An Artificial Diet for Rearing Three Exotic Longhorn Beetles Invasive to Europe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al. -
Longhorn Beetles (Coleoptera, Cerambycidae) Christian Cocquempot, Ake Lindelöw
Longhorn beetles (Coleoptera, Cerambycidae) Christian Cocquempot, Ake Lindelöw To cite this version: Christian Cocquempot, Ake Lindelöw. Longhorn beetles (Coleoptera, Cerambycidae). Alien terrestrial arthropods of Europe, 4 (1), Pensoft Publishers, 2010, BioRisk, 978-954-642-554-6. 10.3897/biorisk.4.56. hal-02823535 HAL Id: hal-02823535 https://hal.inrae.fr/hal-02823535 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A peer-reviewed open-access journal BioRisk 4(1): 193–218 (2010)Longhorn beetles (Coleoptera, Cerambycidae). Chapter 8.1 193 doi: 10.3897/biorisk.4.56 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Longhorn beetles (Coleoptera, Cerambycidae) Chapter 8.1 Christian Cocquempot1, Åke Lindelöw2 1 INRA UMR Centre de Biologie et de Gestion des Populations, CBGP, (INRA/IRD/CIRAD/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, 34988 Montférrier-sur-Lez, France 2 Swedish university of agricultural sciences, Department of ecology. P.O. Box 7044, S-750 07 Uppsala, Sweden Corresponding authors: Christian Cocquempot ([email protected]), Åke Lindelöw (Ake.Linde- [email protected]) Academic editor: David Roy | Received 28 December 2009 | Accepted 21 May 2010 | Published 6 July 2010 Citation: Cocquempot C, Lindelöw Å (2010) Longhorn beetles (Coleoptera, Cerambycidae). -
The Molecular Basis for the Neofunctionalization of the Juvenile Hormone Esterase Duplication in Drosophila T
Insect Biochemistry and Molecular Biology 106 (2019) 10–18 Contents lists available at ScienceDirect Insect Biochemistry and Molecular Biology journal homepage: www.elsevier.com/locate/ibmb The molecular basis for the neofunctionalization of the juvenile hormone esterase duplication in Drosophila T ∗ Davis H. Hopkinsa,b, , Rahul V. Raneb, Faisal Younusa,b, Chris W. Coppinb, Gunjan Pandeyb, Colin J. Jacksona, John G. Oakeshottb a Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 2601, Australia b CSIRO Land and Water, Black Mountain, Canberra, Australian Capital Territory, 2601, Australia ARTICLE INFO ABSTRACT Keywords: The Drosophila melanogaster enzymes juvenile hormone esterase (DmJHE) and its duplicate, DmJHEdup, present Neofunctionalization ideal examples for studying the structural changes involved in the neofunctionalization of enzyme duplicates. Structural evolution DmJHE is a hormone esterase with precise regulation and highly specific activity for its substrate, juvenile Juvenile hormone esterase hormone. DmJHEdup is an odorant degrading esterase (ODE) responsible for processing various kairomones in Odorant degrading enzyme antennae. Our phylogenetic analysis shows that the JHE lineage predates the hemi/holometabolan split and that several duplications of JHEs have been templates for the evolution of secreted β-esterases such as ODEs through the course of insect evolution. Our biochemical comparisons further show that DmJHE has sufficient substrate promiscuity and activity against odorant esters for a duplicate to evolve a general ODE function against a range of mid-long chain food esters, as is shown in DmJHEdup. This substrate range complements that of the only other general ODE known in this species, Esterase 6. Homology models of DmJHE and DmJHEdup enabled compar- isons between each enzyme and the known structures of a lepidopteran JHE and Esterase 6. -
Reproductive Behaviors of Anoplophora Glabripennis (Coleoptera: Cerambycidae) in the Laboratory
Journal of Economic Entomology, 111(2), 2018, 620–628 doi: 10.1093/jee/tox355 Advance Access Publication Date: 6 February 2018 Ecology and Behavior Research Article Reproductive Behaviors of Anoplophora glabripennis (Coleoptera: Cerambycidae) in the Laboratory M. A. Keena1,2 and V Sánchez1 1Northern Research Station, Northeastern Center for Forest Health Research, USDA Forest Service, Hamden, CT 06514, and 2Corresponding author, e-mail: [email protected] Subject Editor: Timothy Schowalter Received 30 August 2017; Editorial decision 20 November 2017 Abstract The reproductive behaviors of individual pairs of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae)—all combinations of three populations and three different ages—were