Lecture 9 - 09/15/2014 - MATH 497C, Fall 2014

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 9 - 09/15/2014 - MATH 497C, Fall 2014 Lecture 9 - 09/15/2014 - MATH 497C, Fall 2014 Today we are talking about ellipses and some of their affine properties. Elliptic geometry Definition 1. An ellipse is the image under an affine transformation of a circle. In one of our recitation classes we proved the following lemma Lemma 1. Every affine transformation can be represented as a composition of a similarity transformation and a contraction with respect to some line. Note that any similarity transformation maps any circle to another circle. So, we can say that an ellipse is the image of a circle under a contraction with respect to some line. (See Figure 1) Figure 1: (from "Ideas and methods of affine and projective geometries" I.M.Yaglom, V.G.Ashkinuze). To find out the properties of ellipses, we need just to consider those properties of circles which are affine in nature. Affine properties of ellipses 1. Every ellipse has a center of symmetry, which we call the center of an ellipse. Proof. The center of a circle is its center of symmetry. Affine transformations preserve ratios of lengths of segments on the same line. So, under affine transformations the center of symmetry is mapped to the center of symmetry. Definition 2. A diameter of an ellipse is a chord which passes through the center. Sometimes lines which contain diameters are also called diameters. It follows from the definition of the center of symmetry that the center of an ellipse is the middle of any diameter. 1 2. The middle points of a family of parallel chords in an ellipse lie on the same line, which is the diameter of the ellipse. This diameter is called conjugate to any of considered chords. Proof. It is known from the plane geometry that the middle points of a family of parallel chords in a circle lie on the same line, which is the diameter orthogonal to these chords. Affine transformations map parallel lines to parallel lines, and a diameter to a diameter. Moreover, under affine transformations the middle point of a segment is mapped to the middle point of the image of that segment. The desired result follows. (See Figure 2) Figure 2: (from "Ideas and methods of affine and projective geometries" I.M.Yaglom, V.G.Ashkinuze). Consider a diameter AB of an ellipse which is conjugate to a diameter CD, i.e. it divides into halves all chords parallel to CD. If an affine transformation maps this ellipse to a circle then it maps conjugate diameters AB and CD to mutually orthogonal diameters A0B0 and C0D0 of the circle. So, the diameter C0D0 divides into halves all chords parallel to A0B0. Then, it follows that the diameter CD of the ellipse divides into halves all chords parallel to AB. Therefore, if some diameter is conjugate to another diameter, then the second diameter is conjugate to the first one. 3. A line which has a unique intersection point with an ellipse is called a tangent line. An ellipse has a unique tangent line at every point. Any tangent line is parallel to the diameter of the ellipse, which is conjugate to the diameter passing through the point of tangency. In particular, tangent lines to an ellipse at the end points of the same diameter are parallel to each other. Proof. Every circle has a unique tangent line at every point. Any tangent line is orthogonal to the radius passing through the point of tangency. Under affine transformations orthogonal lines of a circle are mapped to lines which have conjugate directions with respect to an ellipse. (See Figure 3) 2 Figure 3: (from "Ideas and methods of affine and projective geometries" I.M.Yaglom, V.G.Ashkinuze). 4. Theorem 1. Every ellipse which is not a circle has a unique pair of orthogonal conjugate diameters, which are called the axes of the ellipse. In particular, these diameters are the axes of symmetry of the ellipse. The end points of the axes of an ellipse are called the vertices of an ellipse. 5. Theorem 2 (Apollonius theorem). Parallelograms constructed on pairs of conjugate semi-diameters of an ellipse have the same area. Proof. See Figure 4. Consider an affine transformation which maps the given ellipse to a circle. Under this affine transformation parallelograms OKML and OAEC constructed on conjugate semi-diameters OK, OL and OA, OC, respectively (Figure 4 (a)), are mapped to the equal squares O0K0M 0L0 and O0A0E0C0 (Figure 4 (b)). Although affine transformations do not preserve areas but they preserve the ratios of areas. Therefore, we have the statement of the theorem. Figure 4: Shaded (a)parallelograms ((b) squares) have equal areas(from "Ideas and methods of affine and projective geometries" I.M.Yaglom, V.G.Ashkinuze). 