Derived Algebraic Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HODGE THEORY LEFSCHETZ PENCILS 1. More on Lefschetz
HODGE THEORY LEFSCHETZ PENCILS JACOB KELLER 1. More on Lefschetz Pencils When studying the vanishing homology of a hyperplane section, we want to view the hyperplane as one element of a Lefschetz pencil. This is because associated to each singular divisor in the pencil, there is an element of the homology of our hyperplane that is not detected by the Lefschetz hyperplane theorem. In order to do this we should know more about Lefschetz pencils, and that’s how we will start this lecture. We want to be able to produce Lefschetz pencils containing a given hyperplane section. So we should get a better characterization of a Lefschetz pencil that is easier to compute. Let X be a projective variety embedded in PN that is not contained in a hyperplane. We consider the variety N∗ Z = {(x, H)|x ∈ X ∩ H is a singular point} ⊆ X × P To better understand the geometry of Z, we consider it’s projection π1 : Z → X. For any x ∈ X and N hyperplane H ⊆ P , the tangent plane to H ∩ X at x is the intersection of H and TxX. Thus X ∩ H will −1 be singular at x if and only if H contains TxX. Thus for x ∈ X, π1 (Z) is the set of hyperplanes that contain TxX. These hyperplanes form an N − n − 1 dimensional projective space, and thus π1 exhibits Z as a PN − n − 1-bundle over X, and we deduce that Z is smooth. N∗ Now we consider the projection π2 : Z → P . The image of this map is denoted DX and is called the discriminant of X. -
Rational Curves on Hypersurfaces
Rational curves on hypersurfaces ||||||{ Lecture notes for the II Latin American School of Algebraic Geometry and Applications 1{12 June 2015 Cabo Frio, Brazil ||||||{ Olivier Debarre January 4, 2016 Contents 1 Projective spaces and Grassmannians 3 1.1 Projective spaces . 3 1.2 The Euler sequence . 4 1.3 Grassmannians . 4 1.4 Linear spaces contained in a subscheme of P(V )................ 5 2 Projective lines contained in a hypersurface 9 2.1 Local study of F (X) ............................... 9 2.2 Schubert calculus . 10 2.3 Projective lines contained in a hypersurface . 12 2.3.1 Existence of lines in a hypersurface . 12 2.3.2 Lines through a point . 16 2.3.3 Free lines . 17 2.4 Projective lines contained in a quadric hypersurface . 18 2.5 Projective lines contained in a cubic hypersurface . 19 2.5.1 Lines on a smooth cubic surface . 20 2.5.2 Lines on a smooth cubic fourfold . 22 2.6 Cubic hypersurfaces over finite fields . 25 3 Conics and curves of higher degrees 29 3.1 Conics in the projective space . 29 3.2 Conics contained in a hypersurface . 30 3.2.1 Conics contained in a quadric hypersurface . 32 3.2.2 Conics contained in a cubic hypersurface . 33 3.3 Rational curves of higher degrees . 35 4 Varieties covered by rational curves 39 4.1 Uniruled and separably uniruled varieties . 39 4.2 Free rational curves and separably uniruled varieties . 41 4.3 Minimal free rational curves . 44 Abstract In the past few decades, it has become more and more obvious that rational curves are the primary player in the study of the birational geometry of projective varieties. -
Bézout's Theorem
Bézout's theorem Toni Annala Contents 1 Introduction 2 2 Bézout's theorem 4 2.1 Ane plane curves . .4 2.2 Projective plane curves . .6 2.3 An elementary proof for the upper bound . 10 2.4 Intersection numbers . 12 2.5 Proof of Bézout's theorem . 16 3 Intersections in Pn 20 3.1 The Hilbert series and the Hilbert polynomial . 20 3.2 A brief overview of the modern theory . 24 3.3 Intersections of hypersurfaces in Pn ...................... 26 3.4 Intersections of subvarieties in Pn ....................... 32 3.5 Serre's Tor-formula . 36 4 Appendix 42 4.1 Homogeneous Noether normalization . 42 4.2 Primes associated to a graded module . 