical y dos gástricos paralelos. Las mandíbulas son grandes y presentan un proceso incisivo y un proceso molar. Puede o no existir un palpo mandibular. Las maxílulas constan de un protopodio bisegmentado con un endito en cada segmento, basal y coxal. El endopodio está reducido a un pequeño segmento (palpo). No existe exopodio. Las maxilas son las más externas. Están formadas por cuatro segmentos; los dos primeros (basa- les) presentan enditos más o menos desarrollados. Los cinco primeros pares de apéndices torácicos (o toracópodos) son subquelados y se utilizan pa- ra la predación, alimentación y excavación de madrigueras. Están constituidos por siete artejos, aunque suele haber alguna fusión intersegmental. El segundo par es mucho más largo y fuerte que el resto; el propodio y el dáctilo forman una poderosa pinza subquelada (el dáctilo o segmento terminal se cierra sobre el propodio), de apariencia similar a las pinzas de las mantis religiosas, de donde les viene su nom- bre en inglés, mantis shrimps. Los tres últimos pares de apéndices torácicos son birrámeos y se utilizan en la locomoción. El pro- topodio está formado por tres segmentos. La rama externa está constituida por un único segmento y constituye el endopodio, contrariamente a lo que pudiera parecer. La rama interna, bisegmentada, es el exopodio. Las posiciones relativas del exopodio y el endopodio se han invertido durante el desarrollo. Los gonoporos se localizan en el sexto segmento del pereion en las hembras y en el octavo en los machos. Los machos presentan además un par de estructuras tubulares copulatorias o penes en la base del último par de apéndices torácicos. Existen seis pares de apéndices abdominales o pleópodos. Los cinco primeros suelen llevar bran- quias y tienen también una función natatoria. Se trata de apéndices birrámeos, anchos y aplastados. Constan de un protopodio basal provisto de un endopodio y un exopodio, cada uno con dos segmentos poco conspicuos. Cada segmento distal del endopodio lleva en el apéndice interno o estilamblis una es- tructura denominada retináculo mediante la cual se une a su homólogo. Los movimientos de cada par de pleópodos se ajustan de esta manera y pueden moverse al unísono. En los machos, los endopodios del primer y segundo par de pleópodos están modificados a modo de petasma, aunque el segundo sólo muy ligeramente. El sexto par de apéndices abdominales lo constituyen los urópodos. Éste se encuentra usualmente separado del telson, pero puede haber en ciertos casos una fusión entre los mismos, formándose un pleotelson. Los urópodos consisten típicamente en un protopodio que termina en un exopodio bisegmen- tado y un endopodio unisegmentado. Una proyección ventral de la base del urópodo constituye el proceso bifurcado. El segmento proximal del exopodio está provisto de una serie de espinas móviles. Los urópo- dos forman junto con el telson un amplio abanico natatorio. En la superficie anteroventral del telson se encuentra el poro anal. 1.2. Historia natural Hábitat: Los estomatópodos son crustáceos bentónicos que habitan en madrigueras excavadas en el fango o en oquedades y grietas en zonas rocosas y arrecifes de coral. Reproducción: Son especies ovíparas que cuidan la puesta. Las hembras ovígeras transportan los em- briones en los maxilípedos, aglutinados en una secreción procedente de la glándula del cemento, muy evidente como franjas blanquecinas presentes en hembras maduras entre los tres últimos pares
Recommended publications
  • High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
    High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H.