observed in glass jars in the laboratory on Acer saccharum Marshall (Sapindales: Sapindaceae) host material. The virgin female occasionally made first contact, but mounting did not occur until the male antennated or palpated the female. If the female was receptive (older females initially less receptive than younger ones), the male mated with her immediately after mounting and initiated a prolonged pair-bond. When the female was not receptive, some males abandoned the attempt while most performed a short antennal wagging behavior. During the pair-bond, the male continuously grasped the female’s elytral margins with his prothoracic tarsi or both pro- and mesothoracic tarsi. The male copulated in a series of three to four bouts (averaging three to five copulations each) during which the female chewed oviposition sites or walked on the host. Between bouts, the female oviposited and fertile eggs were deposited as soon as 43 min after the first copulation. Females became unreceptive again after copulation and the duration of the pair-bond depended on the male’s ability to remain mounted. -
Zootaxa, Catalogue of Family-Group Names in Cerambycidae
Zootaxa 2321: 1–80 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2321 Catalogue of family-group names in Cerambycidae (Coleoptera) YVES BOUSQUET1, DANIEL J. HEFFERN2, PATRICE BOUCHARD1 & EUGENIO H. NEARNS3 1Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, Ontario K1A 0C6. E-mail: [email protected]; [email protected] 2 10531 Goldfield Lane, Houston, TX 77064, USA. E-mail: [email protected] 3 Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA. E-mail: [email protected] Corresponding author: [email protected] Magnolia Press Auckland, New Zealand Accepted by Q. Wang: 2 Dec. 2009; published: 22 Dec. 2009 Yves Bousquet, Daniel J. Heffern, Patrice Bouchard & Eugenio H. Nearns CATALOGUE OF FAMILY-GROUP NAMES IN CERAMBYCIDAE (COLEOPTERA) (Zootaxa 2321) 80 pp.; 30 cm. 22 Dec. 2009 ISBN 978-1-86977-449-3 (paperback) ISBN 978-1-86977-450-9 (Online edition) FIRST PUBLISHED IN 2009 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2009 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. -
Gene to Genus: Systematics and Population Dynamics in Lamiini Beetles (Coleoptera: Cerambycidae) with Focus on Monochamus Dejean
Gene to Genus: Systematics and Population Dynamics in Lamiini Beetles (Coleoptera: Cerambycidae) With Focus on Monochamus Dejean The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gorring, Patrick Scott. 2019. Gene to Genus: Systematics and Population Dynamics in Lamiini Beetles (Coleoptera: Cerambycidae) With Focus on Monochamus Dejean. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029751 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! !"#"$%&$!"#'()$(*(%"+,%-.($,#/$0&0'1,%-&#$/*#,+-.($ $-#$1,+--#-$2""%1"($3.&1"&0%"4,)$."4,+2*.-/,"5$$ 6-%7$8&.'($&#$!"#"$%&!'()/"9",#! ! ! "!#$%%&'()($*+!,'&%&+(&#! -.! /)('$01!20*((!3*''$+4! (*! 56&!7&,)'(8&+(!*9!:'4)+$%8$0!)+#!;<*=>($*+)'.!?$*=*4.! ! $+!,)'($)=!9>=9$==8&+(!*9!(6&!'&@>$'&8&+(%! 9*'!(6&!#&4'&&!*9! 7*0(*'!*9!/6$=*%*,6.! $+!(6&!%>-A&0(!*9! ?$*=*4.! ! B)'<)'#!C+$<&'%$(.! D)8-'$#4&E!F)%%)06>%&((%! ! ",'$=!GHIJ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! K!GHIJ!/)('$01!20*((!3*''$+4! "==!'$46(%!'&%&'<&#L! ! !"##$%&'&"()*+,-"#(%.*/%(0$##(%*1%"')*!2*3'%%$44* *************** ***********************************************/'&%"56*7(%%")8* * * !"#"$%&$!"#'()$(*(%"+,%-.($,#/$0&0'1,%-&#$/*#,+-.($ $-#$1,+--#-$2""%1"($3.&1"&0%"4,)$."4,+2*.-/,"5$$ -
Phylogenetic and Population Genetic Studies on Some Insect and Plant Associated Nematodes
PHYLOGENETIC AND POPULATION GENETIC STUDIES ON SOME INSECT AND PLANT ASSOCIATED NEMATODES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Amr T. M. Saeb, M.S. * * * * * The Ohio State University 2006 Dissertation Committee: Professor Parwinder S. Grewal, Adviser Professor Sally A. Miller Professor Sophien Kamoun Professor Michael A. Ellis Approved by Adviser Plant Pathology Graduate Program Abstract: Throughout the evolutionary time, nine families of nematodes have been found to have close associations with insects. These nematodes either have a passive relationship with their insect hosts and use it as a vector to reach their primary hosts or they attack and invade their insect partners then kill, sterilize or alter their