43 1 Chapter 1 Introduction The topic of this thesis is Bézout's theorem. The classical version considers the number of points in the intersection of two algebraic plane curves. It states that if we have two algebraic plane curves, dened over an algebraically closed eld and cut out by multi- variate polynomials of degrees n and m, then the number of points where these curves intersect is exactly nm if we count multiple intersections and intersections at innity. In Chapter 2 we dene the necessary terminology to state this theorem rigorously, give an elementary proof for the upper bound using resultants, and later prove the full Bézout's theorem. A very modest background should suce for understanding this chapter, for example the course Algebra II given at the University of Helsinki should cover most, if not all, of the prerequisites. In Chapter 3, we generalize Bézout's theorem to higher dimensional projective spaces. -
Mathematics 1
Mathematics 1 MAA 4103 Introduction to Advanced Calculus for Engineers and Physical MATHEMATICS Scientists 2 3 Credits Grading Scheme: Letter Grade Not all courses are offered every semester. Refer to the schedule of Continues the advanced calculus for engineers and physical scientists courses for each term's specific offerings. sequence. Theory of integration, transcendental functions and infinite More Info (http://registrar.ufl.edu/soc/) series. MAA 4102 is not recommended for those who plan to do graduate work in mathematics; these students should take MAA 4212. Credit will Unless otherwise indicated in the course description, all courses at the be given for, at most, one of MAA 4103, MAA 4212 and MAA 5105. University of Florida are taught in English, with the exception of specific Prerequisite: MAA 4102 with minimum grade of C. foreign language courses. MAA 4211 Advanced Calculus 1 3 Credits Department Information Grading Scheme: Letter Grade Advanced treatment of limits, differentiation, integration and series. Graduates from the Department of Mathematics might take a job Includes calculus of functions of several variables. Credit will be given for, that uses their math major in an area like statistics, biomathematics, at most, one of MAA 4211, MAA 4102 and MAA 5104. operations research, actuarial science, mathematical modeling, Prerequisite: MAS 4105 with minimum grade of C. cryptography, or mathematics education. Or they might continue into graduate school leading to a research career. Professional schools in MAA 4212 Advanced Calculus 2 3 Credits business, law, and medicine appreciate mathematics majors because of Grading Scheme: Letter Grade the analytical and problem solving skills developed in the math courses. -
The Jouanolou-Thomason Homotopy Lemma
The Jouanolou-Thomason homotopy lemma Aravind Asok February 9, 2009 1 Introduction The goal of this note is to prove what is now known as the Jouanolou-Thomason homotopy lemma or simply \Jouanolou's trick." Our main reason for discussing this here is that i) most statements (that I have seen) assume unncessary quasi-projectivity hypotheses, and ii) most applications of the result that I know (e.g., in homotopy K-theory) appeal to the result as merely a \black box," while the proof indicates that the construction is quite geometric and relatively explicit. For simplicity, throughout the word scheme means separated Noetherian scheme. Theorem 1.1 (Jouanolou-Thomason homotopy lemma). Given a smooth scheme X over a regular Noetherian base ring k, there exists a pair (X;~ π), where X~ is an affine scheme, smooth over k, and π : X~ ! X is a Zariski locally trivial smooth morphism with fibers isomorphic to affine spaces. 1 Remark 1.2. In terms of an A -homotopy category of smooth schemes over k (e.g., H(k) or H´et(k); see [MV99, x3]), the map π is an A1-weak equivalence (use [MV99, x3 Example 2.4]. Thus, up to A1-weak equivalence, any smooth k-scheme is an affine scheme smooth over k. 2 An explicit algebraic form Let An denote affine space over Spec Z. Let An n 0 denote the scheme quasi-affine and smooth over 2m Spec Z obtained by removing the fiber over 0. Let Q2m−1 denote the closed subscheme of A (with coordinates x1; : : : ; x2m) defined by the equation X xixm+i = 1: i Consider the following simple situation. -
