5-HT2A/2C Receptor Modulation of Absence Seizures and Characterization of the GHB-Model

Total Page:16

File Type:pdf, Size:1020Kb

5-HT2A/2C Receptor Modulation of Absence Seizures and Characterization of the GHB-Model 5-HT2A/2C receptor modulation of absence seizures and characterization of the GHB-model A thesis submitted to Cardiff University for the degree of Doctor of Philosophy by Marcello Venzi (MSc) School of Biosciences, Cardiff University, October 2014 Chapter 1 Declaration and Statements This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of PhD . Signed ………………………………………… (candidate) Date ………………………… STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. The views expressed are my own. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- library loan, and for the title and summary to be made available to outside organisations. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- library loans after expiry of a bar on access previously approved by the Academic Standards & Quality Committee. Signed ………………………………………… (candidate) Date ………………………… II Chapter 1 Summary Absence seizures (ASs) are non-convulsive epileptic events which are common in pediatric and juvenile epilepsies. They consist of EEG generalized spike-and-wave-discharges (SWDs) accompanied by an impairment of consciousness and are expressed within the thalamocortical network. This thesis initially focused on investigating the modulation of ASs by two serotonin receptors (5-HTRs), 5-HT2A and 5-HT2C, in a polygenic (i.e. Genetic Absence Epilepsy Rats from Strasbourg, GAERS) and a pharmacological (i.e. γ-hydroxybutyrate, GHB) model of ASs. It was found that, in GAERS, pharmacological activation of 5-HT2A/CRs blocked ASs, whereas 5-HT2AR antagonists increased seizure length. However, experiments on the GHB-model revealed that GHB induced not only ASs but also a period of sedation/hypnosis, a behavioural state that had been neglected in the literature. Thus, the rest of this thesis was devoted to further characterizing the GHB-model. The main result was that GHB-elicited ASs can be distinguished at the level of both EEG and behaviour. In vivo characterization of thalamic firing during GHB- elicited ASs and hypnosis via silicon probes in freely moving animals revealed that both states were accompanied by a decrease in firing rate. In particular, contrary to what was predicted by in vitro and in vivo experiments under neurolept anaesthesia, T-type Ca2+ channel-dependent burst firing in thalamic neurons was found in <10% of spike-and-wave complexes of SWDs. The prevalent activity of nucleus reticularis thalami neurons during ASs was either silence or tonic firing. Indeed, thalamic application of the potent T-type channel antagonist, TTAP-2, by reverse microdialysis did not affect GHB-elicited ASs. Finally, the development of an algorithm to classify GHB-elicited ASs demonstrated that the spectral properties of SWDs can be used to discriminate hypnosis and SWDs. Moreover, spectral coherence can be used in different experimental models of ASs to characterize SWDs according to their waveform regularity. III Chapter 1 Collaborations Animal implantations and data collection in Chapter 5 were performed together with Dr. François David. IV Chapter 1 Acknowledgements First and foremost I would like to thank my supervisor, Vincenzo for his support throughout my PhD and for always having time for me no matter how busy he was. Secondly, I am grateful to all members of the Crunelli lab, in particular Cian and François: Cian for his help in teaching me surgery and for our discussions, which helped to keep alive my interest in science and Francois, for honing my matlab skills and teaching me spike sorting, and for showing me what it takes to stay at the top of the food chain. Also, Bill, for the chats about pharmacology, statistics, electrophysiology, and all the other areas of science in which my knowledge is sorely lacking, Tim, for his help with histological analysis, and Hannah, for giving me motivational treats whilst I was writing this thesis! Thirdly, I would like to thank Cristiano, for his expertise in 5-HT immunohistochemistry, and Giuseppe for helping me to find a serotinergic drug. V Chapter 1 Table of contents Chapter 1 INTRODUCTION............................................................................................................... 4 1.1 Classification of epileptic seizures and epilepsies ........................................................................................ 4 1.2 Typical absence seizures .......................................................................................................................................... 7 1.2.1 Childhood absence epilepsy (CAE) ................................................................................................. 10 1.2.2 Summary ................................................................................................................................................... 14 1.3 Thalamocortical Network ..................................................................................................................................... 15 1.3.1 General features of the TC network ............................................................................................... 15 1.3.2 Electrophysiological properties of TC and NRT neurons ...................................................... 21 1.4 Experimental models of absence seizures ..................................................................................................... 31 1.4.1 Genetic models of absence seizures ............................................................................................... 