A Ground-Up Approach to High-Throughput Cloud Computing

Total Page:16

File Type:pdf, Size:1020Kb

A Ground-Up Approach to High-Throughput Cloud Computing Università degli Studi di Torino Scuola di Dottorato in Scienze ed Alte Tecnologie XXVI ciclo Tesi di Dottorato A ground-up approach to High-Throughput Cloud Computing in High-Energy Physics Dario Berzano Relatore Correlatori Prof. Massimo Masera Dott. Gerardo Ganis Università degli Studi di Torino CERN Dott. Stefano Bagnasco INFN Torino CERN-THESIS-2014-376 16/04/2014 Controrelatore Prof. Marco Paganoni Università degli Studi di Milano-Bicocca Anno Accademico 2012–2013 «Simplicity is the ultimate sophistication.» Apple II commercial (1977) Table of Contents 1 Virtualization and Cloud Computing in High Energy Physics 13 1.1 Computing in the LHC era . 13 1.1.1 Hierarchy of computing centres . 16 1.1.2 Event processing paradigm . 17 1.1.3 Analysis framework and data format: ROOT . 18 1.1.4 The ALICE Experiment . 19 1.2 Virtualization and Cloud Computing . 21 1.2.1 State of the art . 23 1.3 From the Grid to clouds? . 25 1.3.1 Grid over clouds and more . 26 1.4 Overview of this work . 27 2 Building a Private Cloud out of a Grid Tier-2 29 2.1 Overview of the INFN Torino Computing Centre . 29 2.1.1 Grid VOs and ALICE . 30 2.2 Rationale of the Cloud migration . 32 2.2.1 No performance loss through virtualization . 32 2.2.2 Abstraction of resources in the Grid and the cloud . 32 2.2.3 Harmonization of diverse use cases in a private cloud . 33 2.2.4 IaaS: separating administrative domains . 34 2.2.4.1 Virtual farm administrator . 35 2.2.4.2 Rolling updates . 35 2.2.5 Computing on demand and elasticity . 36 2.2.6 Preparing for the near future . 37 2.3 The cloud controller: OpenNebula . 38 2.3.1 Datacenter virtualization vs. infrastructure provisioning . 38 2.3.2 OpenNebula features . 39 2.4 Designing and building the private cloud . 42 2.4.1 Management of the physical infrastructure . 43 6 CONTENTS 2.4.1.1 Provisioning: Cobbler . 43 2.4.1.2 Configuration: Puppet . 44 2.4.1.3 Monitoring: Zabbix . 46 2.4.1.4 Network connectivity: NAT and proxy . 46 2.4.2 Classes of hypervisors . 46 2.4.2.1 Working class hypervisors . 49 2.4.2.2 Service hypervisors . 50 2.4.3 Level 2 and 3 networking . 51 2.4.4 Shared storage . 52 2.4.4.1 GlusterFS . 52 2.4.4.2 Virtual machine image repository . 53 2.4.5 Disks of running virtual guests . 54 2.4.6 Benchmarks . 56 2.5 Performance tunings and other issues . 57 2.5.1 Kernel SamePage Merging issues . 57 2.5.2 OpenNebula backing database: MySQL vs. SQLite . 60 2.5.3 Fast creation of ephemeral storage . 60 2.5.3.1 Allocation of large files . 60 2.5.3.2 Filesystem formatting . 62 2.5.4 Direct QEMU GlusterFS support . 62 2.5.5 Fast deployment: caching and snapshotting . 63 2.5.5.1 LVM . 63 2.5.5.2 QCow2 . 64 2.6 Custom virtual guest images . 65 3 Running elastic applications on the Cloud 69 3.1 Virtualizing the Grid Tier-2 . 69 3.1.1 Preparation and update of a worker node . 70 3.1.1.1 Creation of the base image . 71 3.1.1.2 Contextualization . 72 3.1.1.3 Dynamic configuration: Puppet . 72 3.1.1.4 Creating images vs. contextualizing . 73 3.1.2 Automatic addition of worker nodes to TORQUE . 74 3.1.3 Nodes self registration to Puppet . 76 3.1.4 CPU efficiency measurements . 77 3.1.5 Grid services on the cloud . 77 3.2 Sandboxed virtual farms . 80 3.2.1 Virtual networks: ebtables . 80 3.2.2 Virtual Router: OpenWRT . 82 3.2.2.1 Building a custom OpenWRT image . 