Stereochemistry Some Definitions with Examples

Total Page:16

File Type:pdf, Size:1020Kb

Stereochemistry Some Definitions with Examples STEREOCHEMISTRY SOME DEFINITIONS WITH EXAMPLES PRESENTING STEREO STRUCTURES CHIRAL CENTER REPRESENTAITON goes back goes back in the plane of the paper comes forward comes forward goes back DOTTED LINE - WEDGE FISCHER PROJECTION STEREOISOMERS—ISOMERS THAT ARE DIFFERENT BECAUSE OF THEIR ORIENTATION IN SPACE CONFIGURATION—THE EXACT ORIENTAION IN SPACE OF THE ISOMER (CIS, TRANS OR R,S) CHIRALITY—A PROPERTY OF ISOMERS WHEN THEY ARE NON- SUPERIMPOSABLE (ISOMERS OF OPPOSITGE CONFIGURATION) STEREOGENIC—ANY FEATURE OF A MOLECULE THAT GIVES RISE TO CHIRALITY. A CHIRAL CENTER IS A STEREOGENIC CENTER. CHIRAL CENTER—A CENTER WITHOUT SYMMETRY. MOST COMMON IT IS A CARBON ATOM WITH FOUR DIFFERENT SUBSTITUENTS. ENANTIOMERS—NON SUPERIMPOSIBLE MIRROR IMAGES Enantiomers Br Br S R H H H3C CH3 CH2CH3 H3CH2C O O Chiral Center As shown the R and S enantiomers are together as an equal amount in a racemic mixture. They must be separated in order to study their stereochemical properties. Configurational Isomers-Chirality Another type of isomerization occurs when a carbon atom is bound to four different substituents. This is called configurational isomerism. Configurational isomers have as their only difference the way they are oriented in space, their three-dimensional arrangement. Although configurational isomers can be difficult to visualize and understand, they are extremely important especially in biological chemistry. For example, the pain reliever Ibuprofen exists as configurational isomers but only one isomer is effective (the S isomer) in treating pain. Also, the drug L-DOPA (L- dopamine) used for treatment of Parkinson's disease is effective only as the L or R isomer in the treatment. H H COOH NH2 HO COOH CH3 HO L-DOPA S-Ibuprofin R-Configuration In 3-chloro-2-methylpentane, four different substituents are bound to carbon 3; an ethyl group, an isopropyl group, a chlorine atom and a hydrogen atom. When the compound is placed in front of a mirror, it presents a mirror image that is not superimposible on the original structure. This means that there is no way to orient the two structures such that they can be identical. The non superimposible mirror images are called enantiomers, which are configurational isomers. The enantiomers are also called chiral which means they lack symmetry. The word chiral comes from a Greek word chiros that means hand. Enantiomer are to each other as your hands are to you, non- superimposible mirror images. Cl CH3CH2-C-CH-CH3 H CH3 3-chloro-2-methylpentane Cl Cl CH CH 3 2 CH2CH3 H H (CH3)2CH CH(CH3)2 mirror Enantiomers are identical in most properties such as melting point, boiling point, but they are different in the way they react with other chiral molecules and in the way they interact with polarized light. Their interaction with polarized light is called optical activity. Optical Activity PURE ENANTIOMERS (THE R AND S ARE SEPARATED FROM EACH OTHER) Will rotate plane polarized light (optically active). There experiments involve the use of Optical activity studies. Each enantiomer will react differently with another chiral reagent, but there is no difference if the reagent is achiral (not chiral). This is the basis of chemical resolution. R-isomer reacts with S-reagents to yield a compound with R and S centers. (compound 1) S-isomer reacts with S-reagent to yield a compound with S and S centers (Compound 2) Compounds 1 and 2 are stereoisomers but they are not enantiomers, these are diastereomers. Diastereomers have completely different physical properties. Thus they can be separated by crystallization or chromatography. After purification the isomers can be released back in their pure form separated from each other. Compound 1 and Compound 2 are separated by chromatography. Now take pure compound 1 and do a reaction that regenerates the R-isomer. Do the same with compound 2 to get the S-isomer. This is resolution of an enantiomeric mixture. Many natural compounds such as enzymes are not symmetrical. Thus individual enantiomers will react with enzymes to give different results. A pure chiral compound, not a mixture of enantiomers, will interact with plane polarized light and cause the plane to rotate to the right (dextrorotarory) or to the left (levorotatory). An equal mixture of enantiomers will not show optical activity because half of the molecules