32 1.4.2 Pharmacological models of absence seizures ............................................................................ 37 1.5 Mechanism of ASs: evidence from genetic and pharmacological models ....................................... 44 1.5.1 Cortex .......................................................................................................................................................... 44 1.5.2 Thalamus ................................................................................................................................................... 47 1.6 Serotonin and absence seizures ......................................................................................................................... 51 1.6.1 General aspect of the serotoninergic system ............................................................................. 51 1.6.2 5-HT receptors subtypes .................................................................................................................... 51 1.6.3 Serotonin and ASs: focus on 5-HT2 receptors ........................................................................... 61 1.7 Thesis Aims ................................................................................................................................................................... 63 Chapter 2 METHODS ........................................................................................................................ 64 2.1 Animals and ethical statement ........................................................................................................................... 64 2.2 Recovery Surgeries ................................................................................................................................................... 64 2.2.1 Anaesthesia, analgesia and post-operative care ....................................................................... 64 2.2.2 Epidural EEG electrodes implantation .......................................................................................... 66 2.2.3 Epidural EEG electrodes and microdialysis probes implantation ..................................... 66 2.2.4 Epidural EEG electrodes and thalamic silicon probe implantation .................................. 68 2.2.5 Conclusion of recovery surgeries .................................................................................................... 69 2.3 Experimental protocols for in vivo recordings ............................................................................................ 70 2.3.1 Freely-moving EEG recordings ........................................................................................................ 70 2.3.2 Freely-moving EEG recordings and reverse microdialysis .................................................. 71 2.3.3 Freely-moving EEG and thalamic silicon probe recordings ................................................. 74 VI Chapter 1 2.4 Data analysis for in vivo recordings ................................................................................................................. 77 2.4.1 Visual detection of behavioural states in the GHB-model of ASs ....................................... 77 2.4.2 Automatic detection of ASs in GAERS ............................................................................................ 77 2.4.3 ASs quantification .................................................................................................................................
Recommended publications
  • Summary: Traditionally, Bioanalytical Laboratories Do Not Report Actual
    Summary: Traditionally, bioanalytical laboratories do not report actual concentrations for samples with results below the limit of quantification (BLQ) in pharmacokinetic studies. BLQ values are outside the method calibration range established during validation and no data are available to support the reliability of these values. However, ignoring BLQ data can contribute to bias and imprecision in model-based pharmacokinetic analyses. From this perspective, routine use of BLQ data would be advantageous. We would like to initiate an interdisciplinary debate on this important topic by summarising the current concepts and use of BLQ data by regulators, pharmacometricians and bioanalysts. Through introducing the limit of detection and evaluating its variability BLQ data could be released and utilized appropriately for pharmacokinetic research. Keywords: Lower limit of quantification (LLOQ) Below limit of quantification (BLQ) result Limit of detection (LoD) Pharmacokinetic (PK) Pharmacodynamics (PD) Introduction Studying the effects of drugs remains central to both medical research and clinical practice. Two key branches of pharmacological analysis are (i) pharmacokinetics (PK), including drug absorption, distribution, metabolism and elimination, and (ii) pharmacodynamics (PD), exploring the effects of drugs on the living organism, including efficacy and toxicity. In PK studies the samples are collected in an effort to map the drug concentration over time in the patient. For samples collected many hours post-dose drug concentrations may be low, yet can still provide valuable information on pharmacokinetic parameters such as clearance [1,2]. Similarly, in the case of biomarker PD studies, concentrations that are too low to quantify with a particular bioanalytical method may still provide useful information. Bioanalytical laboratories define the lowest concentration that can be quantified accurately by a method as the lower limit of quantification (LLOQ).