82 3.2.2.2 Contextualization . 85 CONTENTS 7 3.2.2.3 Virtual Routers management and security . 86 3.2.2.4 VPN for geographically distributed virtual farms . 86 3.2.3 OpenNebula EC2 interface: econe-server . 87 3.2.3.1 EC2 credentials . 88 3.2.3.2 Mapping flavours to templates . 88 3.2.3.3 SSH keys and user-data . 89 3.2.3.4 Improved econe-server Elastic IPs support . 90 3.2.3.5 EC2 API traffic encryption . 91 3.2.4 Elastic IPs . 91 3.2.4.1 Integration of econe-server and Virtual Routers . 92 3.2.5 Creating a user sandbox . 93 3.2.6 Using the cloud . 93 3.3 M5L-CAD: an elastic farm for medical imaging . 94 3.3.1 Challenges . 95 3.3.2 The WIDEN web frontend . 96 3.3.3 Processing algorithms . 96 3.3.4 Elastic cloud backend . 98 3.3.4.1 Evolution towards a generic Virtual Analysis Facility 99 3.3.5 Privacy and patient confidentiality . 100 4 PROOF as a Service: deploying PROOF on clouds and the Grid 103 4.1 Overview of the PROOF computing model . 103 4.1.1 Event based parallelism . 103 4.1.2 Interactivity . 104 4.1.3 PROOF and ROOT . 105 4.1.4 Dynamic scheduling . 106 4.1.5 Data locality and XRootD . 107 4.1.6 PROOF-Lite . 109 4.2 Static and dynamic PROOF deployments . 109 4.2.1 Dedicated PROOF clusters . 110 4.2.2 Issues of static deployments . 110 4.2.3 Overcoming deployment issues . 111 4.2.4 PROOF on Demand . 112 4.3 ALICE Analysis Facilities and their evolution . 112 4.3.1 Specifications . 113 4.3.1.1 The analysis framework . 113 4.3.1.2 Deployment . 114 4.3.2 Users authentication and authorization . 115 4.3.3 Data storage and access model . 116 4.3.3.1 PROOF datasets . 117 4.3.3.2 The AliEn File Catalog . 118 8 CONTENTS 4.3.4 Issues of the AAF data model . 119 4.3.4.1 Very slow first time data access . 119 4.3.4.2 Lack of a pre-staging mechanism . 120 4.3.4.3 Data integrity concerns and resiliency . 121 4.3.5 The dataset stager . 121 4.3.5.1 Features of the dataset stager . 122 4.3.5.2 Robustness of the staging daemon . 123 4.3.5.3 Daemon status monitoring: the MonALISA plugin . 125 4.3.5.4 The ALICE download script . 126 4.3.5.5 The dataset management utilities for ALICE . 127 4.3.5.6 Alternative usage of the staging daemon . 127 4.3.6 A PROOF interface to the AliEn File Catalog . 128 4.3.6.1 Dataset queries . 129 4.3.6.2 Issuing staging requests . 130 4.3.7 The first virtual Torino Analysis Facility for ALICE . 131 4.3.7.1 Overview . 131 4.3.7.2 Storage and datasets model . 132 4.3.7.3 Software distribution model . 136 4.3.7.4 Dynamically changing PROOF resources . 136 4.3.7.5 Virtual machine images and Tier-2 integration . 136 4.3.8 Spawning and scaling the TAF . 138 4.4 The Virtual Analysis Facility . 139 4.4.1 Cloud awareness . 140 4.4.1.1 PROOF is cloud aware . 141 4.4.2 Components . 142 4.4.3 The CernVM ecosystem . 143 4.4.3.1 µCernVM: an on-demand operating system . 143 4.4.3.2 CernVM-FS . 146 4.4.3.3 CernVM Online . 147 4.4.4 External components . 149 4.4.4.1 HTCondor . 151 4.4.4.2 PROOF on Demand . 154 4.4.5 Authentication: sshcertauth . 155 4.4.5.1 Rationale . 156 4.4.5.2 Components . 157 4.4.5.3 The web interface . 158 4.4.5.4 Users mapping plugins . 159 4.4.5.5 The keys keeper . 161 4.4.5.6 Restricting access to some users . 162 4.4.6 PROOF dynamic workers . 163 4.4.6.1 Chain of propagation of the new workers . 163 CONTENTS 9 4.4.6.2 User’s workflow . 164 4.4.6.3 Updating workers list in xproofd . 166 4.4.6.4 Configuring workers from the PROOF master . 166 4.4.6.5 Adding workers.
