APPENDIX FOR “LINKING LANDSCAPE CHARACTERISTICS AND STREAM NITROGEN IN THE COAST RANGE: RED ALDER COMPLICATES USE OF NUTRIENT CRITERIA” – E. A. GREATHOUSE, J. E. COMPTON, AND J. VAN SICKLE

Supplemental Table 1 is a comprehensive list of plot- to watershed-scale studies which indicate that alder species increase N levels in aquatic systems.

The data sets we compiled include several studies which used probability-based sampling designs following the protocols of USEPA’s Environmental Monitoring and Assessment Program (EMAP) (i.e., sampling sites were randomly selected from the population of interest and therefore well represent the region’s chemistry conditions at the time of sampling). Other data sets in our compilation are from targeted monitoring, watershed experiments, and special purpose collections by individual researchers. Supplemental Table 2 lists projects with stream chemistry data from the which we did not collate. We obtained stream N data from 761 sites in total (Fig. 1 of main paper), but only 593 of these sites were streams without evidence of estuarine and beach/dune influence, draining land within the OCR, and with data on analytes that were both widely represented across the region and had adequate detection limits.

The 593 sites in Table 1 of the main paper were judged to be definitely within the OCR and representative of a freshwater stream system because: 1) at least 98% of the watershed was within the OCR; 2) the study site was judged to be upstream from the head of tide; and 3) the site was not located in the Clatsop region. Eliminating sites below the head of tide was intended to screen out lowland tidal streams and estuarine sites where relationships between watershed characteristics and chemistry are likely complex, due to tidal influence on streamflow, and difficult to tease apart from high N inputs from ocean upwelling (Brown and

Ozretich, 2009). Head of tide was determined from a GIS layer of heads of tide (Sounhein, 2000), if possible. For streams lacking a head of tide in the Sounhein (2000) layer, we used GIS layers of wetlands (U.S. Fish and

Wildlife Service, 2008) and elevation (30-m National Elevation Dataset, Gesch, 2007) to judge whether the site was upstream from the head of tide. Clatsop sites were similarly eliminated because the Clatsop region is a small coastal plain of ~100 km2 of unconsolidated dune and beach sand in northwest Oregon; furthermore,

1

watershed delineations are inaccurate, and complex groundwater dynamics cause uncertainty in whether stream chemistry reflects watershed attributes, in this dune/beach sand region (Sytsma, 2005).

Supplemental Table 3 lists the number of freshwater stream sites we collated which had nutrient data that we did not do analyses on because they lacked adequate spatial representation or detection limits: ammonium and total dissolved nitrogen. Ammonium was analyzed by automated phenate at the Oregon

Department of Environmental Quality Laboratory, and by a comparable automated colorimetry method at the

Willamette Research Station, but we did not do analyses on NH4-N concentrations because those analyzed at the

OR DEQ Lab were generally below a detection limit of 20 µg NH4-N/l. Likewise, TDN was analyzed by persulfate digestion at both the Willamette Research Station and the Cooperative Chemical Analytical Laboratory, but we did not do analyses on TDN because this analyte was not well represented in the database (sites with TDN data were concentrated in three small regions). The relative lack of TDN data also meant that we were not able to examine patterns in dissolved organic nitrogen (DON), because DON is determined by subtracting NH4-N and

NO3-N from TDN.

Sampling points from different projects in Table 1 of the main paper were considered to be the same site if stream line distance between sampling points was <1 km, there were no USGS 24K blue line tributaries entering between the two sampling points, there were no obvious changes in land use or point sources, there was not a large difference in watershed areas, and they were not in large mainstem rivers; 42 sampling points were consolidated into 21 sites, but numbers in Table 1 reflect all 42 sampling points (e.g., one site was sampled in both the REMAP Coast Range project and the OR Tillamook Kilchis project, and it is included in both projects’ number of sites in Table 1 of the main paper; one site was sampled in both the EMAP West project and the OR

Salmon Plan project, and it is included in both of these projects’ number of sites in Table 1 of the main paper; etc.).

Data from OCR EMAP projects were stored in the Surface Waters Information Management (SWIM) system, an internal USEPA server of EMAP data which is no longer in existence; however, we obtained most of

2

our EMAP data from a database compiled from SWIM by Herlihy and Sifneos (2008). We downloaded OR DEQ data from LASAR (Laboratory Analytical Storage and Retrieval, http://deq12.deq.state.or.us/lasar2), an online database of OR DEQ air and water quality monitoring data (search criteria are listed below). After downloading,

LASAR data required additional quality control specific to the data set: sites characterized as sloughs were eliminated; sites with descriptions related to point sources and landfills were eliminated, unless verified to be stream sites; duplicate samples for laboratory quality control analyses were eliminated after recoding samples which were mislabeled as duplicates; multiple parameter names for analytes were confirmed to be equivalent with DEQ Laboratory personnel (e.g., all nitrate analytes listed in search criteria are nitrate/nitrite-N in mg N/l); and many sites' latitude/longitude coordinates were corrected based on stream names, site descriptions, and personal communications with OR DEQ personnel.