development. In this work I used the internal transcribed spacer 1 of ribosomal DNA (ITS1-rDNA) and the mitochondrial genes cytochrome oxidase subunit I (cox1) and NADH dehydrogenase subunit 4 (nd4) genes to investigate genetic diversity and phylogeny of six species of the entomopathogenic nematode Heterorhabditis. Generally, cox1 sequences showed higher levels of genetic variation, larger number of phylogenetically informative characters, more variable sites and more reliable parsimony trees compared to ITS1-rDNA and nd4. The ITS1-rDNA phylogenetic trees suggested the division of the unknown isolates into two major phylogenetic groups: the HP88 group and the Oswego group. All cox1 based phylogenetic trees agreed for the division of unknown isolates into three phylogenetic groups: KMD10 and GPS5 and the HP88 group containing the remaining 11 isolates. KMD10, GPS5 represent potentially new taxa. The cox1 analysis also suggested that HP88 is divided into two subgroups: the GPS11 group and the Oswego subgroup. -
The Complete Mitochondrial Genome of the Longhorn
Journal of Insect Science, (2018) 18(2):21; 1–8 doi: 10.1093/jisesa/iey012 Research The Complete Mitochondrial Genome of the Longhorn Beetle Dorysthenes paradoxus (Coleoptera: Cerambycidae: Prionini) and the Implication for the Phylogenetic Relationships of the Cerambycidae Species Yan-Qun Liu,1,* Dong-Bin Chen,1,* Huan-Huan Liu,2,* Hua-Lei Hu,1 Hai-Xu Bian,1 Ru-Song Zhang,1 Rui-Sheng Yang,1 Xing-Fu Jiang,3 Sheng-Lin Shi1,4 1Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China, 2Department of Food Nutrition and Detection, Yuncheng Agricultural Vocational Technical College, Yuncheng 044000, China, 3State Key laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China, and 4Corresponding author, e-mail: [email protected] *Y.-Q.L., D.-B.C., H.-H.L. contributed equally to this work. Subject Editor: Igor Sharakhov Received 22 November 2017; Editorial decision 25 January 2018 Abstract The longhorn beetle Dorysthenes paradoxus (Faldermann, 1833) (Coleoptera: Cerambycidae) is not only a serious agricultural pest but also a traditionally edible insect in China. However, no genetic information on this species has been acquired. In the present study, we report the mitochondrial genome (mitogenome) of Do. paradoxus, as the first complete mitogenome of Prioninae. The circular mitogenome of 15,922 bp encodes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs), and it contains an A+T-rich region. This mitogenome exhibits the lowest A+T content (71.13%) but harbors the largest AT skew (0.116) among the completely sequenced Cerambycidae species. -
Functional Characterization of an Endoglucanase from <I>Tribolium
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2011 Functional characterization of an endoglucanase from Tribolium castaneum (TcEG1) in Saccharomyces cerevisiae and characterization of cellulolytic activity in the digestive fluids of Thermobia domestica (Zygentoma: Lepismatidae) Derek Mychel Shirley [email protected] Recommended Citation Shirley, Derek Mychel, "Functional characterization of an endoglucanase from Tribolium castaneum (TcEG1) in Saccharomyces cerevisiae and characterization of cellulolytic activity in the digestive fluids of Thermobia domestica (Zygentoma: Lepismatidae). " Master's Thesis, University of Tennessee, 2011. https://trace.tennessee.edu/utk_gradthes/1097 This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Derek Mychel Shirley entitled "Functional characterization of an endoglucanase from Tribolium castaneum (TcEG1) in Saccharomyces cerevisiae and characterization of cellulolytic activity in the digestive fluids of Thermobia domestica (Zygentoma: Lepismatidae)." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements -
Mini Data Sheet on Psacothea Hilaris