Recommended publications
  • Flexible and Integrated Resource Management for Iaas Cloud Environments Based on Programmability
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO JULIANO ARAUJO WICKBOLDT Flexible and Integrated Resource Management for IaaS Cloud Environments based on Programmability Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Computer Science Advisor: Prof. Dr. Lisandro Z. Granville Porto Alegre December 2015 CIP — CATALOGING-IN-PUBLICATION Wickboldt, Juliano Araujo Flexible and Integrated Resource Management for IaaS Cloud Environments based on Programmability / Juliano Araujo Wick- boldt. – Porto Alegre: PPGC da UFRGS, 2015. 125 f.: il. Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul. Programa de Pós-Graduação em Computação, Porto Alegre, BR– RS, 2015. Advisor: Lisandro Z. Granville. 1. Cloud Computing. 2. Cloud Networking. 3. Resource Man- agement. I. Granville, Lisandro Z.. II. Título. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Reitor: Prof. Carlos Alexandre Netto Vice-Reitor: Prof. Rui Vicente Oppermann Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb Coordenador do PPGC: Prof. Luigi Carro Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro “Life is like riding a bicycle. To keep your balance you must keep moving.” —ALBERT EINSTEIN ACKNOWLEDGMENTS First of all, I would like to thank my parents and brother for the unconditional support and example of determination and perseverance they have always been for me. I am aware that time has been short and joyful moments sporadic, but if today I am taking one more step ahead this is due to the fact that you always believed in my potential and encourage me to move on.
    [Show full text]
  • Deliverable No. 5.3 Techniques to Build the Cloud Infrastructure Available to the Community
    Deliverable No. 5.3 Techniques to build the cloud infrastructure available to the community Grant Agreement No.: 600841 Deliverable No.: D5.3 Deliverable Name: Techniques to build the cloud infrastructure available to the community Contractual Submission Date: 31/03/2015 Actual Submission Date: 31/03/2015 Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Grant Agreement no. 600841 D5.3 – Techniques to build the cloud infrastructure available to the community COVER AND CONTROL PAGE OF DOCUMENT Project Acronym: CHIC Project Full Name: Computational Horizons In Cancer (CHIC): Developing Meta- and Hyper-Multiscale Models and Repositories for In Silico Oncology Deliverable No.: D5.3 Document name: Techniques to build the cloud infrastructure available to the community Nature (R, P, D, O)1 R Dissemination Level (PU, PP, PU RE, CO)2 Version: 1.0 Actual Submission Date: 31/03/2015 Editor: Manolis Tsiknakis Institution: FORTH E-Mail: [email protected] ABSTRACT: This deliverable reports on the technologies, techniques and configuration needed to install, configure, maintain and run a private cloud infrastructure for productive usage. KEYWORD LIST: Cloud infrastructure, OpenStack, Eucalyptus, CloudStack, VMware vSphere, virtualization, computation, storage, security, architecture. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 600841. The author is solely responsible for its content, it does not represent the opinion of the European Community and the Community is not responsible for any use that might be made of data appearing therein.