would rotate light to the left while the other half would rotate the light to the right with a net rotation of zero. Thus enantiomers must be separated in order to observe optical activity. Optical rotation is an inherent property of an optically active compounds and is used as a physical constant for characterization of the compound. Optical rotation depends on the arrangement of atoms or groups around the chiral center—the configuration. Optical activity is measured automatically with an instrument called a polarimeter. Naming Configurational Isomers Configurational isomers contain carbon atoms with four different substituents. The carbon atoms are called stereogenic centers or chiral centers.A naming system has been devised so that we can distinguish one enantiomer from the other based on the orientation of those substituents. The system is called the Cahn-lngold-Prelog method, and it follows several rules. First the substituents on the stereogenic carbon are assigned a priority based on atomic number. Low priority is given to low atomic number. If identical atoms are attached to the stereogenic carbon , then priorities are determined based on the atomic number of the next atom attached. Thus, in 3-chloro-2-methyl pentane, the lowest priority goes to hydrogen and the highest priority goes to chlorine (labeled 1). The carbon atoms of ethyl and isopropyl are identical so we go out one atom. Now the ethyl has one carbon (methyl) attached to the CH2 while the isopropyl has two carbons (methyls) attached to the CH. Thus the isopropyl group gets the higher priority (labeled 2) and the ethyl group gets priority 3. After the priorities are assigned, the molecule must be oriented with the lowest priority group pointing away from the observer. 1 1 Cl Cl 4 H 3 CH3CH2 4 H (CH3)2CH CH3CH2 CH(CH3)2 2 3 2 view from front After getting the correct view, draw a circle from priority 1 to 2 to 3. If this circle makes a right hand turn then the configuration is called R. The R comes from the Latin word rectus, meaning right. If we draw a circle with a left turn then the configuration is S, meaning left which in Latin is sinister. A stereogenic carbon atom thus has two different designations, R or S, depending on the orientation of the substituents. In our molecule the configuration is R, and the complete name of this enantiomer is R-3-chloro- 2-methylpentane. Cl 1 4 H CH CH CH(CH3)2 3 2 2 3 right hand turn Rectus = R configuration More than One Chiral (Stereogenic) Center When molecules have more than one stereogenic center, structures such as dotted- line wedge and sawhorse may still be used, but another useful type of structure is the Fischer projection. In the Fischer projection all of the vertical lines go back into the paper and the horizontal bonds come out toward you. You have to remember this method because the structure looks flat. Also the only kind of change you can do to the structure is a rotation of 180o. All of these methods for writing stereochemical structures are important. The Fischer projection is used mostly in the study of carbohydrates. CH CH3 3 H Br H Br H Br CH same as same as 3 Cl H Cl H Cl H CH 3 CH3 CH3 Dotted-line wedge Fischer Projection Sawhorse (2S, 3S)- 2-bromo-3-chlorobutane Many compounds that contain more than one chiral center are stereoisomers that are not enantiomers. In this case they are called diastereoisomers. While enantiomers have all of the same properties except for their interaction with other chiral substances and with polarized light, diastereomers are completely different in physical properties (different solubility, different mp, different chromatography, different spectra). The compounds 1 and 2 below are enantiomers as they are non-superimposible mirror images, but compound 3 is not an enantiomer of 1 or 2. Thus 1 and 3, and 2 and 3 are diastereomers. 