    [Show full text]
  • 7 X 11.5 Three Lines.P65
    Cambridge University Press 978-0-521-71413-6 - Antipsychotics and Mood Stabilizers: Stahl’s Essential Psychopharmacology, Third Edition Stephen M. Stahl Index More information Index Page numbers followed by ‘f ’ indicate figures; page numbers followed by ‘t ’ indicate tables. 3PPP, 134f agitation, benzodiazepines for, 188 AAADC (aromatic amino acid decarboxylase), and receptor conformation, 132f 97, 98f agranulocytosis, clozapine and, 164 ABT089, 203 akathisia acetylcholine (ACh), from aripiprazole, 175 in arousal pathways, 150, 152f nigrostriatal pathway dopamine deficiencies and blocked dopamine receptors, 93f and, 31 overactivity, 95 alanine-serine-cysteine transporter (ASC-T), reciprocal relationship with dopamine, 92f glial, 34 acetylcholine-linked mechanisms, 202 alogia, 5, 6t ACP 103, 200 alpha 1 adrenergic receptors ACP-104, 129, 134f atypical antipsychotic agents and, 139f ACR16, 134f and sedation, 151f adipose tissue, insulin resistance in, 141, alpha-1 receptor, antagonism, 94f 144f alpha-2 adrenergic receptors, atypical adolescence antipsychotic agents and, 139f aggressiveness in, 179 alpha 2 antagonists, 168 removal of synaptic connections, 68 alpha-4 beta-2 nicotinic acetylcholine receptor, risperidone for treating psychotic disorders, 203 166 alpha-7-nicotinic cholinergic agonists, affective blunting, 5 202 affective flattening, as SSRI side effect, 110 alpha amino-3-hydroxy-5-methyl-4- affective symptoms isoxazolepropionic acid (AMPA) dorsal vs. ventral regulation, 76f receptors, 40, 40f, 66f mesolimbic dopamine pathway role
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/107 (2006.01) A61K 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A 61 47/10 (2006.0V) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/US2012/034361 HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 20 April 2012 (20.04.2012) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/480,259 28 April 201 1 (28.04.201 1) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant (for all designated States except US): BOARD UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, OF REGENTS, THE UNIVERSITY OF TEXAS SYS¬ TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, TEM [US/US]; 201 West 7th St., Austin, TX 78701 (US).
    [Show full text]
  • Case 2:14-Cv-05824-ES-JAD Document 1 Filed 09/18/14 Page 1 of 35 Pageid: 1
    Case 2:14-cv-05824-ES-JAD Document 1 Filed 09/18/14 Page 1 of 35 PageID: 1 Charles M. Lizza William C. Baton SAUL EWING LLP One Riverfront Plaza, Suite 1520 Newark, New Jersey 07102-5426 (973) 286-6700 [email protected] Attorneys for Plaintiff Jazz Pharmaceuticals, Inc. UNITED STATES DISTRICT COURT DISTRICT OF NEW JERSEY JAZZ PHARMACEUTICALS, INC., Civil Action No. ____________________ Plaintiff, COMPLAINT FOR PATENT INFRINGEMENT v. PAR PHARMACEUTICAL, INC., (Filed Electronically) Defendant. Plaintiff Jazz Pharmaceuticals, Inc. (“Jazz Pharmaceuticals”), by its undersigned attorneys, for its Complaint against defendant Par Pharmaceutical, Inc. (“Par”), alleges as follows: Nature of the Action 1. This is an action for patent infringement under the patent laws of the United States, 35 U.S.C. §100, et seq., arising from Par’s filing of an Abbreviated New Drug Application (“ANDA”) with the United States Food and Drug Administration (“FDA”) seeking ® approval to commercially market a generic version of Jazz Pharmaceuticals’ XYREM drug product prior to the expiration of United States Patent No. 8,772,306 (“the ’306 patent” or “the patent-in-suit”) owned by Jazz Pharmaceuticals. Case 2:14-cv-05824-ES-JAD Document 1 Filed 09/18/14 Page 2 of 35 PageID: 2 The Parties 2. Plaintiff Jazz Pharmaceuticals is a corporation organized and existing under the laws of the State of Delaware, having a principal place of business at 3180 Porter Drive, Palo Alto, California 94304. 3. On information and belief, defendant Par Pharmaceutical, Inc. is a corporation organized and existing under the laws of the State of Delaware, having a principal place of business at 300 Tice Boulevard, Woodcliff Lake, New Jersey.