3 Remark 1. If we apply an affine transformation, then the area of the image of a figure is equal to the area of the original figure multiplied by the absolute value of the determinant of the affine transformation. Exercise 1. Let E be an ellipse given in Euclidean coordinates by an equation x2 y2 + = 1 a2 b2 where a; b are nonzero numbers. Use affine transformations to prove that the area of an ellipse E is equal to πab. Now we consider the transformations which map a given ellipse to itself. Elliptic rotation All points of a circle are equivalent. It means that any point (any diameter) of a circle can be mapped to any other point of that circle by rotation centered at the center of the circle. Any rotation centered at the center of a circle maps the circle onto itself. We see that points of an ellipse are equivalent from the point of view of the affine geometry Theorem 3. Given an ellipse and two points M; N on it, there exists a unique affine orientation preserving transformation, which moves M to N and maps the ellipse to itself. In particular, it preserves areas of figures on the Euclidean plane. Proof. Let φ be an affine transformation which maps a given ellipse E to a circle Ω. Denote M 0 and N 0 the images of points M and N, respectively, under φ. Let ! be a rotation centered at the center of the circle Ω which maps M 0 to N 0. Define a transformation !¯ := φ−1!φ from the ellipse E to itself. For this transformation we have that !¯(M) = φ−1!φ(M) = φ−1!(M 0) = φ−1(N 0) = N: The transformation! ¯ is an affine transformation as it is the composition of three affine maps. Moreover, this transformation preserves areas of figures. If under φ areas of figures on the Euclidean plane is multiplied by λ > 0, then under φ−1 areas of figures on the plane 1 are multiplied by λ . Rotation ! does not change areas. Figure 5: (from "Ideas and methods of affine and projective geometries" I.M.Yaglom, V.G.Ashkinuze). 4 The uniqueness of an affine orientation preserving transformation of an ellipse to itself which maps a point M to a point N follows from the following: Assume there exists an affine orientation preserving transformation! ¯1 different from! ¯ which maps the ellipse E to itself and the point M to the point N. Then, there exists an −1 affine orientation preserving transformation !1 = φ!¯1φ different from ! which maps the circle Ω to itself and the point M 0 to the point N 0. The only affine transformation which maps a circle to itself is an isometry. The only orientation preserving isometry which maps a circle to itself is a rotation centered at the center of the circle. But, there exists a unique rotation centered at the center of the circle Ω which maps the point M 0 to the point N 0. Definition 3. An affine orientation preserving transformation which maps a given ellipse to itself is called an elliptic rotation. 5.
Recommended publications
  • Projective Geometry: a Short Introduction
    Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g.
    [Show full text]
  • How Should the College Teach Analytic Geometry?*
    1906.] THE TEACHING OF ANALYTIC GEOMETRY. 493 HOW SHOULD THE COLLEGE TEACH ANALYTIC GEOMETRY?* BY PROFESSOR HENRY S. WHITE. IN most American colleges, analytic geometry is an elective study. This fact, and the underlying causes of this fact, explain the lack of uniformity in content or method of teaching this subject in different institutions. Of many widely diver­ gent types of courses offered, a few are likely to survive, each because it is best fitted for some one purpose. It is here my purpose to advocate for the college of liberal arts a course that shall draw more largely from projective geometry than do most of our recent college text-books. This involves a restriction of the tendency, now quite prevalent, to devote much attention at the outset to miscellaneous graphs of purely statistical nature or of physical significance. As to the subject matter used in a first semester, one may formulate the question : Shall we teach in one semester a few facts about a wide variety of curves, or a wide variety of propositions about conies ? Of these alternatives the latter is to be preferred, for the educational value of a subject is found less in its extension than in its intension ; less in the multiplicity of its parts than in their unification through a few fundamental or climactic princi­ ples. Some teachers advocate the study of a wider variety of curves, either for the sake of correlation wTith physical sci­ ences, or in order to emphasize what they term the analytic method. As to the first, there is a very evident danger of dis­ sipating the student's energy ; while to the second it may be replied that there is no one general method which can be taught, but many particular and ingenious methods for special problems, whose resemblances may be understood only when the problems have been mastered.