1 2 3 CHO CHO CHO OH HO HO Br Br Br CH2OH CH2OH CH2OH enantiomers diastereoisomers Chirality in Cyclic Systems Stereogenic centers may also exist in cyclic systems. The cyclic structure must be tested for a plane of symmetry, and if one is present the molecule is not chiral. It is an achiral molecule designated as meso. The example below with cis and trans 1,3- dimethylcyclohexane shows that the cis isomer contains a plane of symmetry and is achiral. The trans isomer is chiral as it contains no symmetry planes. cis trans CH CH CH3 3 3 CH3 plane of symmetry no plane of symmetry not chiral two chiral atoms Several other trans-dimethyl-cyclopropane, -cyclobutane, and-cyclopentane chiral rings are shown below. All of the cis isomers are achiral. two chiral atoms CH CH3 3 S R R CH3 S H3C H3C no plane of symmetry S S H3C Chiral Systems without Chiral Centers Ring systems do not have to contain a chiral center to be chiral. Certain molecular distortions cause ring systems to lose their symmetry and show chirality. The molecule hexahelicene, synthesized by M. S. Newman, is chiral and can be resolved into enantiomers that show optical activity. The chirality in the molecule occurs because the rings are distorted to avoid bumping into each other. The computerized structure on the right shows the shape of the molecule. hexahelicine optically active A number of compounds exist that contain two perpindicular planes of which neither has a plane of symmetery.
Recommended publications
  • Prebiological Evolution and the Metabolic Origins of Life
    Prebiological Evolution and the Andrew J. Pratt* Metabolic Origins of Life University of Canterbury Keywords Abiogenesis, origin of life, metabolism, hydrothermal, iron Abstract The chemoton model of cells posits three subsystems: metabolism, compartmentalization, and information. A specific model for the prebiological evolution of a reproducing system with rudimentary versions of these three interdependent subsystems is presented. This is based on the initial emergence and reproduction of autocatalytic networks in hydrothermal microcompartments containing iron sulfide. The driving force for life was catalysis of the dissipation of the intrinsic redox gradient of the planet. The codependence of life on iron and phosphate provides chemical constraints on the ordering of prebiological evolution. The initial protometabolism was based on positive feedback loops associated with in situ carbon fixation in which the initial protometabolites modified the catalytic capacity and mobility of metal-based catalysts, especially iron-sulfur centers. A number of selection mechanisms, including catalytic efficiency and specificity, hydrolytic stability, and selective solubilization, are proposed as key determinants for autocatalytic reproduction exploited in protometabolic evolution. This evolutionary process led from autocatalytic networks within preexisting compartments to discrete, reproducing, mobile vesicular protocells with the capacity to use soluble sugar phosphates and hence the opportunity to develop nucleic acids. Fidelity of information transfer in the reproduction of these increasingly complex autocatalytic networks is a key selection pressure in prebiological evolution that eventually leads to the selection of nucleic acids as a digital information subsystem and hence the emergence of fully functional chemotons capable of Darwinian evolution. 1 Introduction: Chemoton Subsystems and Evolutionary Pathways Living cells are autocatalytic entities that harness redox energy via the selective catalysis of biochemical transformations.
    [Show full text]
  • Chapter 3 • Ratio: Cnh2n+2
    Organic Chemistry, 5th Edition Alkane Formulas L. G. Wade, Jr. • All C-C single bonds • Saturated with hydrogens Chapter 3 • Ratio: CnH2n+2 Structure and Stereochemistry • Alkane homologs: CH3(CH2)nCH3 of Alkanes • Same ratio for branched alkanes H H H H H H CH H C C C C H H H H C CCH Jo Blackburn H H H H H H Richland College, Dallas, TX H => Butane, C4H10 Dallas County Community College District Chapter 3Isobutane, C H 2 © 2003, Prentice Hall 4 10 Common Names Pentanes H H H H H H H CH • Isobutane, “isomer of butane” H C C C C C H H H • Isopentane, isohexane, etc., methyl H H H H H H H C CCC H branch on next-to-last carbon in chain. H H H H • Neopentane, most highly branched n-pentane, C5H12 isopentane, C5H12 • Five possible isomers of hexane, CH3 18 isomers of octane and 75 for H3C C CH3 decane! CH3 => => neopentane, C5H12 Chapter 3 3 Chapter 3 4 Longest Chain IUPAC Names • The number of carbons in the longest • Find the longest continuous carbon chain determines the base name: chain. ethane, hexane. (Listed in Table 3.2, • Number the carbons, starting closest to page 81.) the first branch. • If there are two possible chains with the • Name the groups attached to the chain, same number of carbons, use the chain using the carbon number as the locator. with the most substituents. • Alphabetize substituents. H3C CH CH CH • Use di-, tri-, etc., for multiples of same 2 3 CH3 substituent.