Arxiv:1108.5351V3 [Math.AG] 26 Oct 2012 ..Rslso D-Mod( on Results Introduction the to 0.2
ON SOME FINITENESS QUESTIONS FOR ALGEBRAIC STACKS VLADIMIR DRINFELD AND DENNIS GAITSGORY Abstract. We prove that under a certain mild hypothesis, the DG category of D-modules on a quasi-compact algebraic stack is compactly generated. We also show that under the same hypothesis, the functor of global sections on the DG category of quasi-coherent sheaves is continuous. Contents Introduction 3 0.1. Introduction to the introduction 3 0.2. Results on D-mod(Y) 4 0.3. Results on QCoh(Y) 4 0.4. Ind-coherent sheaves 5 0.5. Contents of the paper 7 0.6. Conventions, notation and terminology 10 0.7. Acknowledgments 14 1. Results on QCoh(Y) 14 1.1. Assumptions on stacks 14 1.2. Quasi-coherent sheaves 15 1.3. Direct images for quasi-coherent sheaves 18 1.4. Statements of the results on QCoh(Y) 21 2. Proof of Theorems 1.4.2 and 1.4.10 23 2.1. Reducing the statement to a key lemma 23 2.2. Easy reduction steps 24 2.3. Devissage 24 2.4. Quotients of schemes by algebraic groups 26 2.5. Proof of Proposition 2.3.4 26 2.6. Proof of Theorem 1.4.10 29 arXiv:1108.5351v3 [math.AG] 26 Oct 2012 3. Implications for ind-coherent sheaves 30 3.1. The “locally almost of finite type” condition 30 3.2. The category IndCoh 32 3.3. The coherent subcategory 39 3.4. Description of compact objects of IndCoh(Y) 39 3.5. The category Coh(Y) generates IndCoh(Y) 42 3.6. -
Representation Stability, Configuration Spaces, and Deligne
Representation Stability, Configurations Spaces, and Deligne–Mumford Compactifications by Philip Tosteson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2019 Doctoral Committee: Professor Andrew Snowden, Chair Professor Karen Smith Professor David Speyer Assistant Professor Jennifer Wilson Associate Professor Venky Nagar Philip Tosteson [email protected] orcid.org/0000-0002-8213-7857 © Philip Tosteson 2019 Dedication To Pete Angelos. ii Acknowledgments First and foremost, thanks to Andrew Snowden, for his help and mathematical guidance. Also thanks to my committee members Karen Smith, David Speyer, Jenny Wilson, and Venky Nagar. Thanks to Alyssa Kody, for the support she has given me throughout the past 4 years of graduate school. Thanks also to my family for encouraging me to pursue a PhD, even if it is outside of statistics. I would like to thank John Wiltshire-Gordon and Daniel Barter, whose conversations in the math common room are what got me involved in representation stability. John’s suggestions and point of view have influenced much of the work here. Daniel’s talk of Braids, TQFT’s, and higher categories has helped to expand my mathematical horizons. Thanks also to many other people who have helped me learn over the years, including, but not limited to Chris Fraser, Trevor Hyde, Jeremy Miller, Nir Gadish, Dan Petersen, Steven Sam, Bhargav Bhatt, Montek Gill. iii Table of Contents Dedication . ii Acknowledgements . iii Abstract . .v Chapters v 1 Introduction 1 1.1 Representation Stability . .1 1.2 Main Results . .2 1.2.1 Configuration spaces of non-Manifolds . -
Homology Theory on Algebraic Varieties