EPPO, 2012 Mini data sheet on Psacothea hilaris Added in 2008 – Deleted in 2012 Reasons for deletion: Psacothea hilaris has been included in EPPO Alert List for more than 3 years and during this period no particular international action was requested by the EPPO member countries. In 2012, it was therefore considered that sufficient alert has been given and the pest was deleted from the Alert List. Psacothea hilaris (Coleoptera: Cerambycidae – yellow-spotted longhorn beetle) Why Psacothea hilaris has been occasionally found in Italy (in 2005 and 2008) and in the United Kingdom (in 2008). This wood borer of Asian origin has also been intercepted in trade in Europe (UK in 1997) and in North America (Canada in 1997, trapped in wood warehouses). As it is a serious pest of Ficus and Morus, the NPPO of the UK suggested that it could be added to the EPPO Alert List, in particular to warn NPPOs of Mediterranean countries. Where Asia: China, Japan (Honshu, Shikoku, Ryukyu Islands), Taiwan. P. hilaris is reported to occur in southern China but the EPPO Secretariat could not find more detailed information. The situation in the Republic of Korea needs clarification. In a short Internet publication, it is stated that P. hilaris is a rare insect species which survives only on Ulleung-do Island. Studies are being done to rear the insect and release it again in its natural environment on the Island. EPPO region: incursions of live beetles were reported in Italy (Lombardia) and the United Kingdom (East Midlands) in 2008. These have apparently not led to the establishment of the pest. -
Revision of the Genus Anoplophora (Coleoptera: Cerambycidae)
Revision of the Genus Anoplophora (Coleoptera: Cerambycidae) Steven W. Lingafelter and E. Richard Hoebeke Published by The Entomological Society of Washington Washington, D.C. 2002 Author's addresses: Steven W. Lingafelter Systematic Entomology Laboratory, Plant Sciences Institute, ARS, USDA National Museum of Natural History Washington, D.C. 20560-0168 E. Richard Hoebeke Department of Entomology, Comstock Hall Cornell University Ithaca, New York 14853-0901 ISBN 0-9720714-1-5 Published by: The Entomological Society of Washington, Washington, D.C., U.S.A. David R. Smith, Editor. Printed by Allen Press, Inc., Lawrence, Kansas, U.S.A. Cover Design: Kent Loeffler, Cornell University Endpaper Design: Frances Fawcett, Ithaca, New York Recommended format for citation: Lingafelter, S. W. and E. R. Hoebeke. 2002. Revision of Anoplophora (Coleoptera: Cerambycidae). Entomological Society of Washington, Washington, D.C., U.S.A. 236 pp. 41 color plates. Date issued: July 15, 2002. Front cover: Anoplophora glabripennis (Motschulsky) and map of Anoplophora distribution. Back cover: See back endpaper for legend. LINGAFELTER AND HOEBEKE: REVISION OF ANOPLOPHORA 7 TABLE OF CONTENTS Preface ____________ __ _ ---------------------- ---···--·- .. ....... .... ....... .. ............ .......................................... ............ ·--··············-·····-· .. ·-- 9 Acknowledgments ----- ------------------------------------------------------------------------------ -- ---- --- --- ------------------ ------------------------------------ 11 Introduction -
Coleoptera, Cerambycidae, Lamiinae) from Southwest China
Biodiversity Data Journal 8: e51752 doi: 10.3897/BDJ.8.e51752 Single Taxon Treatment Description of Anoplophora fanjingensis sp. n. (Coleoptera, Cerambycidae, Lamiinae) from southwest China Shulin Yang‡, Weicheng Yang‡§, Yu Tian ‡ School of Life Sciences, Guizhou Normal University, Guiyang, China § Administration of Fanjingshan National Nature Reserve, Jiangkou, China Corresponding author: Shulin Yang ([email protected]) Academic editor: Yasen Mutafchiev Received: 05 Mar 2020 | Accepted: 27 Aug 2020 | Published: 13 Oct 2020 Citation: Yang S, Yang W, Tian Y (2020) Description of Anoplophora fanjingensis sp. n. (Coleoptera, Cerambycidae, Lamiinae) from southwest China. Biodiversity Data Journal 8: e51752. https://doi.org/10.3897/BDJ.8.e51752 ZooBank: urn:lsid:zoobank.org:pub:F7B96250-D35E-47DF-8A4C-C965BF118DD5 Abstract Background Anoplophora Hope, 1839 is a genus including more than 40 species occurring in Asia. Most species of this genus have beautiful colours on the elytra and are of great interest to insect collectors. Due to their developing in and consuming wood in the larval stage, species in this genus could be economically important, such as A. glabripennis, an introduced species to North America. New information We described Anoplophora fanjingensis sp. n., based on specimens from Mount Fanjing (also Fanjingshan), Jiankou County, Guizhou, China. The new species is characterised by its elytra with metallic iridescent sheen and the non-annulated antennae. Habitus of two similar species, Anoplophora chiangi and Anoplophora leechi, are also presented. © Yang S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.