Glucose Transporter GLUT1 Expression Is an Stage-Independent Predictor of Clinical Outcome in Adrenocortical Carcinoma

Total Page:16

File Type:pdf, Size:1020Kb

Glucose Transporter GLUT1 Expression Is an Stage-Independent Predictor of Clinical Outcome in Adrenocortical Carcinoma Endocrine-Related Cancer (2009) 16 919–928 Glucose transporter GLUT1 expression is an stage-independent predictor of clinical outcome in adrenocortical carcinoma Wiebke Fenske1*, Hans-Ullrich Vo¨lker 2*, Patrick Adam 2, Stefanie Hahner 1, Sarah Johanssen1, Sebastian Wortmann1, Melanie Schmidt3, Michael Morcos4, Hans-Konrad Mu¨ller-Hermelink 2, Bruno Allolio1 and Martin Fassnacht1 1Endocrine and Diabetic Unit, Department of Internal Medicine I, University Hospital of Wu¨rzburg and 2Institute of Pathology, University of Wu¨rzburg, Josef-Schneider-Strasse 2, D-97080 Wu¨rzburg, Germany 3Department of Gynaecology, University Hospital of Wu¨rzburg, Wu¨rzburg, Germany 4Department of Internal Medicine I, University Hospital, University of Heidelberg, Heidelberg, Germany (Correspondence should be addressed to M Fassnacht; Email: [email protected]) *(W Fenske and H-U Vo¨lker contributed equally to this work) Abstract Owing to the rarity of adrenocortical carcinoma (ACC) no prognostic markers have been established beyond stage and resection status. Accelerated glycolysis is a characteristic feature of cancer cells and in a variety of tumour entities key factors in glucose metabolism like glucose transporter 1 and 3 (GLUT1 and -3), transketolase like-1 enzyme (TKTL1) and pyruvate kinase type M2 (M2-PK) are overexpressed and of prognostic value. Therefore, we investigated the role of these factors in ACC. Immunohistochemical analysis was performed on tissue microarrays of paraffin-embedded tissue samples from 167 ACCs, 15 adrenal adenomas and 4 normal adrenal glands. Expression was correlated with baseline parameters and clinical outcome. GLUT1 and -3 were expressed in 33 and 17% of ACC samples respectively, but in none of the benign tumours or normal adrenals glands. By contrast, TKTL1 and M2-PK were detectable in all benign tissues and the vast majority of ACCs. GLUT1 expression was strongly associated with prognosis in univariate and multivariate analysis (P!0.01), whereas GLUT3, TKTL1 and M2-PK did not correlate with clinical outcome. Patients with strong GLUT1 staining showed a considerably higher overall mortality (hazard ratio (HR) 6.34 (95% confidence interval 3.10–12.90) compared with patients with no GLUT1 staining. When analysing patients in their early stages and advanced disease separately, similar results were obtained. HR for survival was 5.31 (1.80–15.62) in patients with metatastic ACC and in patients after radical resection the HR for disease-free survival was 6.10 (2.16–16.94). In conclusion, GLUT1 is a highly promising stage-independent, prognostic marker in ACC. Endocrine-Related Cancer (2009) 16 919–928 Introduction Many patients present with locally advanced or meta- Adrenocortical carcinoma (ACC) is a rare disease static disease and up to 85% of patients with radically characterised by an aggressive behaviour with an resected tumours relapse (Allolio & Fassnacht 2006, overall 5-year survival ranging from 16 to 44% Fassnacht et al. 2006). Disease stage and completeness (Dackiw et al. 2001, Allolio et al. 2004, Allolio & of initial resection are currently the only widely Fassnacht 2006, Libe et al. 2007, Fassnacht et al. accepted determinants of outcome for this disease 2009). The precise pathogenesis of ACC is still poorly (Barzon et al. 1997, Vassilopoulou-Sellin & Schultz understood and due to the rarity of the disease 2001, Schteingart et al. 2005, Fassnacht et al. 2009). prognostic assessment and treatment strategies are However, these features are poorly applicable when not well standardised (Schteingart et al.2005). fronting patients at a given stage and only partly reflect Endocrine-Related Cancer (2009) 16 919–928 Downloaded from Bioscientifica.comDOI: 10.1677/ERC-08-0211 at 09/25/2021 08:38:42PM 