    [Show full text]
  • Greece Part 3
    Greece Chapters 6 and 7: Archimedes and Apollonius SOME ANCIENT GREEK DISTINCTIONS Arithmetic Versus Logistic • Arithmetic referred to what we now call number theory –the study of properties of whole numbers, divisibility, primality, and such characteristics as perfect, amicable, abundant, and so forth. This use of the word lives on in the term higher arithmetic. • Logistic referred to what we now call arithmetic, that is, computation with whole numbers. Number Versus Magnitude • Numbers are discrete, cannot be broken down indefinitely because you eventually came to a “1.” In this sense, any two numbers are commensurable because they could both be measured with a 1, if nothing bigger worked. • Magnitudes are continuous, and can be broken down indefinitely. You can always bisect a line segment, for example. Thus two magnitudes didn’t necessarily have to be commensurable (although of course they could be.) Analysis Versus Synthesis • Synthesis refers to putting parts together to obtain a whole. • It is also used to describe the process of reasoning from the general to the particular, as in putting together axioms and theorems to prove a particular proposition. • Proofs of the kind Euclid wrote are referred to as synthetic. Analysis Versus Synthesis • Analysis refers to taking things apart to see how they work, or so you can understand them. • It is also used to describe reasoning from the particular to the general, as in studying a particular problem to come up with a solution. • This is one general meaning of analysis: a way of solving problems, of finding the answers. Analysis Versus Synthesis • A second meaning for analysis is specific to logic and theorem proving: beginning with what you wish to prove, and reasoning from that point in hopes you can arrive at the hypotheses, and then reversing the logical steps.
    [Show full text]
  • Lecture 3: Geometry
    E-320: Teaching Math with a Historical Perspective Oliver Knill, 2010-2015 Lecture 3: Geometry Geometry is the science of shape, size and symmetry. While arithmetic dealt with numerical structures, geometry deals with metric structures. Geometry is one of the oldest mathemati- cal disciplines and early geometry has relations with arithmetics: we have seen that that the implementation of a commutative multiplication on the natural numbers is rooted from an inter- pretation of n × m as an area of a shape that is invariant under rotational symmetry. Number systems built upon the natural numbers inherit this. Identities like the Pythagorean triples 32 +42 = 52 were interpreted geometrically. The right angle is the most "symmetric" angle apart from 0. Symmetry manifests itself in quantities which are invariant. Invariants are one the most central aspects of geometry. Felix Klein's Erlanger program uses symmetry to classify geome- tries depending on how large the symmetries of the shapes are. In this lecture, we look at a few results which can all be stated in terms of invariants. In the presentation as well as the worksheet part of this lecture, we will work us through smaller miracles like special points in triangles as well as a couple of gems: Pythagoras, Thales,Hippocrates, Feuerbach, Pappus, Morley, Butterfly which illustrate the importance of symmetry. Much of geometry is based on our ability to measure length, the distance between two points. A modern way to measure distance is to determine how long light needs to get from one point to the other. This geodesic distance generalizes to curved spaces like the sphere and is also a practical way to measure distances, for example with lasers.
    [Show full text]
  • Notes 20: Afine Geometry
    Notes 20: Afine Geometry Example 1. Let C be the curve in R2 defined by x2 + 4xy + y2 + y2 − 1 = 0 = (x + 2y)2 + y2 − 1: If we set u = x + 2y; v = y; we obtain u2 + v2 − 1 = 0 which is a circle in the u; v plane. Let 2 2 F : R ! R ; (x; y) 7! (u = 2x + y; v = y): We look at the geometry of F: Angles: This transformation does not preserve angles. For example the line 2x + y = 0 is mapped to the line u = 0; and the line y = 0 is mapped to v = 0: The two lines in the x − y plane are not orthogonal, while the lines in the u − v plane are orthogonal. Distances: This transformation does not preserve distance. The point A = (−1=2; 1) is mapped to a = (0; 1) and the point B = (0; 0) is mapped to b = (0; 0): the distance AB is not equal to the distance ab: Circles: The curve C is an ellipse with axis along the lines 2x + y = 0 and x = 0: It is mapped to the unit circle in the u − v plane. Lines: The map is a one-to-one onto map that maps lines to lines. What is a Geometry? We can think of a geometry as having three parts: A set of points, a special set of subsets called lines, and a group of transformations of the set of points that maps lines to lines. In the case of Euclidean geometry, the set of points is the familiar plane R2: The special subsets are what we ordinarily call lines.