    [Show full text]
  • Stomatopoda of Greece: an Annotated Checklist
    Biodiversity Data Journal 8: e47183 doi: 10.3897/BDJ.8.e47183 Taxonomic Paper Stomatopoda of Greece: an annotated checklist Panayota Koulouri‡, Vasilis Gerovasileiou‡§, Nicolas Bailly , Costas Dounas‡ ‡ Hellenic Center for Marine Recearch (HCMR), Heraklion, Greece § WorldFish Center, Los Baños, Philippines Corresponding author: Panayota Koulouri ([email protected]) Academic editor: Eva Chatzinikolaou Received: 09 Oct 2019 | Accepted: 15 Mar 2020 | Published: 26 Mar 2020 Citation: Koulouri P, Gerovasileiou V, Bailly N, Dounas C (2020) Stomatopoda of Greece: an annotated checklist. Biodiversity Data Journal 8: e47183. https://doi.org/10.3897/BDJ.8.e47183 Abstract Background The checklist of Stomatopoda of Greece was developed in the framework of the LifeWatchGreece Research Infrastructure (ESFRI) project, coordinated by the Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC) of the Hellenic Centre for Marine Research (HCMR). The application of the Greek Taxon Information System (GTIS) of this project has been used in order to develop a complete checklist of species recorded from the Greek Seas. The objectives of the present study were to update and cross-check all the stomatopod species that are known to occur in the Greek Seas. Inaccuracies and omissions were also investigated, according to literature and current taxonomic status. New information The up-to-date checklist of Stomatopoda of Greece comprises nine species, classified to eight genera and three families. Keywords Stomatopoda, Greece, Aegean Sea, Sea of Crete, Ionian Sea, Eastern Mediterranean, checklist © Koulouri P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Stomatopoda: Parasquillidae) from Korea
    Anim. Syst. Evol. Divers. Vol. 29, No. 3: 245-248, July 2013 http://dx.doi.org/10.5635/ASED.2013.29.3.245 Short communication First Report of the Mantid Shrimp Faughnia formosae (Stomatopoda: Parasquillidae) from Korea Hee-seung Hwang, Sang-kyu Lee, Mijin Kim, Won Kim* School of Biological Sciences, Seoul National University, Seoul 151-747, Korea ABSTRACT The stomatopods are aggressive predatory marine crustaceans, which are mainly found in tropical and subtro- pical regions. Among these, a parasquillid stomatopod, Faughnia formosae Manning and Chan, 1997, collect- ed from Jeju Island, is reported for the first time in Korea. The family is easily distinguished from other fam- ilies by the presence of an asymmetrically bilobed cornea, stout propodus on the raptorial claw, and three primary spines of the uropodal protopod. In the paper, detailed descriptions and illustrations of this species are provided alongside a photograph. A key to the species of Korean mantis shrimp is also presented. As a result of this study, four species of stomatopods including this species are now recorded in Korean fauna. Keywords: Crustacea, stomatopoda, Parasquillidae, Faughnia, mantis shrimp INTRODUCTION A steromicroscope (MZ8; Leica, Wetzlar, Germany) was used for observation and sorting. Images were recorded using The stomatopods, commonly called mantis shrimp, are ag- a digital camera (Model D7000; Nikon, Tokyo, Japan). Body gressive predators which are found in tropical and subtropi- length, or total length, was measured along the dorsal midline cal regions (Ahyong, 2001). Large and powerful raptorial from the apex of the rostral plate to the apices of the subme- appendages, which can be used by ‘smashing’ or ‘spearing’, dian teeth of the telson.