1351–0088/09/016–919 q 2009 Society for Endocrinology Printed in Great Britain Online version via http://www.endocrinology-journals.orgvia free access W Fenske, H-U Vo¨lker et al.: GLUT1 in adrenal cancer the wide prognostic heterogeneity of the disease. TKTL1 and M2-PK in patients with ACC, with benign Therefore, histological and molecular features for adrenal adenomas, and in normal adrenal glands. In prediction of tumour behaviour would be of major addition, we have analysed the prognostic value of importance for tailored therapeutic decisions. these markers in ACC. However, till date reliable prognostic factors for survival in ACC are lacking. More than 80 years ago, Warburg (1956) described Material and methods that one of the most fundamental characteristics of cancer cells is an increased level of glucose Clinical data and specimen uptake and its anaerobic metabolism. Most recently, A total of 186 adrenocortical tissues were collected several key factors in glucose metabolism have from patients undergoing surgery for ACC (nZ167), been described to be overexpressed in different aldosterone-producing adenoma (nZ5), cortisol- human carcinomas (for e.g. glioblastoma, colorectal, producing adenoma (nZ5) and endocrine inactive gastric, pancreatic and breast cancer (Reske et al. adenomas (nZ5). The normal adrenal tissue was 1997, Grover-McKay et al. 1998, Urano et al. 2006, derived from adrenal glands removed as part of tumour Wincewicz et al. 2007). Especially, the hypoxia- nephrectomy (nZ4). Table 1 summarises the charac- responsive glucose transporters isoforms 1 and 3 teristics of patients and tissue samples included in this (GLUT1 and -3) have been shown to be associated study. A total of 134 ACC samples were derived from with shortened survival in several tumour entities (as surgery of the primary tumour; 19 of local recurrence in colon, urethelial, oral squamous cell, and head and and 14 of distant metastasis. The diagnosis of ACC was neck carcinomas (Smith 1999, Langbein et al. 2006, based on established clinical, biochemical and Eckert et al. 2008, Zhou et al. 2008)) and may morphological criteria (Allolio & Fassnacht 2006). possibly assist in the selection of patients for more aggressive therapy. In addition, high expression of All histological diagnoses were confirmed by the transketolase like-1 enzyme (TKTL1) in tumour cells reference pathologist of the German ACC Registry is correlated with poor clinical outcome in colon and (Wolfgang Saeger, Hamburg, Germany) and malig- R urothelial cancer (Langbein et al. 2006). TKTL1 nancy was established by a Weiss score 3(Weiss encodes an alternative transketolase transcript, open- et al. 1989). Clinical data of ACC patients, including ing a new energy source for the tumour cell by follow-up and survival data, were collected in a enabling oxygen-independent glucose degradation structured manner by the German ACC Registry and allowing glucose conversion to ribose for nucleic (www.nebennierenkarzinom.de; Koschker et al. acid synthesis (Coy et al. 2005). Specific transketo- 2006, Fassnacht et al. 2009). Tumour staging was lase inhibitors slow down tumour cell proliferation based on imaging studies and findings during surgery, (Comin-Anduix et al. 2001), whereas the activation and was reported according to the UICC/WHO of transketolase stimulates tumour growth (Rais et al. classification 2004 (DeLellis et al. 2004). Owing to 1999). In many tumour cells, the pyruvate kinase the retrospective data collection, pre-surgical endo- equilibrium is dysregulated at the cost of ATP crine work-up and imaging intervals during follow-up production by expression of the dimeric pyruvate were not standardised. However, in the majority of kinase type M2 (M2-PK). This mechanism allows patients glucocorticoid and/or androgen excess was tumour cells to invade areas with low oxygen and investigated with at least three of the following tests: glucose concentrations (Mazurek et al. 2005) and serum cortisol; plasma ACTH; 24-h urinary free might be relevant for the clinical behaviour