    [Show full text]
  • (Finite Affine Geometry) References • Bennett, Affine An
    MATHEMATICS 152, FALL 2003 METHODS OF DISCRETE MATHEMATICS Outline #7 (Finite Affine Geometry) References • Bennett, Affine and Projective Geometry, Chapter 3. This book, avail- able in Cabot Library, covers all the proofs and has nice diagrams. • “Faculty Senate Affine Geometry”(attached). This has all the steps for each proof, but no diagrams. There are numerous references to diagrams on the course Web site, however, and the combination of this document and the Web site should be all that you need. • The course Web site, AffineDiagrams folder. This has links that bring up step-by-step diagrams for all key results. These diagrams will be available in class, and you are welcome to use them instead of drawing new diagrams on the blackboard. • The Windows application program affine.exe, which can be downloaded from the course Web site. • Data files for the small, medium, and large affine senates. These accom- pany affine.exe, since they are data files read by that program. The file affine.zip has everything. • PHP version of the affine geometry software. This program, written by Harvard undergraduate Luke Gustafson, runs directly off the Web and generates nice diagrams whenever you use affine geometry to do arithmetic. It also has nice built-in documentation. Choose the PHP- Programs folder on the Web site. 1. State the first four of the five axioms for a finite affine plane, using the terms “instructor” and “committee” instead of “point” and “line.” For A4 (Desargues), draw diagrams (or show the ones on the Web site) to illustrate the two cases (three parallel lines and three concurrent lines) in the Euclidean plane.
    [Show full text]
  • Lecture 5: Affine Graphics a Connect the Dots Approach to Two-Dimensional Computer Graphics
    Lecture 5: Affine Graphics A Connect the Dots Approach to Two-Dimensional Computer Graphics The lines are fallen unto me in pleasant places; Psalms 16:6 1. Two Shortcomings of Turtle Graphics Two points determine a line. In Turtle Graphics we use this simple fact to draw a line joining the two points at which the turtle is located before and after the execution of each FORWARD command. By programming the turtle to move about and to draw lines in this fashion, we are able to generate some remarkable figures in the plane. Nevertheless, the turtle has two annoying idiosyncrasies. First, the turtle has no memory, so the order in which the turtle encounters points is crucial. Thus, even though the turtle leaves behind a trace of her path, there is no direct command in LOGO to return the turtle to an arbitrary previously encountered location. Second, the turtle is blissfully unaware of the outside universe. The turtle carries her own local coordinate system -- her state -- but the turtle does not know her position relative to any other point in the plane. Turtle geometry is a local, intrinsic geometry; the turtle knows nothing of the extrinsic, global geometry of the external world. The turtle can draw a circle, but the turtle has no idea where the center of the circle might be or even that there is such a concept as a center, a point outside her path around the circumference. These two shortcomings -- no memory and no knowledge of the outside world -- often make the turtle cumbersome to program.
    [Show full text]
  • On the Constructibility of the Axes of an Ellipsoid
    ON THE CONSTRUCTIBILITY OF THE AXES OF AN ELLIPSOID. THE CONSTRUCTION OF CHASLES IN PRACTICE AKOS´ G.HORVATH´ AND ISTVAN´ PROK Dedicated to the memory of the teaching of Descriptive Geometry in BME Faculty of Mechanical Engineering Abstract. In this paper we discuss Chasles’s construction on ellipsoid to draw the semi-axes from a complete system of conjugate diameters. We prove that there is such situation when the construction is not planar (the needed points cannot be constructed with compasses and ruler) and give some others in which the construction is planar. 1. Introduction Who interested in conics know the construction of Rytz, namely a construction which determines the axes of an ellipse from a pair of conjugate diameters. Contrary to this very few mathematicians know that in the first half of the nineteens century Chasles (see in [1]) gave a construction in space to the analogous problem. The only reference which we found in English is also in an old book written by Salmon (see in [6]) on the analytic geometry of the three-dimensional space. In [2] the author extracted this analytic method to prove some results on the quadric of n-dimensional space. However, in practice this construction cannot be done using compasses and ruler only as we will see in present paper (Statement 4). On the other hand those steps of the construction which are planar constructions we can draw by descriptive geometry (see the figures in this article). 2. Basic properties The proof of the statements of this section can be found in [2].