    [Show full text]
  • Tor and Circumvention: Lessons Learned
    Tor and circumvention: Lessons learned Nick Mathewson The Tor Project https://torproject.org/ 1 What is Tor? Online anonymity 1) open source software, 2) network, 3) protocol Community of researchers, developers, users, and relay operators Funding from US DoD, Electronic Frontier Foundation, Voice of America, Google, NLnet, Human Rights Watch, NSF, US State Dept, SIDA, ... 2 The Tor Project, Inc. 501(c)(3) non-profit organization dedicated to the research and development of tools for online anonymity and privacy Not secretly evil. 3 Estimated ~250,000? daily Tor users 4 Anonymity in what sense? “Attacker can’t learn who is talking to whom.” Bob Alice Alice Anonymity network Bob Alice Bob 5 Threat model: what can the attacker do? Alice Anonymity network Bob watch Alice! watch (or be!) Bob! Control part of the network! 6 Anonymity isn't cryptography: Cryptography just protects contents. “Hi, Bob!” “Hi, Bob!” Alice <gibberish> attacker Bob 7 Anonymity isn't just wishful thinking... “You can't prove it was me!” “Promise you won't look!” “Promise you won't remember!” “Promise you won't tell!” “I didn't write my name on it!” “Isn't the Internet already anonymous?” 8 Anonymity serves different interests for different user groups. Anonymity “It's privacy!” Private citizens 9 Anonymity serves different interests for different user groups. Anonymity Businesses “It's network security!” “It's privacy!” Private citizens 10 Anonymity serves different interests for different user groups. “It's traffic-analysis resistance!” Governments Anonymity Businesses “It's network security!” “It's privacy!” Private citizens 11 Anonymity serves different interests for different user groups.
    [Show full text]
  • Tracking Known Security Vulnerabilities in Third-Party Components
    Tracking known security vulnerabilities in third-party components Master’s Thesis Mircea Cadariu Tracking known security vulnerabilities in third-party components THESIS submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in COMPUTER SCIENCE by Mircea Cadariu born in Brasov, Romania Software Engineering Research Group Software Improvement Group Department of Software Technology Rembrandt Tower, 15th floor Faculty EEMCS, Delft University of Technology Amstelplein 1 - 1096HA Delft, the Netherlands Amsterdam, the Netherlands www.ewi.tudelft.nl www.sig.eu c 2014 Mircea Cadariu. All rights reserved. Tracking known security vulnerabilities in third-party components Author: Mircea Cadariu Student id: 4252373 Email: [email protected] Abstract Known security vulnerabilities are introduced in software systems as a result of de- pending on third-party components. These documented software weaknesses are hiding in plain sight and represent the lowest hanging fruit for attackers. Despite the risk they introduce for software systems, it has been shown that developers consistently download vulnerable components from public repositories. We show that these downloads indeed find their way in many industrial and open-source software systems. In order to improve the status quo, we introduce the Vulnerability Alert Service, a tool-based process to track known vulnerabilities in software projects throughout the development process. Its usefulness has been empirically validated in the context of the external software product quality monitoring service offered by the Software Improvement Group, a software consultancy company based in Amsterdam, the Netherlands. Thesis Committee: Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft University supervisor: Prof. Dr. A.