of the cortisol; 1 mg dexamethasone suppression test; serum tumour (Yoo et al. 2004). dehydroepiandrosteronsulfat (DHEA-S); androsten- Owing to the rarity of ACC, single centres were not dione; 17-OH progesterone; and testosterone able to collect an adequate sample of tumours for (Fassnacht et al. 2004). Surgery of the primary tumour investigating the role of glucose metabolism in ACC was judged as radical resection if surgical, pathological carcinogenesis and to correlate factors in glucose and imaging; reports did not provide evidence for metabolism with clinical outcome. Owing to the macroscopically remaining disease. The database for efforts of the German ACC Registry Group, we were follow-up information was locked in May 2008. able to collect 167 clinically annotated ACC tumour Patients gave informed consent for collecting tissue samples. In the present study, we have used tissue and clinical data and the study was approved by the microarrays (TMAs) and immunohistochemistry ethics committee of the University of Wu¨rzburg analysis to investigate expression of GLUT1, -3, (Germany, board approval number 92/02 and 86/03). Downloaded from Bioscientifica.com at 09/25/2021 08:38:42PM via free access 920 www.endocrinology-journals.org Endocrine-Related Cancer (2009) 16 919–928 Table 1 Patients and tumour characteristics Primary tumour Age (years) Sex (M/F) size (cm) ACC Primary tumour (nZ134) 49 (16) (48/86) 12 (4.4) WHO I (nZ5)a 54 (24) (2/3) 4.5 (0.2) WHO II (nZ53) 48 (16) (20/33) 11.5 (4.4) WHO III (nZ26) 52 (14) (10/16) 11.4 (3.8) WHO IV (nZ45) 49 (17) (14/31) 13.4 (4) Local recurrence (nZ19)b 46 (17) (9/10) – Distant metastases (nZ14)b 44 (11) (3/11) – Adenoma Aldosterone-producing adenoma (nZ5) 47 (14) 2/3 2.0 (0.1) Cortisol-producing adenoma (nZ5) 52 (22) 0/5 2.6 (0.3) Inactive adenoma (nZ5) 67 (20) 2/3 1.8 (0.3) Normal adrenal gland (nZ4) 63 (18) 3/1 – Data are mean (S.D.) or numbers. WHO, World Health Organization/international union against cancer UICC; f, female; m, male. aIn six cases tumour stage was not determined. bNineteen out of the 33 samples from surgery for recurrence or distant metastases derived from patients with more than one analysed sample.
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • (Glut1ds): Methylxanthines Potentiate GLUT1 Haploinsufficiency in Vitro
    0031-3998/01/5002-0254 PEDIATRIC RESEARCH Vol. 50, No. 2, 2001 Copyright © 2001 International Pediatric Research Foundation, Inc. Printed in U.S.A. Glucose Transporter Type 1 Deficiency Syndrome (Glut1DS): Methylxanthines Potentiate GLUT1 Haploinsufficiency In Vitro YUAN-YUAN HO, HONG YANG, JÖRG KLEPPER, JORGE FISCHBARG, DONG WANG, AND DARRYL C. DE VIVO Department of Neurology, Columbia University, New York, New York 10032, U.S.A. [Y.Y.H., H.Y., D.W., D.C.D.]; Department of Pediatrics, University of Essen, Essen, Germany 45122 [J.K.]; and Departments of Physiology and Cellular Biophysics, and Ophthalmology, Columbia University, New York, New York 10032, U.S.A. [J.F.] ABSTRACT Methylxanthines such as caffeine and theophylline are known substrate for Glut1. The combined effects of caffeine (3 mM) and to inhibit glucose transport. We have studied such inhibition in phenobarbital (10 mM) on glucose transport, as determined in the glucose transporter type 1 deficiency syndrome (Glut1DS) by patient 15 and the maternal control, show no additive or syner- erythrocyte glucose transport assays. Data from four patients gistic inhibition. These data indicate that caffeine and phenobar- with individual mutations in the GLUT1 gene are discussed: bital have similar Glut1 inhibitory properties in these two sub- patient 1 (hemizygosity), 3 (S66F), 15 (368Ins23), and 17 jects. Our study suggests that Glut1DS patients may have a (R333W). Zero-trans influx of 14C-labeled 3-O-methyl glucose reduced safety margin for methylxanthines. Consumption of (3-OMG) into erythrocytes of patients is reduced (patient 1, 51%; methylxanthine-containing products may aggravate the neuro- 3, 45%; 15, 31%; 17, 52%) compared with maternal controls.