    [Show full text]
  • Essential Concepts of Projective Geomtry
    Essential Concepts of Projective Geomtry Course Notes, MA 561 Purdue University August, 1973 Corrected and supplemented, August, 1978 Reprinted and revised, 2007 Department of Mathematics University of California, Riverside 2007 Table of Contents Preface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i Prerequisites: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :iv Suggestions for using these notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :v I. Synthetic and analytic geometry: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :1 1. Axioms for Euclidean geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 2. Cartesian coordinate interpretations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 3 3. Lines and planes in R and R : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 II. Affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1. Synthetic affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2. Affine subspaces of vector spaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13 3. Affine bases: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :19 4. Properties of coordinate
    [Show full text]
  • 11.-HYPERBOLA-THEORY.Pdf
    12. HYPERBOLA 1. INTRODUCTION A hyperbola is the locus of a point which moves in the plane in such a way that Z the ratio of its distance from a fixed point in the same plane to its distance X’ P from a fixed line is always constant which is always greater than unity. M The fixed point is called the focus, the fixed line is called the directrix. The constant ratio is generally denoted by e and is known as the eccentricity of the Directrix hyperbola. A hyperbola can also be defined as the locus of a point such that S (focus) the absolute value of the difference of the distances from the two fixed points Z’ (foci) is constant. If S is the focus, ZZ′ is the directrix and P is any point on the hyperbola as show in figure. Figure 12.1 SP Then by definition, we have = e (e > 1). PM Note: The general equation of a conic can be taken as ax22+ 2hxy + by + 2gx + 2fy += c 0 This equation represents a hyperbola if it is non-degenerate (i.e. eq. cannot be written into two linear factors) ahg ∆ ≠ 0, h2 > ab. Where ∆=hb f gfc MASTERJEE CONCEPTS 1. The general equation ax22+ 2hxy + by + 2gx + 2fy += c 0 can be written in matrix form as ahgx ah x x y + 2gx + 2fy += c 0 and xy1hb f y = 0 hb y gfc1 Degeneracy condition depends on the determinant of the 3x3 matrix and the type of conic depends on the determinant of the 2x2 matrix.
    [Show full text]
  • Affine Geometry
    CHAPTER II AFFINE GEOMETRY In the previous chapter we indicated how several basic ideas from geometry have natural interpretations in terms of vector spaces and linear algebra. This chapter continues the process of formulating basic geometric concepts in such terms. It begins with standard material, moves on to consider topics not covered in most courses on classical deductive geometry or analytic geometry, and it concludes by giving an abstract formulation of the concept of geometrical incidence and closely related issues. 1. Synthetic affine geometry In this section we shall consider some properties of Euclidean spaces which only depend upon the axioms of incidence and parallelism Definition. A three-dimensional incidence space is a triple (S; L; P) consisting of a nonempty set S (whose elements are called points) and two nonempty disjoint families of proper subsets of S denoted by L (lines) and P (planes) respectively, which satisfy the following conditions: (I { 1) Every line (element of L) contains at least two points, and every plane (element of P) contains at least three points. (I { 2) If x and y are distinct points of S, then there is a unique line L such that x; y 2 L. Notation. The line given by (I {2) is called xy. (I { 3) If x, y and z are distinct points of S and z 62 xy, then there is a unique plane P such that x; y; z 2 P . (I { 4) If a plane P contains the distinct points x and y, then it also contains the line xy. (I { 5) If P and Q are planes with a nonempty intersection, then P \ Q contains at least two points.
    [Show full text]
  • References Finite Affine Geometry
    MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #7 (Finite Affine Geometry) References • Bennett, Affine and Projective Geometry, Chapter 3. This book, avail- able in Cabot Library, covers all the proofs and has nice diagrams. • “Faculty Senate Affine Geometry” (attached). This has all the steps for each proof, but no diagrams. There are numerous references to diagrams on the course web site; however, and the combination of this document and the web site should be all that you need. • The course web site, AffineDiagrams folder. This has links that bring up step-by-step diagrams for all key results. These diagrams will be available in class, and you are welcome to use them instead of drawing new diagrams on the blackboard. • The Windows application program, affine.exe, which can be down- loaded from the course web site. • Data files for the small, medium, and large affine senates. These ac- company affine.exe, since they are data files read by that program. The file affine.zip has everything. • PHP version of the affine geometry software. This program, written by Harvard undergraduate Luke Gustafson, runs directly off the web and generates nice diagrams whenever you use affine geometry to do arithmetic. It also has nice built-in documentation. Choose the PHP- Programs folder on the web site. Finite Affine Geometry 1. State the first four of the five axioms for a finite affine plane, using the terms “instructor” and “committee” instead of “point” and “line.” For A4 (Desargues), draw diagrams (or show the ones on the web site) to 1 illustrate the two cases (three parallel lines and three concurrent lines) in the Euclidean plane.
    [Show full text]