    [Show full text]
  • Detection of a Population of Pseudosquillopsis Cerisii (Roux, 1828) (Crustacea, Stomatopoda, Parasquillidae) in the Northwestern Mediterranean
    Arxius de Miscel·lània Zoològica , 16 (2018): 213–219 AbellóISSN: and 1698 Maynou–0476 Detection of a population of Pseudosquillopsis cerisii (Roux, 1828) (Crustacea, Stomatopoda, Parasquillidae) in the northwestern Mediterranean P. Abelló, F. Maynou Abelló, P., Maynou, F., 2018. Detection of a population of Pseudosquillopsis cerisii (Roux, 1828) (Crustacea, Stomatopoda, Parasquillidae) in the northwestern Mediterranean. Arxius de Miscel·lània Zoològica , 16: 213–219. Abstract Detection of a population of Pseudosquillopsis cerisii (Roux, 1828) (Crustacea, Stomatopoda, Parasquillidae) in the northwestern Mediterranean. A population of the poorly–known stomatopod crustacean, Pseudosquillopsis cerisii, was detected in the NW Mediterranean Sea. To date, in Mediterranean waters, this species was only known from rare reports that were mainly based on the occurrence of single individuals. Analysis of the stomach contents of ��sh predators caught i n coastal trammel–net artisanal ��sheri es r evealed several i ndividuals of t his species on a sandy bottom with nearby Posidonia seagrass beds in an area within the vicinity of Vilanova i la Geltrú (Catalonia). This is the ��rst r eport of t he species fr o m I beri an Peninsula waters. Key words: Pseudosquillopsis cerisii , Biogeography, Mediterranean, Occurrence, Population, Record Resumen Detección de una población de Pseudosquillopsis cerisii (Roux, 1828) (Crustacea, Sto - matopoda, Parasquillidae) en el Mediterráneo noroccidental. Se ha detectado una población de Pseudosquillopsis cerisii , un crustáceo estomatópodo escasamente conocido en el Mediterráneo noroccidental. En aguas mediterráneas, esta especie era conocida hasta la fecha tan solo por unas cuantas citas principalmente de ejemplares aislados. El análisis del contenido gástrico de peces depredadores capturados utilizando trasmallos en pesca artesanal ha permitido la detección de varios individuos de esta especie en fondos de arena situados en aguas próximas a Vilanova i la Geltrú (Cataluña), en las cercanías de praderas de Posidonia .
    [Show full text]
  • Stomatopod Interrelationships: Preliminary Results Based on Analysis of Three Molecular Loci
    Arthropod Systematics & Phylogeny 91 67 (1) 91 – 98 © Museum für Tierkunde Dresden, eISSN 1864-8312, 17.6.2009 Stomatopod Interrelationships: Preliminary Results Based on Analysis of three Molecular Loci SHANE T. AHYONG 1 & SIMON N. JARMAN 2 1 Marine Biodiversity and Biodescurity, National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand [[email protected]] 2 Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia [[email protected]] Received 16.iii.2009, accepted 15.iv.2009. Published online at www.arthropod-systematics.de on 17.vi.2009. > Abstract The mantis shrimps (Stomatopoda) are quintessential marine predators. The combination of powerful raptorial appendages and remarkably developed sensory systems place the stomatopods among the most effi cient invertebrate predators. High level phylogenetic analyses have been so far based on morphology. Crown-group Unipeltata appear to have diverged in two broad directions from the outset – one towards highly effi cient ‘spearing’ with multispinous dactyli on the raptorial claws (dominated by Lysiosquilloidea and Squilloidea), and the other towards ‘smashing’ (Gonodactyloidea). In a preliminary molecular study of stomatopod interrelationships, we assemble molecular data for mitochondrial 12S and 16S regions, combined with new sequences from the 16S and two regions of the nuclear 28S rDNA to compare with morphological hypotheses. Nineteen species representing 9 of 17 extant families and 3 of 7 superfamilies were analysed. The molecular data refl ect the overall patterns derived from morphology, especially in a monophyletic Squilloidea, a monophyletic Lysiosquilloidea and a monophyletic clade of gonodactyloid smashers. Molecular analyses, however, suggest the novel possibility that Hemisquillidae and possibly Pseudosquillidae, rather than being basal or near basal in Gonodactyloidea, may be basal overall to the extant stomatopods.