    [Show full text]
  • Regulation of Myocardial Glucose Transporters GLUT1 and GLUT4 in Chronically Anemic Fetal Lambs
    0031-3998/05/5804-0713 PEDIATRIC RESEARCH Vol. 58, No. 4, 2005 Copyright © 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A. Regulation of Myocardial Glucose Transporters GLUT1 and GLUT4 in Chronically Anemic Fetal Lambs J. CARTER RALPHE, PETER N. NAU, CHRISTOPHER E. MASCIO, JEFFREY L. SEGAR, AND THOMAS D. SCHOLZ Department of Pediatrics [J.C.R., P.N.N., J.L.S., T.D.S.], Department of Surgery [C.E.M.], University of Iowa, Iowa City, Iowa 52242 ABSTRACT Little is known about the chronic adaptations that take place steady state, GLUT4 protein localized to the sarcolemma mem- in the fetal heart to allow for increased substrate delivery in brane. These findings suggest that the glucose transporters are response to chronic stress. Because glucose is an important fuel post-transcriptionally regulated in myocardium of chronically for the fetal cardiomyocytes, we hypothesized that myocardial anemic fetal sheep with changes that mimic normal postnatal glucose transporters 1 and 4 (GLUT1 and GLUT4, respectively) development. Unlike the postnatal heart, localization of GLUT4 are up-regulated in the fetal sheep heart that is chronically to the cell membrane suggests the importance of GLUT4 in basal stressed by anemia. Fetal sheep at 128 d gestation underwent glucose uptake in the stressed fetal heart. (Pediatr Res 58: daily isovolumic hemorrhage and determination of myocardial 713–718, 2005) blood flow, oxygen consumption, and substrate utilization. At the endof3or7dofanemia, myocardial levels of GLUT1 and Abbreviations GLUT4 mRNA and protein were measured and subcellular ERK, extracellular-regulated kinase localization was determined. Despite stable heart rate and blood GLUT1(4), glucose transporter 1 (4) pressure, anemia caused a nearly 4-fold increase in right and left HIF-1␣, hypoxia-inducible factor 1␣ ventricular (RV and LV) free wall blood flow.
    [Show full text]
  • Is Retinal Metabolic Dysfunction at the Center of the Pathogenesis of Age-Related Macular Degeneration?
    International Journal of Molecular Sciences Review Is Retinal Metabolic Dysfunction at the Center of the Pathogenesis of Age-related Macular Degeneration? Thierry Léveillard 1,*, Nancy J. Philp 2 and Florian Sennlaub 3 1 . Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France 2 . Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; [email protected] 3 . Department of Therapeutics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; fl[email protected] * Correspondence: [email protected]; Tel.: +33-1-5346-2548 Received: 21 December 2018; Accepted: 5 February 2019; Published: 11 February 2019 Abstract: The retinal pigment epithelium (RPE) forms the outer blood–retina barrier and facilitates the transepithelial transport of glucose into the outer retina via GLUT1. Glucose is metabolized in photoreceptors via the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS) but also by aerobic glycolysis to generate glycerol for the synthesis of phospholipids for the renewal of their outer segments. Aerobic glycolysis in the photoreceptors also leads to a high rate of production of lactate which is transported out of the subretinal space to the choroidal circulation by the RPE. Lactate taken up by the RPE is converted to pyruvate and metabolized via OXPHOS. Excess lactate in the RPE is transported across the basolateral membrane to the choroid. The uptake of glucose by cone photoreceptor cells is enhanced by rod-derived cone viability factor (RdCVF) secreted by rods and by insulin signaling. Together, the three cells act as symbiotes: the RPE supplies the glucose from the choroidal circulation to the photoreceptors, the rods help the cones, and both produce lactate to feed the RPE.