    [Show full text]
  • Stereochemistry of Alkanes and Cycloalkanes
    STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS 1 CONFORMATIONAL ISOMERS • Stereochemistry concerned with the 3-D aspects of molecules • Rotation is possible around C-C bonds in open- chain molecules • A conformation is one of the many possible arrangements of atoms caused by rotation about a single bond, and a specific conformation is called a conformer (conformational isomer). 2 SOME VOCABULARY • A staggered conformation is the conformation in which all groups on two adjacent carbons are as far from each other as possible. • An eclipsed conformation is the conformation in which all groups on two adjacent carbons are as close to each other as possible. • Dihedral angle is angle between the substituents on two adjacent carbons; changes with rotation around the C-C bond 3 MORE VOCABULARY • Angle strain is the strain caused by the deformation of a bond angle from its normal value. • Steric strain is the repulsive interaction caused by atoms attempting to occupy the same space. • Torsional strain is the repulsive interaction between two bonds as they rotate past each other. Torsional strain is responsible for the barrier to rotation around the C-C bond. The eclipsed from higher in energy than the staggered form. 4 CONFORMATION OF ETHANE • Conformation- Different arrangement of atoms resulting from bond rotation • Conformations can be represented in 2 ways: 5 TORSIONAL STRAIN • We do not observe perfectly free rotation • There is a barrier to rotation, and some conformers are more stable than others • Staggered- most stable:
    [Show full text]
  • Chapter 4: Stereochemistry Introduction to Stereochemistry
    Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane Me Me Me C Me H Bu Bu Me Me 2-methylhexane H H mirror Me rotate Bu Me H 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane H C Et Et Me Pr Pr 3-methylhexane Me Me H H mirror Et rotate H Me Pr 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane .Compounds that are not superimposable with their mirror image are called chiral (in Greek, chiral means "handed") 3-methylhexane is a chiral molecule. .Compounds that are superimposable with their mirror image are called achiral. 2-methylhexane is an achiral molecule. .An atom (usually carbon) with 4 different substituents is called a stereogenic center or stereocenter. Enantiomers Et Et Pr Pr Me CH3 Me H H 3-methylhexane mirror enantiomers Et Et Pr Pr Me Me Me H H Me H H Two compounds that are non-superimposable mirror images (the two "hands") are called enantiomers. Introduction To Stereochemistry Structural (constitutional) Isomers - Compounds of the same molecular formula with different connectivity (structure, constitution) 2-methylpentane 3-methylpentane Conformational Isomers - Compounds of the same structure that differ in rotation around one or more single bonds Me Me H H H Me H H H H Me H Configurational Isomers or Stereoisomers - Compounds of the same structure that differ in one or more aspects of stereochemistry (how groups are oriented in space - enantiomers or diastereomers) We need a a way to describe the stereochemistry! Me H H Me 3-methylhexane 3-methylhexane The CIP System Revisited 1.