HOMOLOGY THEORYon ALGEBRAIC VARIETIES HOMOLOGY THEORY ON ALGEBRAIC VARIETIES by ANDREW H. WALLACE Assistant Professor of Mathematics University of Toronto PERGAMON PRESS LONDON NEW YORK PARIS LOS ANGELES 1958 . PERGAMON PRESS LTD. 4 and 5 Fitzroy Square, London W.I. PERGAMON PRESS INC. 122 East 55th Street, New York, N.Y. 10638 South Wilton Place, Los Angeles 47, California PERGAMON PRESS S.A.R.L. 24 Rue des Ecoles, Paris V" Copyright 0 1958 A. H. Wallace Library of Congress Card Number 57-14497 Printed in Northern Ireland at The Universities Press, Be fast CONTENTS INTRODUCTION vu 1. -LINEAR SECTIONS OF AN ALGEBRAIC VARIETY 1. Hyperplane sections of a non-singular variety 1 2. A family of linear sections of W 2 3. The fibring of a variety defined over the complex numbers 7. 4. Homology groups related to V(K) 17 II. THE SINGULAR SECTIONS 1. Statement of the results 23 2. Proof of Theorem 11 25 III. A PENCIL OF HYPERPLANE SECTIONS 1. The choice of a pencil 34 2. Notation 37 3. Reduction to local theorems 38. IV. LEFSCHETZ'S FIRST AND SECOND THEOREMS 1. Lefschetz's first main theorem 43 2. Statement of Lefschetz's second main theorem 49 3. Sketch proof of Theorem 19 49- .4. Some immediate consequences _ 84 V. PROOF OF LEFSCHETZ'S SECOND THEOREM 1. Deformation theorems 56 2. Some remarks dh Theorem 19 80 3. Formal verification of Theorem 19; the vanishing cycle62 4. Proof of Theorem 19, parts (1) and (2) 64 5. Proof of Theorem 19, part (3) 87 v Vi CONTENTS VI. -
The Nori Fundamental Gerbe of Tame Stacks 3
THE NORI FUNDAMENTAL GERBE OF TAME STACKS INDRANIL BISWAS AND NIELS BORNE Abstract. Given an algebraic stack, we compare its Nori fundamental group with that of its coarse moduli space. We also study conditions under which the stack can be uniformized by an algebraic space. 1. Introduction The aim here is to show that the results of [Noo04] concerning the ´etale fundamental group of algebraic stacks also hold for the Nori fundamental group. Let us start by recalling Noohi’s approach. Given a connected algebraic stack X, and a geometric point x : Spec Ω −→ X, Noohi generalizes the definition of Grothendieck’s ´etale fundamental group to get a profinite group π1(X, x) which classifies finite ´etale representable morphisms (coverings) to X. He then highlights a new feature specific to the stacky situation: for each geometric point x, there is a morphism ωx : Aut x −→ π1(X, x). Noohi first studies the situation where X admits a moduli space Y , and proceeds to show that if N is the closed normal subgroup of π1(X, x) generated by the images of ωx, for x varying in all geometric points, then π1(X, x) ≃ π1(Y,y) . N Noohi turns next to the issue of uniformizing algebraic stacks: he defines a Noetherian algebraic stack X as uniformizable if it admits a covering, in the above sense, that is an algebraic space. His main result is that this happens precisely when X is a Deligne– Mumford stack and for any geometric point x, the morphism ωx is injective. For our purpose, it turns out to be more convenient to use the Nori fundamental gerbe arXiv:1502.07023v3 [math.AG] 9 Sep 2015 defined in [BV12]. -
CHARACTERIZING ALGEBRAIC STACKS 1. Introduction Stacks
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 4, April 2008, Pages 1465–1476 S 0002-9939(07)08832-6 Article electronically published on December 6, 2007 CHARACTERIZING ALGEBRAIC STACKS SHARON HOLLANDER (Communicated by Paul Goerss) Abstract. We extend the notion of algebraic stack to an arbitrary subcanon- ical site C. If the topology on C is local on the target and satisfies descent for morphisms, we show that algebraic stacks are precisely those which are weakly equivalent to representable presheaves of groupoids whose domain map is a cover. This leads naturally to a definition of algebraic n-stacks. We also compare different sites naturally associated to a stack. 1. Introduction Stacks arise naturally in the study of moduli problems in geometry. They were in- troduced by Giraud [Gi] and Grothendieck and were used by Deligne and Mumford [DM] to study the moduli spaces of curves. They have recently become important also in differential geometry [Bry] and homotopy theory [G]. Higher-order general- izations of stacks are also receiving much attention from algebraic geometers and homotopy theorists. In this paper, we continue the study of stacks from the point of view of homotopy theory started in [H, H2]. The aim of these papers is to show that many properties of stacks and classical constructions with stacks are homotopy theoretic in nature. This homotopy-theoretical understanding gives rise to a simpler and more powerful general theory. In [H] we introduced model category structures on different am- bient categories in which stacks are the fibrant objects and showed that they are all Quillen equivalent. -