    [Show full text]
  • Architecting for the Cloud: Lessons Learned from 100 Cloudstack Deployments
    Architecting for the cloud: lessons learned from 100 CloudStack deployments Sheng Liang CTO, Cloud Platforms, Citrix CloudStack History 2008 2009 2010 2011 2012 Sept 2008: Nov 2009: May 2010: July 2011: April 2012: VMOps CloudStack Cloud.com Citrix Apache Founded 1.0 GA Launch & Acquires CloudStack CloudStack Cloud.com 2.0 GA The inventor of IaaS cloud – Amazon EC2 Amazon eCommerce Platform EC2 API Amazon Proprietary Orchestration Software Open Source Xen Hypervisor Commodity Networking Storage Servers CloudStack is inspired by Amazon EC2 Amazon CloudPortaleCommerce Platform CloudEC2 APIAPIs Amazon ProprietaryCloudStack Orchestration Software ESX Hyper-VOpen SourceXenServer Xen Hypervisor KVM OVM Commodity Networking Storage Servers There will be 1000s of clouds SP Data center mgmt Desktop Owner | Operator Owner and automation Cloud IT Horizontal Vertical General Purpose Special Purpose Learning from 100s of CloudStack deployments Service Providers Web 2.0 Enterprise What is the biggest difference between traditional-style data center automation and Amazon-style cloud? How to handle failures • Server failure comes from: ᵒ 70% - hard disk ᵒ 6% - RAID controller ᵒ 5% - memory ᵒ 18% - other factors 8% • Application can still fail for Annual Failure Rate of servers other reasons: ᵒ Network failure ᵒ Software bugs Kashi Venkatesh Vishwanath and ᵒ Human admin error Nachiappan Nagappan, Characterizing Cloud Computing Hardware Reliability, SoCC’10 11 Internet Core Routers … Access Routers Aggregation Switches Load Balancers … Top of Rack Switches Servers •Bugs in failover mechanism •Incorrect configuration 40 % •Protocol issues such Effectiveness of network as TCP back-off, redundancy in reducing failures timeouts, and spanning tree reconfiguration Phillipa Gill, Navendu Jain & Nachiappan Nagappan, Understanding Network Failures in Data Centers: Measurement, Analysis and Implications , SIGCOMM 2011 13 A.
    [Show full text]
  • Inequalities in Open Source Software Development: Analysis of Contributor’S Commits in Apache Software Foundation Projects
    RESEARCH ARTICLE Inequalities in Open Source Software Development: Analysis of Contributor’s Commits in Apache Software Foundation Projects Tadeusz Chełkowski1☯, Peter Gloor2☯*, Dariusz Jemielniak3☯ 1 Kozminski University, Warsaw, Poland, 2 Massachusetts Institute of Technology, Center for Cognitive Intelligence, Cambridge, Massachusetts, United States of America, 3 Kozminski University, New Research on Digital Societies (NeRDS) group, Warsaw, Poland ☯ These authors contributed equally to this work. * [email protected] a11111 Abstract While researchers are becoming increasingly interested in studying OSS phenomenon, there is still a small number of studies analyzing larger samples of projects investigating the structure of activities among OSS developers. The significant amount of information that OPEN ACCESS has been gathered in the publicly available open-source software repositories and mailing- list archives offers an opportunity to analyze projects structures and participant involve- Citation: Chełkowski T, Gloor P, Jemielniak D (2016) Inequalities in Open Source Software Development: ment. In this article, using on commits data from 263 Apache projects repositories (nearly Analysis of Contributor’s Commits in Apache all), we show that although OSS development is often described as collaborative, but it in Software Foundation Projects. PLoS ONE 11(4): fact predominantly relies on radically solitary input and individual, non-collaborative contri- e0152976. doi:10.1371/journal.pone.0152976 butions. We also show, in the first published study of this magnitude, that the engagement Editor: Christophe Antoniewski, CNRS UMR7622 & of contributors is based on a power-law distribution. University Paris 6 Pierre-et-Marie-Curie, FRANCE Received: December 15, 2015 Accepted: March 22, 2016 Published: April 20, 2016 Copyright: © 2016 Chełkowski et al.