    [Show full text]
  • Organic Chemistry by Robert C
    (2/94)(6,7,9/95)(8,9/97)(12/99)(1/00) Neuman Chapter 4 Chapter 4 Stereochemistry from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids **************************************************************************************
    [Show full text]
  • Stereochemistry of Bruice's Organic Chemistry Before Embarking on Comprehending This Summary
    Enantioselective synthesis It helps if you review the concepts in Chapter 5: Stereochemistry of Bruice's Organic Chemistry before embarking on comprehending this summary Most of the molecules on earth are chiral, such as amino acids and carbohydrates. Enantioselective synthesis is an important means by which enantiopure chiral molecules may be obtained for study and medicine. The study of enantioselective synthesis has evolved from issues of diastereoselectivity, through auxiliary-based methods for the synthesis of enantiomerically pure compounds (diastereoselectivity followed by separation and auxiliary cleavage), to asymmetric catalysis. In the latter technology, enantiomers are the products, and highly selective reactions allow preparation - in a single step - of chiral substances in high enantiomeric excess (ee) for many reaction types. Enantioselective synthesis, also known as asymmetric synthesis, is organic synthesis that introduces one or more new and desired elements of chirality. This methodology is important in the field of pharmaceuticals because the different enantiomers or diastereomers of a molecule often have different biological activity. See examples from Chapter 5 of Bruice's Organic Chemistry. Methodologies of Asymmetric Synthesis Chiral pool synthesis Chiral pool synthesis is the easiest approach: A chiral starting material is manipulated through successive reactions using achiral reagents that retain its chirality to obtain the desired target molecule. This is especially attractive for target molecules having the similar chirality to a relatively inexpensive naturally occurring building-block such as a sugar or amino acid. However, the number of possible reactions the molecule can undergo is restricted, and lengthy synthetic routes may be required. Also, this approach requires a stoichiometric amount of the enantiopure starting material, which may be rather expensive if not occurring in nature, whereas chiral catalysis requires only a catalytic amount of chiral material.
    [Show full text]
  • NMR and Stereochemistry Chem 4010/5326: Organic Spectroscopic Analysis
    NMR and Stereochemistry Chem 4010/5326: Organic Spectroscopic Analysis © 2015 Andrew Harned General flow for solving structures C10H20O Molecular weight/formula (MS) Exact Mass: 156.1514 Molecular Weight: 156.2652 Functional groups (IR, NMR) Carbon connectivities (substructures) (NMR) Positions of functional groups within framework (gross structure) (2D NMR, coupling constants) How can this Stereochemical issues be solved??? Relative Stereochemistry (Diastereomers) Can be determined with many of the tools we have already discussed, along with some new ones Bifulco, G.; Dambruoso, P.; Gomex-Paloma, L.; Riccio, R. Chem. Rev. 2007, 107, 3744. NMR Spectroscopy Strategies for determining relative stereochemistry Chemical Shifts – Diastereotopic protons will have different chemical shifts, this will only tell you that diastereomers are present, cannot necessarily tell which is which by inspection only by comparison to known structures – Spatial orientation may place certain protons in shielding/deshielding portions of functional groups Coupling Constants – In acyclic systems, usually cannot tell which is which by inspection – Often must convert to rigid/cyclic structure Both require some knowledge of 3D structure –> Make model(s) NMR Spectroscopy Proximity of Protons Nuclear Overhauser Effect (nOe) – Through space interactions between nuclei, whether or not they are directly coupled – Magnitude decreases as inverse of sixth power of distance – Strongly irradiate one, get larger # in excited state – The others then shift to lower state to compensate
    [Show full text]
  • Asymmetric Synthesis