    [Show full text]
  • 2018 Bibliography of Taxonomic Literature
    Bibliography of taxonomic literature for marine and brackish water Fauna and Flora of the North East Atlantic. Compiled by: Tim Worsfold Reviewed by: David Hall, NMBAQCS Project Manager Edited by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] APEM Ltd. Date of Issue: February 2018 Bibliography of taxonomic literature 2017/18 (Year 24) 1. Introduction 3 1.1 References for introduction 5 2. Identification literature for benthic invertebrates (by taxonomic group) 5 2.1 General 5 2.2 Protozoa 7 2.3 Porifera 7 2.4 Cnidaria 8 2.5 Entoprocta 13 2.6 Platyhelminthes 13 2.7 Gnathostomulida 16 2.8 Nemertea 16 2.9 Rotifera 17 2.10 Gastrotricha 18 2.11 Nematoda 18 2.12 Kinorhyncha 19 2.13 Loricifera 20 2.14 Echiura 20 2.15 Sipuncula 20 2.16 Priapulida 21 2.17 Annelida 22 2.18 Arthropoda 76 2.19 Tardigrada 117 2.20 Mollusca 118 2.21 Brachiopoda 141 2.22 Cycliophora 141 2.23 Phoronida 141 2.24 Bryozoa 141 2.25 Chaetognatha 144 2.26 Echinodermata 144 2.27 Hemichordata 146 2.28 Chordata 146 3. Identification literature for fish 148 4. Identification literature for marine zooplankton 151 4.1 General 151 4.2 Protozoa 152 NMBAQC Scheme – Bibliography of taxonomic literature 2 4.3 Cnidaria 153 4.4 Ctenophora 156 4.5 Nemertea 156 4.6 Rotifera 156 4.7 Annelida 157 4.8 Arthropoda 157 4.9 Mollusca 167 4.10 Phoronida 169 4.11 Bryozoa 169 4.12 Chaetognatha 169 4.13 Echinodermata 169 4.14 Hemichordata 169 4.15 Chordata 169 5.
    [Show full text]
  • The Evolution of Social Monogamy and Biparental Care in Stomatopod Crustaceans
    The Evolution of Social Monogamy and Biparental Care in Stomatopod Crustaceans By Mary Louisa Wright A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell Professor Eileen Lacey Professor George Roderick Spring 2013 ABSTRACT The Evolution of Social Monogamy and Biparental Care in Stomatopod Crustaceans By Mary Louisa Wright Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair Although social monogamy and biparental care have been extensively studied in birds, mammals, and fish, the evolutionary origins and maintenance of these phenomena are not well- understood, particularly in invertebrate taxa. The evolution of social monogamy is of interest because current theory predicts that both males and females will usually gain more fitness from mating with multiple partners. Furthermore, biparental care should only occur when males and females both gain more fitness benefits from providing parental care than from investing time and energy into mate searching. Given these expectations, under what environmental and social conditions will social monogamy and biparental care arise and do the same conditions maintain monogamy and biparental care on an evolutionary time scale? Long-term social monogamy, which occurs when a male and female pair for longer than a single breeding cycle, has been reported in eight genera of Lysiosquilloid stomatopods. Furthermore, the Lysiosquilloidea also contains the only marine crustacean genus (Pullosquilla) in which biparental care has been systematically studied. This dissertation examines the evolutionary maintenance and origins of both biparental care and long-term social monogamy in the Lysiosquilloidea, using experimental manipulations, ecological surveys, and comparative, phylogenetically-based methods.
    [Show full text]
  • Rissoides Desmaresti INPN
    1 La squille de Desmarest Rissoides desmaresti (Risso, 1816) Citation de cette fiche : Noël P., 2016. La squille de Desmarest Rissoides desmaresti (Risso, 1816). in Muséum national d'Histoire naturelle [Ed.], 5 décembre 2016. Inventaire national du Patrimoine naturel, pp. 1-10, site web http://inpn.mnhn.fr Contact de l'auteur : Pierre Noël, SPN et DMPA, Muséum national d'Histoire naturelle, 43 rue Buffon (CP 48), 75005 Paris ; e-mail [email protected] Résumé La squille de Desmarest est de taille moyenne, elle peut atteindre 10 cm de long. Son corps est très allongé, aplati. L'œil est très mobile. La griffe de sa patte ravisseuse porte 5 dents, dent apicale comprise. Le telson a une carène médiane bien marquée ; il est très épineux. Les mâles sont beige moucheté, et les femelles ont le centre du corps rose lorsqu'elles sont en vitellogenèse. La femelle tient ses œufs devant la bouche pendant l'incubation. Il y a neuf stades larvaires ; les larves sont planctoniques. La squille vit dans un terrier ayant une forme en "U". C'est un prédateur de petite faune vagile. Cette squille se rencontre dans l'Atlantique européen et dans toute la Méditerranée. Elle fréquente les herbiers de phanérogames marines et divers sédiments sableux jusqu'à une centaine de mètres de profondeur. Figure 1. Vue dorsale d'un spécimen catalan ; 4 mars 1975, Figure 2. Carte de distribution en France -7m, herbier du Racou (66). Photo © Jean Lecomte. métropolitaine. © P. Noël INPN-MNHN 2016. Classification : Phylum Arthropoda Latreille, 1829 > Sub-phylum Crustacea Brünnich, 1772 > Super-classe Multicrustacea Regier, Shultz, Zwick, Hussey, Ball, Wetzer, Martin & Cunningham, 2010 > Classe Malacostraca Latreille, 1802 > Sous-classe Eumalacostraca Grobben, 1892 > Super- ordre Hoplocarida Calman, 1904 > Ordre Stomatopoda Latreille, 1817 > Sous-ordre Unipeltata Latreille, 1825 > Super-famille Squilloidea Latreille, 1803 > Famille Squillidae Latreille, 1803 > Genre Rissoides Manning et Lewinsohn, 1982.