    [Show full text]
  • Managing the Performance Impact of Web Security
    Electronic Commerce Research, 5: 99–116 (2005) 2005 Springer Science + Business Media, Inc. Manufactured in the Netherlands. Managing the Performance Impact of Web Security ADAM STUBBLEFIELD and AVIEL D. RUBIN Johns Hopkins University, USA DAN S. WALLACH Rice University, USA Abstract Security and performance are usually at odds with each other. Current implementations of security on the web have been adopted at the extreme end of the spectrum, where strong cryptographic protocols are employed at the expense of performance. The SSL protocol is not only computationally intensive, but it makes web caching impossible, thus missing out on potential performance gains. In this paper we discuss the requirements for web security and present a solution that takes into account performance impact and backwards compatibil- ity. Keywords: security, web performance scalability, Internet protocols 1. Introduction Security plays an important role in web transactions. Users need assurance about the au- thenticity of servers and the confidentiality of their private data. They also need to know that any authentication material (such as a password or credit card) they send to a server is only readable by that server. Servers want to believe that data they are sending to paying customers is not accessible to all. Security is not free, and in fact, on the web, it is particularly expensive. This paper focuses on managing the performance impact of web security. The current web security standard, SSL, has a number of problems from a performance perspective. Most obviously, the cryptographic operations employed by SSL are computationally expensive, especially for the web server. While this computational limitation is slowly being overcome by faster processors and custom accelerators, SSL also prevents the content it delivers from being cached.
    [Show full text]
  • Wireless Mesh Networks 10 Steps to Speedup Your Mesh-Network by Factor 5
    Overview CPU/Architecture Airtime Compression Cache QoS future wireless mesh networks 10 steps to speedup your mesh-network by factor 5 Bastian Bittorf http://www.bittorf-wireless.com berlin, c-base, 4. june 2011 B.Bittorf bittorf wireless )) mesh networking Overview CPU/Architecture Airtime Compression Cache QoS future 1 Agenda 2 CPU/Architecture efficient use of CPU rate-selection 3 Airtime avoid slow rates separate channels 4 Compression like modem: V.42bis iproute2/policy-routing compress data to inet-gateway slow DSL-lines? 5 Cache local HTTP-Proxy Gateway HTTP-Proxy B.Bittorf DNS-Cache bittorf wireless )) mesh networking synchronise everything compress to zero 6 QoS Layer8 7 future ideas ressources Overview CPU/Architecture Airtime Compression Cache QoS future 1 Agenda 2 CPU/Architecture efficient use of CPU rate-selection 3 Airtime avoid slow rates separate channels 4 Compression like modem: V.42bis iproute2/policy-routing compress data to inet-gateway slow DSL-lines? 5 Cache local HTTP-Proxy Gateway HTTP-Proxy B.Bittorf DNS-Cache bittorf wireless )) mesh networking synchronise everything compress to zero 6 QoS Layer8 7 future ideas ressources Overview CPU/Architecture Airtime Compression Cache QoS future 1 Agenda 2 CPU/Architecture efficient use of CPU rate-selection 3 Airtime avoid slow rates separate channels 4 Compression like modem: V.42bis iproute2/policy-routing compress data to inet-gateway slow DSL-lines? 5 Cache local HTTP-Proxy Gateway HTTP-Proxy B.Bittorf DNS-Cache bittorf wireless )) mesh networking synchronise everything
    [Show full text]
  • Freelab: a Free Experimentation Platform
    FreeLab: A Free Experimentation Platform Matteo Varvello|; Diego Perino? |AT&T Labs – Research, ?Telefónica Research ABSTRACT In this work, we set out to build a free experimentation As researchers, we are aware of how hard it is to obtain access platform which can also be reliable and up-to-date. In classic to vantage points in the Internet. Experimentation platforms experimentation platforms applications run directly at vantage are useful tools, but they are also: 1) paid, either via a mem- points; we revert this rationale by proposing to use vantage bership fee or by resource sharing, 2) unreliable, nodes come points as traffic relays while running the application at theex- and go, 3) outdated, often still run on their original hardware perimenter’s machine(s). By leveraging free Internet relays as and OS. While one could build yet-another platform with vantage points, we can make such experimentation platform up-to-date and reliable hardware and software, it is hard to free. The drawback of this approach is the introduction of imagine one which is free. This is the goal of this paper: we extra errors (path inflation, header manipulation, bandwidth set out to build FreeLab, a free experimentation platform shrinkage) which need to be carefully corrected. which also aims to be reliable and up-to-date. The key idea This paper presents FreeLab, a free experimentation plat- behind FreeLab is that experiments run directly at its user form built atop of thousand of free HTTP(S) and SOCKS(5) machines, while traffic is relayed by free vantage points inthe Internet proxies [38]—to enable experiments based on TCP, Internet (web and SOCKS proxies, and DNS resolvers).