    [Show full text]
  • Disease-Induced Modulation of Drug Transporters at the Blood–Brain Barrier Level
    International Journal of Molecular Sciences Review Disease-Induced Modulation of Drug Transporters at the Blood–Brain Barrier Level Sweilem B. Al Rihani 1 , Lucy I. Darakjian 1, Malavika Deodhar 1 , Pamela Dow 1 , Jacques Turgeon 1,2 and Veronique Michaud 1,2,* 1 Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; [email protected] (S.B.A.R.); [email protected] (L.I.D.); [email protected] (M.D.); [email protected] (P.D.); [email protected] (J.T.) 2 Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada * Correspondence: [email protected]; Tel.: +1-856-938-8697 Abstract: The blood–brain barrier (BBB) is a highly selective and restrictive semipermeable network of cells and blood vessel constituents. All components of the neurovascular unit give to the BBB its crucial and protective function, i.e., to regulate homeostasis in the central nervous system (CNS) by removing substances from the endothelial compartment and supplying the brain with nutrients and other endogenous compounds. Many transporters have been identified that play a role in maintaining BBB integrity and homeostasis. As such, the restrictive nature of the BBB provides an obstacle for drug delivery to the CNS. Nevertheless, according to their physicochemical or pharmacological properties, drugs may reach the CNS by passive diffusion or be subjected to putative influx and/or efflux through BBB membrane transporters, allowing or limiting their distribution to the CNS. Drug transporters functionally expressed on various compartments of the BBB involve numerous proteins from either the ATP-binding cassette (ABC) or the solute carrier (SLC) superfamilies.
    [Show full text]
  • Crystal Structure of a Glucose/H Symporter and Its Mechanism of Action
    + Crystal structure of a glucose/H symporter and its mechanism of action Cristina V. Iancua, Jamillah Zamoonb, Sang Bum Wooa, Alexander Aleshinc, and Jun-yong Choea,1 aDepartment of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago,IL 60064; bDepartment of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City 13060, Kuwait; and cDepartment of Infectious Diseases, Sanford Burnham Medical Research Institute, La Jolla, CA 92037 Edited* by H. Ronald Kaback, University of California, Los Angeles, CA, and approved September 26, 2013 (received for review June 25, 2013) + Glucose transporters are required to bring glucose into cells, of a Staphylococcus epidermidis glucose/H symporter (GlcPSe) where it is an essential energy source and precursor in protein by single anomalous dispersion methods. GlcPSe shares high se- and lipid synthesis. These transporters are involved in important quence identity (27–34%) and homology (49–58%) with the hu- common diseases such as cancer and diabetes. Here, we report the man GLUTs (Table S1), is highly specific for glucose, and is + crystal structure of the Staphylococcus epidermidis glucose/H sym- inhibited by the well-characterized inhibitors of human GLUTs porter in an inward-facing conformation at 3.2-Å resolution. The phloretin, cytochalasin B, and forskolin. In contrast to GlcP , + Se Staphylococcus epidermidis glucose/H symporter is homologous XylE transports xylose but not glucose, which is an inhibitor, and is to human glucose transporters, is very specific and has high avidity impervious to inhibition by cytochalasin B (13, 24). On the basis of for glucose, and is inhibited by the human glucose transport inhib- the GlcPSe structure and functional studies of wild-type and mu- itors cytochalasin B, phloretin, and forskolin.
    [Show full text]
  • Downloaded from the App Store and Nucleobase, Nucleotide and Nucleic Acid Metabolism 7 Google Play
    Hoytema van Konijnenburg et al. Orphanet J Rare Dis (2021) 16:170 https://doi.org/10.1186/s13023-021-01727-2 REVIEW Open Access Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app Eva M. M. Hoytema van Konijnenburg1†, Saskia B. Wortmann2,3,4†, Marina J. Koelewijn2, Laura A. Tseng1,4, Roderick Houben6, Sylvia Stöckler‑Ipsiroglu5, Carlos R. Ferreira7 and Clara D. M. van Karnebeek1,2,4,8* Abstract Background: The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disabil‑ ity (collectively ‘treatable IDs’). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identifcation of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. Methods: Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classifcation of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is avail‑ able. Data on clinical symptoms, diagnostic testing, treatment strategies, efects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. Results: Our review identifed 116 treatable IDs (139 genes), of which 44 newly identifed, belonging to 17 ICIMD categories.