    [Show full text]
  • South Adriatic, Mediterranean Sea, Italy)
    IJRES 6 (2019) 1-13 ISSN 2059-1977 Spatial distributions of macrozoobenthic community doi.org/10.33500/ and environmental condition of the Manfredonia Gulf ijres.2019.06.001 (South Adriatic, Mediterranean Sea, Italy) T. Scirocco*, L. Cilenti, A. Specchiulli, S. Pelosi, R. D’Adamo and F. Urbano National Research Council - Institute for Biological Resources and Marine Biotechnology (IRBIM) uos of Lesina (FG), Via Pola 4, 71010 Lesina (FG), Italy. Article History ABSTRACT Received 05 November, 2018 This study conducted in spring 2014 describes the spatial distribution of the Received in revised form 10 macrozoobenthic community and the environmental condition of the December, 2018 Accepted 13 December, 2018 Manfredonia Gulf (South Adriatic, Mediterranean Sea) through the application of the abundance-biomass-comparison (ABC) index. The surface sediments of the Keywords: Manfredonia Gulf were mostly silt-clay and clayey-silt. A total of 56 species was Macrozoobenthic identified. The Crustaceans had the highest number of species (16 species) community, followed by Polychaeta with 14 species who possessed the highest number of Spatial distribution, individuals (57% of total specimens). The Crustacea Apseudopsis latreillii and ABC index, the Polychaeta Capitellidae and Maldanidae family dominated the area. The Mediterranean abundance and wet biomass of the macrozoobenthic fauna was ranged -2 Manfredonia Gulf. respectively from 132±0.00 to 4605±2950.27 ind m and from 2±2.03 to -2 460.64±664.43 gr m . The resulting ABC index (W=0.32±0.26) indicated that the Manfredonia Gulf is a moderately disturbed area. This first ecological survey has revealed that the area presents a general condition of disturbance that deserves Article Type: to be carefully monitored even in the context of the current global climate Full Length Research Article change.
    [Show full text]
  • New Species in the North Sea. ICES CM 2006/C:30
    New species in the North Sea ICES CM 2006/C:30 Henk J.L. Heessen and Jim R. Ellis Introduction In recent years a number of new fish and invertebrate species have been reported from There are several biological responses to variations in environmental conditions (including the North Sea, both from research vessel surveys and from commercial catches. At the climate change), as suggested by Cushing & Dickson (1976), and these include (a) same time the abundance of some more southerly fish species has increased, and in the appearance of vagrant species, (b) establishment of new, resident populations, (c) case of the striped red mullet (Mullus surmuletus) and sea bass (Dicentrarchus labrax), increases/decreases in fish stocks (due to year-class strength), and (d) more fundamental even a directed fishery has developed. Other species are now found in much higher structural changes in the ecosystem and fish assemblage. numbers than some decades ago. Vagrants and regular visitors Vagrants are species that are only caught incidentally in the North Sea, usually in low numbers, breed in other areas, and do not establish resident populations. Many of the known vagrants in the North Sea are pelagic fish. Some species are observed more regularly, though not every year, and may not have self-sustaining North Sea populations. Violet stingray (Pteroplatytrygon Butterfish (Stromateus fiatola) is another vagrant and violacea) is a vagrant which is which occurs in the subtropical part of the Eastern Atlantic widespread in tropical and warm and is rare in the Bay of Biscay. Two specimens (46 and 49 temperate oceanic waters.