    Chapter 45 — Asymmetric synthesis - Pure enantiomers from Nature: the chiral pool and chiral induction - Asymmetric synthesis: chiral auxiliaries Enolate alkylation Aldol reaction - Enantiomeric excess (ee) - Asymmetric synthesis: chiral reagents and catalysts CBS reagent for chiral reductions Sharpless asymmetric epoxidation Synthesizing pure enantiomers starting from Nature’s chiral pool AcO OH HO B O O HO – O O HO + O N OH H3N OH HO OH O H … AcO HO OH O OH Sulcatol - insect pheremone HO Synthesis from the chiral pool — chiral induction turns one stereocenter into many 40 steps Me HO H Me H O O OH O O OBn O * * Only one H O HO chiral reagent H H Me OBn Me Deoxyribose Fragment of Brevetoxin B Asymmetric synthesis 1. Producing a new stereogenic centre on an achiral molecule makes two enantiomeric transition states of equal energy… and therefore two enantiomeric products in equal amounts. O O 1 1 Nu R R2 R R2 Nu E OH OH 1 O 1 Nu R R Nu R2 R2 1 R R2 O Ph OH HO Ph PhLi + N N N Asymmetric synthesis 2. O 1 R R* Nu When there is an existing O chiral centre, the two possible TS’s are diastereomeric and E 1 Nu R R* can be of different energy. Thus one isomer of the new stereogenic centre can be OH O OH produced in a larger amount. 1 1 R Nu Nu R *R 1 R* R R* HO Ph O O O Ph OH PhLi PhLi Ph Ph N N N N N Ph N N N N N OH Ph O O O Ph OH Ph A removable chiral centre… synthesis with chiral auxiliaries O ??? O R R 1) Add a chiral 3) Remove the auxiliary chiral auxiliary O O R* R* 2) Add the new stereocentre via chiral induction Enantiopure oxazolidinones as chiral auxiliaries 1.
    [Show full text]
  • Reactions of Alkenes Since  Bonds Are Stronger Than  Bonds, Double Bonds Tend to React to Convert the Double Bond Into  Bonds
    Reactions of Alkenes Since bonds are stronger than bonds, double bonds tend to react to convert the double bond into bonds This is an addition reaction. (Other types of reaction have been substitution and elimination). Addition reactions are typically exothermic. Electrophilic Addition The bond is localized above and below the C-C bond. The electrons are relatively far away from the nuclei and are therefore loosely bound. An electrophile will attract those electrons, and can pull them away to form a new bond. This leaves one carbon with only 3 bonds and a +ve charge (carbocation). The double bond acts as a nucleophile (attacks the electrophile). Ch08 Reacns of Alkenes (landscape) Page 1 In most cases, the cation produced will react with another nucleophile to produce the final overall electrophilic addition product. Electrophilic addition is probably the most common reaction of alkenes. Consider the electrophilic addition of H-Br to but-2-ene: The alkene abstracts a proton from the HBr, and a carbocation and bromide ion are generated. The bromide ion quickly attacks the cationic center and yields the final product. In the final product, H-Br has been added across the double bond. Ch08 Reacns of Alkenes (landscape) Page 2 Orientation of Addition Consider the addition of H-Br to 2-methylbut-2-ene: There are two possible products arising from the two different ways of adding H-Br across the double bond. But only one is observed. The observed product is the one resulting from the more stable carbocation intermediate. Tertiary carbocations are more stable than secondary.
    [Show full text]
  • IB Chemistry Guide
    Chemistry guide First assessment 2016 Chemistry guide First assessment 2016 Diploma Programme Chemistry guide Published February 2014 Updated February 2015 Published on behalf of the International Baccalaureate Organization, a not-for-profit educational foundation of 15 Route des Morillons, 1218 Le Grand-Saconnex, Geneva, Switzerland by the International Baccalaureate Organization (UK) Ltd Peterson House, Malthouse Avenue, Cardiff Gate Cardiff, Wales CF23 8GL United Kingdom Website: www.ibo.org © International Baccalaureate Organization 2014 The International Baccalaureate Organization (known as the IB) offers four high-quality and challenging educational programmes for a worldwide community of schools, aiming to create a better, more peaceful world. This publication is one of a range of materials produced to support these programmes. The IB may use a variety of sources in its work and checks information to verify accuracy and authenticity, particularly when using community-based knowledge sources such as Wikipedia. The IB respects the principles of intellectual property and makes strenuous efforts to identify and obtain permission before publication from rights holders of all copyright material used. The IB is grateful for permissions received for material used in this publication and will be pleased to correct any errors or omissions at the earliest opportunity. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission of the IB, or as expressly permitted by law or by the IB’s own rules and policy. See http://www.ibo.org/copyright. IB merchandise and publications can be purchased through the IB store at http://store.ibo.org.