    [Show full text]
  • Frontiersin.Org 1 April 2015 | Volume 9 | Article 123 Saunders Et Al
    ORIGINAL RESEARCH published: 28 April 2015 doi: 10.3389/fnins.2015.00123 Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study Norman R. Saunders 1*, Katarzyna M. Dziegielewska 1, Kjeld Møllgård 2, Mark D. Habgood 1, Matthew J. Wakefield 3, Helen Lindsay 4, Nathalie Stratzielle 5, Jean-Francois Ghersi-Egea 5 and Shane A. Liddelow 1, 6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia, 2 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark, 3 Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, 4 Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland, 5 Lyon Neuroscience Research Center, INSERM U1028, Centre National de la Recherche Scientifique UMR5292, Université Lyon 1, Lyon, France, 6 Department of Neurobiology, Stanford University, Stanford, CA, USA The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq Edited by: Joana A. Palha, was performed at embryonic day (E) 15 and adult with additional data obtained at University of Minho, Portugal intermediate ages from microarray analysis. The largest represented functional group Reviewed by: in the embryo was amino acid transporters (twelve) with expression levels 2–98 times Fernanda Marques, University of Minho, Portugal greater than in the adult. In contrast, in the adult only six amino acid transporters Hanspeter Herzel, were up-regulated compared to the embryo and at more modest enrichment levels Humboldt University, Germany (<5-fold enrichment above E15).
    [Show full text]
  • Hereditary Xerocytosis Revisited
    SOLVING CLINICAL PROBLEMS IN BLOOD DISEASES AJH AJH Educational Material A physician or group of physicians considers presentation and evolution of a real clinical case, reacting to clinical information and data (boldface type). This is followed by a discussion/commentary Hereditary xerocytosis revisited Natasha M. Archer,1,2 Boris E. Shmukler,3,4 Immacolata Andolfo,5,6 David H. Vandorpe,3,4 Radhakrishnan Gnanasambandam,7 John M. Higgins,8,9 Alicia Rivera,10,11 Mark D. Fleming,11 Frederick Sachs,7 Philip A. Gottlieb,7 Achille Iolascon,5,6 Carlo Brugnara,10,11 Seth L. Alper,3,4,12* and David G. Nathan1,2,13* A 21-year-old male student presented in 1980 as an Olympic ath- corpuscular hemoglobin (MCH), increased osmotic fragility, and mis- lete with a 12-year history of jaundice, pallor, and darkened urine sense mutations in the red cell membrane gene products SLC4A1/ induced by the atraumatic exercise of swimming [1]. Physical AE1, SLC2A1/GLUT1, and RHAG. HX, sometimes referred to as examination at that time was remarkable only for moderate scleral dehydrated stomatocytosis (DHSt), is caused by missense mutations icterus without hepatosplenomegaly. Hematological examination in the ATP binding cassette transporter ABCB6 [4] and in the red revealed moderate macrocytosis (mean corpuscular volume (MCV) cell membrane mechanosensitive cation channel, PIEZO1 [5–7]. Fam- 102 fL) without anemia (Hct 50%, Hb 17 g/dL, 9% reticulocytes). ilial pseudohyperkalemia, a related benign condition, is characterized The peripheral blood smear showed occasional target cells. Red cell by temperature-dependent loss of erythrocyte K, and is an incom- osmotic fragility was decreased.
    [Show full text]
  • Amino Acid Transporters on the Guard of Cell Genome and Epigenome
    cancers Review Amino Acid Transporters on the Guard of Cell Genome and Epigenome U˘gurKahya 1,2 , Ay¸seSedef Köseer 1,2,3,4 and Anna Dubrovska 1,2,3,4,5,* 1 OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; [email protected] (U.K.); [email protected] (A.S.K.) 2 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany 3 National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany 4 Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany 5 German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany * Correspondence: [email protected]; Tel.: +49-351-458-7150 Simple Summary: Amino acid transporters play a multifaceted role in tumor initiation, progression, and therapy resistance. They are critical to cover the high energetic and biosynthetic needs of fast- growing tumors associated with increased proliferation rates and nutrient-poor environments. Many amino acid transporters are highly expressed in tumors compared to the adjacent normal tissues, and their expression correlates with tumor progression, clinical outcome, and treatment resistance. Tumor growth is driven by epigenetic and metabolic reprogramming and is associated with excessive production of reactive oxygen species causing the damage of vital macromolecules, including DNA. This review describes the role of the amino acid transporters in maintaining tumor redox homeostasis, DNA integrity, and epigenetic landscape under stress conditions and discusses them as potential targets for tumor imaging and treatment.