    [Show full text]
  • Direct Internet 3 User Manual for the Windows Operating Systems
    DIRECT INTERNET 3 User Manual for the Mac OS® Operating System Iridium Communications Inc. Rev. 2; October 29, 2010 Table of Contents 1 OVERVIEW ............................................................................................................................................1 2 HOW IT WORKS ....................................................................................................................................1 3 THE DIAL-UP CONNECTION ...............................................................................................................2 3.1 Connect ..........................................................................................................................................2 3.2 Disconnect .....................................................................................................................................5 4 DIRECT INTERNET 3 WEB ACCELERATOR ......................................................................................6 4.1 Launch ...........................................................................................................................................6 4.2 The User Interface Menu ...............................................................................................................7 4.3 Start and Stop ................................................................................................................................8 4.4 Statistics .........................................................................................................................................9
    [Show full text]
  • Combating Spyware in the Enterprise.Pdf
    www.dbebooks.com - Free Books & magazines Visit us at www.syngress.com Syngress is committed to publishing high-quality books for IT Professionals and delivering those books in media and formats that fit the demands of our cus- tomers. We are also committed to extending the utility of the book you purchase via additional materials available from our Web site. SOLUTIONS WEB SITE To register your book, visit www.syngress.com/solutions. Once registered, you can access our [email protected] Web pages. There you will find an assortment of value-added features such as free e-booklets related to the topic of this book, URLs of related Web site, FAQs from the book, corrections, and any updates from the author(s). ULTIMATE CDs Our Ultimate CD product line offers our readers budget-conscious compilations of some of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect way to extend your reference library on key topics pertaining to your area of exper- tise, including Cisco Engineering, Microsoft Windows System Administration, CyberCrime Investigation, Open Source Security, and Firewall Configuration, to name a few. DOWNLOADABLE EBOOKS For readers who can’t wait for hard copy, we offer most of our titles in download- able Adobe PDF form. These eBooks are often available weeks before hard copies, and are priced affordably. SYNGRESS OUTLET Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt books at significant savings. SITE LICENSING Syngress has a well-established program for site licensing our ebooks onto servers in corporations, educational institutions, and large organizations.
    [Show full text]
  • 60 Recipes for Apache Cloudstack
    60 Recipes for Apache CloudStack Sébastien Goasguen 60 Recipes for Apache CloudStack by Sébastien Goasguen Copyright © 2014 Sébastien Goasguen. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/ institutional sales department: 800-998-9938 or [email protected]. Editor: Brian Anderson Indexer: Ellen Troutman Zaig Production Editor: Matthew Hacker Cover Designer: Karen Montgomery Copyeditor: Jasmine Kwityn Interior Designer: David Futato Proofreader: Linley Dolby Illustrator: Rebecca Demarest September 2014: First Edition Revision History for the First Edition: 2014-08-22: First release See http://oreilly.com/catalog/errata.csp?isbn=9781491910139 for release details. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. 60 Recipes for Apache CloudStack, the image of a Virginia Northern flying squirrel, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
    [Show full text]