    [Show full text]
  • Chapter 8 - Alkenes and Alkynes II
    Andrew Rosen Chapter 8 - Alkenes and Alkynes II 8.1 - Addition Reactions of Alkenes - Electrons in the π bond of alkenes react with electrophiles 8.2 - Electrophilic Addition of Hydrogen Halides to Alkenes: Mechanism and Markovnikov's Rule - Hydrogen halides can add to the double bond of alkenes - The order of reactivity of the hydrogen halides in alkene addition is HI > HBr > HCl > HF - Markovnikov's rule states that in the addition of HX to an alkene, the halide atom adds to the carbon atom of the original double bond with the fewer amount of hydrogen atoms. The hydrogen of HX will bond to the carbon atom of the greater amount of hydrogen atoms. This is precisely the same thing as stabilizing a carbocation intermediate by having the nucleophile go to the more substituted carbon - More accurately, the negative portion of an unsymmetrical ionic addition reagent will bond to the carbon of the double bond with the fewer amount of hydrogen atoms while the more positive reagent will restore the stability of the carbocation - Note that this is not in water. Typically, this will happen when the solvent is not listed - A reaction is regioselective if it can potentially yield two or more constitutional isomers but produces a predominance of one 8.3 - Stereochemistry of the Ionic Addition to an Alkene - The enantiomers are produced in equal amounts because the carbocation is trigonal planar 8.4 - Addition of Sulfuric Acid to Alkenes - Adds a hydroxide group onto the alkene via Markovnikov's Rule Allyl and Benzyl Carbocations - Resonance can stabilize a product - Revised Carbocation Stability Trend: Methyl < Primary < Secondary ≈ Primary allylic ≈ Primary benzylic < Tertiary ≈ Secondary allylic ≈ Secondary benzylic < Tertiary allylic ≈ Tertiary benzylic 1 8.5 - Addition of Water to Alkenes: Acid-Catalyzed Hydration - Note how this, too, follows Markovnikov's Rule - in is the same as + because will be a strong acid (except for ), and the solvent is in HX H2O H3O HX HF larger quantities.
    [Show full text]
  • CHAPTER 3 STEREOCHEMISTRY 3.1 Geometrical Isomers in Alkenes
    CHAPTER 3 STEREOCHEMISTRY Many properties of organic compounds are associated with the shape of the molecule. The "two" compounds below are isomers of Carvone, with different orientations of the isopropenyl function. One isomer (the S isomer) has the smell of spearmint whereas the other isomer (the R isomer) has the smell of caraway. The smells are a result of the way the isomers interact with receptors to send signals to the brain. Many reactions, both chemical and biological, show effects of molecular shape. O O CH3 CH3 H H CH3 CH3 R-Carvone S-Carvone Spearmint Caraway 3.1 Geometrical Isomers in Alkenes The p-bond in an alkene does not permit rotation, thus all of the atoms attached directly to the alkene lie in a plane. Groups attached to the alkene could be positioned on the same side of the alkene or on opposite sides of the alkene. Such compounds are different in chemical and physical properties as well as in their geometry, and are called geometrical isomers. In 2-butene the methyl groups can be located on the same side or on the opposite side of the double bond, giving rise to two geometrical isomers. The isomer with the methyl groups on the same side is called the cis isomer, while the isomer with the groups located on opposite sides is called the trans isomer. Trans isomers of compounds are usually more stable than cis isomers. CH CH3 CH3 3 H C C C C H H H CH3 cis- 2-butene trans- 2-butene 42 Ch 3 Stereochemistry Except for very simple alkenes with hydrogen atoms on each carbon of the alkene, the designations of cis and trans for alkenes are replaced by a system that uses E and Z designations.
    [Show full text]