    [Show full text]
  • Mantis Shrimp - Wikipedia
    Mantis shrimp - Wikipedia https://en.wikipedia.org/wiki/Mantis_shrimp Mantis shrimp Mantis shrimps , or stomatopods , are marine crustaceans of the Mantis shrimp order Stomatopoda . Some species have specialised calcified "clubs" that can strike with great power, while others have sharp forelimbs used Temporal range: 400–0 Ma to capture prey. They branched from other members of the class Pre Є Є O S D C P T J K Pg N Malacostraca around 340 million years ago. [2] Mantis shrimps typically grow to around 10 cm (3.9 in) in length. A few can reach up to 38 cm (15 in). [3] The largest mantis shrimp ever caught had a length of 46 cm (18 in); it was caught in the Indian River near Fort Pierce, Florida, in the United States.[4] A mantis shrimp's carapace (the bony, thick shell that covers crustaceans and some other species) covers only the rear part of Odontodactylus scyllarus the head and the first four segments of the thorax. Varieties range from shades of brown to vivid colors, as more than 450 species of mantis Scientific classification shrimps are known. They are among the most important predators in Kingdom: Animalia many shallow, tropical and subtropical marine habitats. However, Phylum: Arthropoda despite being common, they are poorly understood, as many species spend most of their lives tucked away in burrows and holes. [5] Subphylum: Crustacea Called "sea locusts" by ancient Assyrians, "prawn killers" in Australia, [6] Class: Malacostraca and now sometimes referred to as "thumb splitters"—because of the Subclass: Hoplocarida [7] animal's ability to inflict painful gashes if handled incautiously Order: Stomatopoda —mantis shrimps have powerful claws that are used to attack and kill Latreille, 1817 prey by spearing, stunning, or dismembering.
    [Show full text]
  • Late Cretaceous Stomatopods (Crustacea, Malacostraca) from Israel And
    Contributions to Zoology, 67 (4) 257-266 (1998) SPB Academic Publishing bv, Amsterdam Late Cretaceous stomatopods (Crustacea, Malacostraca) from Israel and Jordan Cees+H.J. Hof Institute for Systematics and Population Biology, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands Keywords: Stomatopoda, Mesozoic, Cretaceous, fossils, taphonomy, taxonomy, Squilloidea, new family Ursquillidae, new genus Ursquilla Abstract fossils from Jordan and Israel, confirms Glaessner’s suggestion. The fossils, originating from three dif- The eryonid decapod Eryon yehoachi Remy & Avnimelech, allow ferent localities (Fig. 1), a detailed recon- the is 1955, from Late Cretaceous of Israel, redescribed as a struction of the telson, the sixth abdominal tergite, fossil stomatopod species within the new genus Ursquilla. This and parts of the uropods. Although this analysis is redescription is based on the original type specimen and two based on fossil the telson of additional records from Israel and Jordan. The material allows incomplete material, a detailed reconstruction of the telson, the sixth abdominal this Cretaceous stomatopod carries enough informa- tergite, and part of the uropods. The distinct telson ornamen- tion to recognize a new genus within a new family. tation ofthese the erection of stomatopods justifies a new family The newly recognized stomatopod sheds a fresh within the superfamily Squilloidea. light on the evolution of these remarkable crusta- ceans. Introduction Abbreviations of depositories In 1955, Remy & Avnimelech described Eryon a new of the extinct yehoachi, species decapod BMNH, The Natural History Museum, London GSI, family Eryonidae. Their description was based on Geological Survey of Israel, Jerusalem MNHN, Museum National d’Histoire Naturelle, Paris a single specimen from the Upper Cretaceous (Cam- panian) of the Ouadi Seiyal Valley in eastern Israel.
    [Show full text]