    [Show full text]
  • Metabolite Transporters As Regulators of Immunity
    H OH metabolites OH Review Metabolite Transporters as Regulators of Immunity Hauke J. Weiss * and Stefano Angiari School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; [email protected] * Correspondence: [email protected] Received: 4 September 2020; Accepted: 16 October 2020; Published: 19 October 2020 Abstract: In the past decade, the rise of immunometabolism has fundamentally reshaped the face of immunology. As the functions and properties of many (immuno)metabolites have now been well described, their exchange among cells and their environment have only recently sparked the interest of immunologists. While many metabolites bind specific receptors to induce signaling cascades, some are actively exchanged between cells to communicate, or induce metabolic reprograming. In this review, we give an overview about how active metabolite transport impacts immune cell function and shapes immunological responses. We present some examples of how specific transporters feed into metabolic pathways and initiate intracellular signaling events in immune cells. In particular, we focus on the role of metabolite transporters in the activation and effector functions of T cells and macrophages, as prototype adaptive and innate immune cell populations. Keywords: cell metabolism; immunity; metabolite transporter; solute carrier; T cells; macrophages 1. Metabolites and Their Transporters: Key Players in Immunity Active metabolite transport is key for the survival of every cell. In immune cells, availability of extracellular metabolites also shapes immune responses and cellular interactions. Metabolite transporters indeed largely dictate immune cell activity by providing, or restricting, access to nutrients, and thereby determining the cellular metabolic profile [1]. For example, while glucose and amino acids (AAs) are largely imported as part of pro-inflammatory responses, fatty acid (FA) uptake has been found to drive pro-resolving, anti-inflammatory phenotypes [2].
    [Show full text]
  • Expression and Cellular Localization of Glucose Transporters (GLUT1, GLUT3, GLUT4) During Differentiation of Myogenic Cells Isolated from Rat Fïtuses
    Journal of Cell Science 107, 487-496 (1994) 487 Printed in Great Britain © The Company of Biologists Limited 1994 Expression and cellular localization of glucose transporters (GLUT1, GLUT3, GLUT4) during differentiation of myogenic cells isolated from rat fœtuses Isabelle Guillet-Deniau*, Armelle Leturque and Jean Girard Centre de Recherche sur l’Endocrinologie Moléculaire et le Développement, 9 rue Jules Hetzel, 92 190 Meudon Bellevue, France *Author for correspondence SUMMARY Skeletal muscle regeneration is mediated by the prolifera- cose, was 2-fold higher in myotubes than in myoblasts. tion of myoblasts from stem cells located beneath the basal Glucose deprivation increased the basal rate of glucose lamina of myofibres, the muscle satellite cells. They are transport by 2-fold in myoblasts, and 4-fold in myotubes. functionally indistinguishable from embryonic myoblasts. The cellular localization of the glucose transporters was The myogenic process includes the fusion of myoblasts into directly examined by immunofluorescence staining. multinucleated myotubes, the biosynthesis of proteins GLUT1 was located on the plasma membrane of myoblasts specific for skeletal muscle and proteins that regulates and myotubes. GLUT3 was located intracellularly in glucose metabolism, the glucose transporters. We find that myoblasts and appeared also on the plasma membrane in three isoforms of glucose transporter are expressed during myotubes. Insulin or IGF-I were unable to target GLUT3 fœtal myoblast differentiation: GLUT1, GLUT3 and to the plasma membrane. GLUT4, the insulin-regulatable GLUT4; their relative expression being dependent upon glucose transporter isoform, appeared only in contracting the stage of differentiation of the cells. GLUT1 mRNA and myotubes in small intracellular vesicles.
    [Show full text]