MAPPING STACKS and CATEGORICAL NOTIONS of PROPERNESS Contents 1. Introduction 2 1.1. Introduction to the Introduction 2 1.2
MAPPING STACKS AND CATEGORICAL NOTIONS OF PROPERNESS DANIEL HALPERN-LEISTNER AND ANATOLY PREYGEL Abstract. One fundamental consequence of a scheme being proper is that there is an algebraic space classifying maps from it to any other finite type scheme, and this result has been extended to proper stacks. We observe, however, that it also holds for many examples where the source is a geometric stack, such as a global quotient. In our investigation, we are lead naturally to certain properties of the derived category of a stack which guarantee that the mapping stack from it to any geometric finite type stack is algebraic. We develop methods for establishing these properties in a large class of examples. Along the way, we introduce a notion of projective morphism of algebraic stacks, and prove strong h-descent results which hold in the setting of derived algebraic geometry but not in classical algebraic geometry. Contents 1. Introduction 2 1.1. Introduction to the introduction2 1.2. Mapping out of stacks which are \proper enough"3 1.3. Techniques for establishing (GE) and (L)5 1.4. A long list of examples6 1.5. Comparison with previous results7 1.6. Notation and conventions8 1.7. Author's note 9 2. Artin's criteria for mapping stacks 10 2.1. Weil restriction of affine stacks 11 2.2. Deformation theory of the mapping stack 12 2.3. Integrability via the Tannakian formalism 16 2.4. Derived representability from classical representability 19 2.5. Application: (pGE) and the moduli of perfect complexes 21 3. Perfect Grothendieck existence 23 3.1. -
The Historical Development of Algebraic Geometry∗
The Historical Development of Algebraic Geometry∗ Jean Dieudonn´e March 3, 1972y 1 The lecture This is an enriched transcription of footage posted by the University of Wis- consin{Milwaukee Department of Mathematical Sciences [1]. The images are composites of screenshots from the footage manipulated with Python and the Python OpenCV library [2]. These materials were prepared by Ryan C. Schwiebert with the goal of capturing and restoring some of the material. The lecture presents the content of Dieudonn´e'sarticle of the same title [3] as well as the content of earlier lecture notes [4], but the live lecture is natu- rally embellished with different details. The text presented here is, for the most part, written as it was spoken. This is why there are some ungrammatical con- structions of spoken word, and some linguistic quirks of a French speaker. The transcriber has taken some liberties by abbreviating places where Dieudonn´e self-corrected. That is, short phrases which turned out to be false starts have been elided, and now only the subsequent word-choices that replaced them ap- pear. Unfortunately, time has taken its toll on the footage, and it appears that a brief portion at the beginning, as well as the last enumerated period (VII. Sheaves and schemes), have been lost. (Fortunately, we can still read about them in [3]!) The audio and video quality has contributed to several transcription errors. Finally, a lack of thorough knowledge of the history of algebraic geometry has also contributed some errors. Contact with suggestions for improvement of arXiv:1803.00163v1 [math.HO] 1 Mar 2018 the materials is welcome.