    [Show full text]
  • 货号 英文名称 规格 D50673 A66 2.5Mg,5Mg,100Ul(10Mm/DMSO
    货号 英文名称 规格 D50673 A66 2.5mg,5mg,100ul(10mM/DMSO) D50690 Acadesine 25mg,50mg,1ml(10mM/DMSO) D50691 Acadesine phosphate 10mg,25mg,1ml(10mM/DMSO) D50580 Acemetacin 500mg D50669 Acetohexamide 25mg,50mg,1ml(10mM/DMSO) D50574 Acrivastine 10mg D50409 Actinomycin D 1mg D50409s Actinomycin D (10mM in DMSO) 100ul D50553 Adavosertib 5mg D50619 Adenosine 5'-monophosphate monohydrate 100mg,250mg,1ml(10mM/DMSO) D50412 Adriamycin 10mg,50mg D50412s Adriamycin (10mM in DMSO) 200ul D50381 AEBSF 10mg,100mg D50381s AEBSF solution (10mM) 100ul D50600 Afloqualone 10mg,50mg,1ml(10mM/DMSO) D50575 Alcaftadine 5mg D50556 Alosetron 2.5mg D50557 Alosetron Hydrochloride 100mg D50675 Alpelisib 5mg,10mg,200ul(10mM/DMSO) D50616 Alvelestat 1mg,2mg,200ul(10mM/DMSO) D50577 Alvimopan dihydrate 1mg,5mg D50581 Amfenac Sodium Hydrate 100mg D50653 AMG 208 2.5mg,200ul(10mM/DMSO) D50645 AMG319 2mg,5mg,100ul(10mM/DMSO) D50547 Amonafide 5mg D50614 Anacetrapib 5mg,10mg,200ul(10mM/DMSO) D50670 Anethole trithione 100mg,500mg,1ml(10mM/DMSO) D50667 Anhydroicaritin 5mg,10mg,1ml(10mM/DMSO) D52001 Anisomycin 5mg,10mg D50578 Antineoplaston A10 1mg,5mg D50530 Antipain dihydrochloride 1mg,5mg D50671 Antipyrine 10mg,50mg,1ml(10mM/DMSO) D50627 Apararenone 5mg,200ul(10mM/DMSO) D50624 Apixaban 10mg,50mg,1ml(10mM/DMSO) D10360 Aprotinin (5400 KIU/mg) 10mg,25mg,100mg D50507 Arbidol hydrochloride 10mg D50508 Arbidol Hydrochloride Hydrate 500mg D50620 ATP 5g,10g,1ml(10mM/DMSO) D50621 ATP disodium salt hydrate 1g,10g,1ml(10mM/H2O) D50635 Baicalein 100mg,1ml(10mM in DMSO) D50400 b-AP15 5mg D50400s b-AP15
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,893,053 B2 Seed Et Al
    US0078.93053B2 (12) United States Patent (10) Patent No.: US 7,893,053 B2 Seed et al. (45) Date of Patent: Feb. 22, 2011 (54) TREATING PSYCHOLOGICAL CONDITIONS WO WO 2006/127418 11, 2006 USING MUSCARINIC RECEPTORM ANTAGONSTS (75) Inventors: Brian Seed, Boston, MA (US); Jordan OTHER PUBLICATIONS Mechanic, Sunnyvale, CA (US) Chau et al. (Nucleus accumbens muscarinic receptors in the control of behavioral depression : Antidepressant-like effects of local M1 (73) Assignee: Theracos, Inc., Sunnyvale, CA (US) antagonist in the porSolt Swim test Neuroscience vol. 104, No. 3, pp. 791-798, 2001).* (*) Notice: Subject to any disclaimer, the term of this Lind et al. (Muscarinic acetylcholine receptor antagonists inhibit patent is extended or adjusted under 35 chick Scleral chondrocytes Investigative Ophthalmology & Visual U.S.C. 154(b) by 726 days. Science, vol.39, 2217-2231.* Chau D., et al., “Nucleus Accumbens Muscarinic Receptors in the (21) Appl. No.: 11/763,145 Control of Behavioral Depression: Antidepressant-like Effects of Local M1 Antagonists in the Porsolt Swin Test.” Neuroscience, vol. (22) Filed: Jun. 14, 2007 104, No. 3, Jun. 14, 2001, pp. 791-798. Bechtel, W.D., et al., “Biochemical pharmacology of pirenzepine. (65) Prior Publication Data Similarities with tricyclic antidepressants in antimuscarinic effects only.” Arzneimittelforschung, vol. 36(5), pp. 793-796 (May 1986). US 2007/O293480 A1 Dec. 20, 2007 Chau, D.T. et al., “Nucleus accumbens muscarinic receptors in the control of behavioral depression: antidepressant-like effects of local Related U.S. Application Data Mantagonist in the Porsolt Swim test.” Neuroscience, vol. 104(3), (60) Provisional application No.
    [Show full text]
  • Davey KJ Phd 2013.Pdf
    UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title The gut microbiota as a contributing factor to antipsychotic-induced weight gain and metabolic dysfunction Author(s) Davey, Kieran Publication date 2013 Original citation Davey, K. 2013. The gut microbiota as a contributing factor to antipsychotic-induced weight gain and metabolic dysfunction. PhD Thesis, University College Cork. Type of publication Doctoral thesis Rights © 2013. Kieran Davey http://creativecommons.org/licenses/by-nc-nd/3.0/ Embargo information Restricted to everyone for one year Item downloaded http://hdl.handle.net/10468/1243 from Downloaded on 2021-10-09T20:00:22Z Ollscoil na hEireann National Unversity Ireland Colaiste na hOllscoile, Corcaigh University College Cork School of Pharmacy The Gut Microbiota as a Contributing Factor to Antipsychotic-Induced Weight Gain and Metabolic Dysfunction Thesis presented by Kieran J. Davey under the supervision of Prof. John F. Cryan Prof. Timothy G. Dinan Dr Siobhain M. O’Mahony for the degree of Doctor of Philosophy Head of School: CatrionaO’Driscoll Contents Declaration ........................................................................................................................................... vii Acknowledgements .......................................................................................................................... viii Publications and presentations .....................................................................................................
    [Show full text]
  • Antipsychotics
    The Fut ure of Antipsychotic Therapy (page 7 in syllabus) Stepp,,hen M. Stahl, MD, PhD Adjunct Professor, Department of Psychiatry Universityyg of California, San Diego School of Medicine Honorary Visiting Senior Fellow, Cambridge University, UK Sppyonsored by the Neuroscience Education Institute Additionally sponsored by the American Society for the Advancement of Pharmacotherapy This activity is supported by an educational grant from Sunovion Pharmaceuticals Inc. Copyright © 2011 Neuroscience Education Institute. All rights reserved. Individual Disclosure Statement Faculty Editor / Presenter Stephen M. Stahl, MD, PhD, is an adjunct professor in the department of psychiatry at the University of California, San Diego School of Medicine, and an honorary visiting senior fellow at the University of Cambridge in the UK. Grant/Research: AstraZeneca, BioMarin, Dainippon Sumitomo, Dey, Forest, Genomind, Lilly, Merck, Pamlab, Pfizer, PGxHealth/Trovis, Schering-Plough, Sepracor/Sunovion, Servier, Shire, Torrent Consultant/Advisor: Advent, Alkermes, Arena, AstraZeneca, AVANIR, BioMarin, Biovail, Boehringer Ingelheim, Bristol-Myers Squibb, CeNeRx, Cypress, Dainippon Sumitomo, Dey, Forest, Genomind, Janssen, Jazz, Labopharm, Lilly, Lundbeck, Merck, Neuronetics, Novartis, Ono, Orexigen, Otsuka, Pamlab, Pfizer, PGxHealth/Trovis, Rexahn, Roche, Royalty, Schering-Plough, Servier, Shire, Solvay/Abbott, Sunovion/Sepracor, Valeant, VIVUS, Speakers Bureau: Dainippon Sumitomo, Forest, Lilly, Merck, Pamlab, Pfizer, Sepracor/Sunovion, Servier, Wyeth Copyright © 2011 Neuroscience Education Institute. All rights reserved. Learninggj Objectives • Differentiate antipsychotic drugs from each other on the basis of their pharmacological mechanisms and their associated therapeutic and side effects • Integrate novel treatment approaches into clinical practice according to best practices guidelines • Identify novel therapeutic options currently being researched for the treatment of schizophrenia Copyright © 2011 Neuroscience Education Institute.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0053329 A1 Peters Et Al
    US 2009.0053329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0053329 A1 Peters et al. (43) Pub. Date: Feb. 26, 2009 (54) COMBINATIONS OF 5-HT2A INVERSE 61/012,771, filed on Dec. 10, 2007, provisional appli AGONSTS AND ANTAGONSTS WITH cation No. 61/026,092, filed on Feb. 4, 2008. ANTIPSYCHOTICS Publication Classification (75) Inventors: Perry Peters, San Diego, CA (US); (51) Int. Cl. David Furlano, San Diego, CA A633/00 (2006.01) (US); Daun Bahr, San Diego, CA A6II 3/445 (2006.01) (US); Daniel Van Kammen, San A 6LX 3/59 (2006.01) Diego, CA (US); Mark Brann, A6II 3/438 (2006.01) Rye, NH (US) A6IP 25/18 (2006.01) Correspondence Address: A 6LX 3L/2197 (2006.01) KNOBBE MARTENS OLSON & BEAR LLP A6II 3/54 (2006.01) 2040 MAINSTREET, FOURTEENTH FLOOR A6II 3/55 (2006.01) IRVINE, CA 92.614 (US) (52) U.S. Cl. .................... 424/722:514/329; 514/259.41: 514/278; 514/254.06; 514/222.2: 514/212.01 (73) Assignee: Acadia Pharmaceuticals, Inc., San Diego, CA (US) (57) ABSTRACT Combinations of 5-HT2A inverse agonists or antagonists (21) Appl. No.: 12/051,807 Such as pimavanserin with antipsychotics Such as risperidone are shown to induce a rapid onset of antipsychotic action and (22) Filed: Mar. 19, 2008 increase the number of responders when compared to therapy with the antipsychotic alone. These effects can be achieved at Related U.S. Application Data a low dose of the antipsychotic, thereby reducing the inci (60) Provisional application No.
    [Show full text]