LASAR search criteria: Type of Data = Grab and Continuous Sampling Location Filter = EPA Coast Range Ecoregion Station type = Stream or River System = LASAR Sample Matrix = Aqueous – Surface Water Sample Date Range = 1/1/1990 – 10/25/2007 QC Status = A+ or A Analytes 1345 Ammonia mg/L 2586 Ammonia as N mg/L as N 2335 Ammonia as N mg/L 2043 Nitrate mg/L 1061 Nitrate as N mg/L 2264 Nitrate/nitrite mg/L as N 1168 Nitrate/nitrite mg/L 1868 Nitrate/nitrite as N mg/L 1303 Total Kjeldahl Nitrogen mg/L 1397 Total Kjeldahl Nitrogen mg/L as N 2868 Total Total Kjeldahl Nitrogen mg/L as N

As described in the main text, we grouped direct measurements and estimates of TN (i.e., direct

measurements from persulfate digestion and estimates from TKN and NO3-N). Such grouping of TN

3

data measured/estimated by different methods is a standard and long-term practice in freshwater

biogeochemistry (e.g., Herlihy and Sifneos, 2008; Stanley and Maxted, 2008). Furthermore, adding TKN

and NO3-N was the standard method for determining TN for decades prior to the development of the

persulfate digestion method (Patton and Kryskalla, 2003). However, we further validated our grouping

of direct measurements and estimates of TN by fitting separate models for the two types of TN data.

These models showed similar forms and coefficients; thus, our analysis of all measured and estimated summer TN data combined is supported by both the literature and our own data.

Natural non-forested land cover categories from the 2000 GNN/IMAP layer (LEMMA 2008)

included in our estimates of watershed-level percent natural land cover were ESLF codes 3155, 3158,

3165, 3177, 5311, 5409, 5457, 7013, 7161, 7162, 9106, 9166, 9221, 9260, and 9281. CAFO locations in

the 2007 OR Department of Agriculture CAFO layer were from GPS coordinates taken at the center of

the main area where animals are located (Diana Walker, Oregon Department of Agriculture, personal

communication, September 18, 2008).

SUPPLEMENTAL TABLE 1. Plot- and Watershed-Scale Studies Indicating Relationships Between Alder (Alnus) Species and N in Aquatic Systems.

Location Citations Evidence or indication of effect of alder on aquatic N

Alaska Stottlemyer, 1992 Longitudinal patterns in streamwater N matched longitudinal patterns in A. viridis cover along Rock Creek in Denali National Park Hu et al., 2001 Based on pollen and sediment records, alder expansion during the Holocene increased dissolved N in Grandfather Lake Johnson and Edwards, 2002 Relative area of A. rubra explained 60% of the variation in nitrate among streams on Prince of Wales Island O’Keefe and Edwards, 2002 Watershed cover of A. crispa explained 75% of the variation in dissolved N among streams in the Lynx Creek watershed region

4

British Columbia Coast Binkley et al., 1982 Over a 9-month period, both in-stream nitrate, and soil water nitrate at various depths, were greater in a watershed with high levels of A. rubra compared to a watershed with little A. rubra

California Goldman, 1961 Springs along the east shore of Castle Lake, which was dominated by A. incana stands, had twice the amount of ammonium and 10x the amount of nitrate than did springs along the west shore where there was little alder; east shore spring water N from alder was estimated to be ~15% of the lake's inorganic N budget Leonard et al., 1979 In Lake Tahoe's Ward Valley watershed, sub-basins with substantial cover of A. incana had high nitrate concentrations compared to sub-basins without A. incana stands Triska et al., 1989 Injected nitrate in return flow (water returning to the channel that had entered the hyporheos at an upstream location) under an abandoned alder-lined channel was higher than expected compared to a conservative tracer, whereas injected nitrate in another return flow with no alder present was less than expected

Michigan Stottlemyer and Toczydlowski, Mean monthly nitrate beneath alder stands was 1999 strongly correlated to streamwater nitrate in the Wallace Lake watershed over a 4-year period

New York Hurd and Raynal, 2004 Channel water and groundwater nitrate in a riparian wetland dominated by A. incana were consistently higher than that in a conifer-dominated reference wetland over a 2-year period

Oregon Coast Range Compton et al., 2003 Broadleaf cover in the Salmon River watershed is dominated by A. rubra; at the sub-catchment scale, whole catchment broadleaf cover was correlated with nitrate Naymik et al., 2005 Broadleaf cover in the Tillamook and Kilchis watersheds is dominated by A. rubra; at the sub-catchment scale, whole catchment broadleaf cover was correlated with TN Sigleo et al., 2010, Both nitrate export and A. rubra-dominated Brown and Ozretich, 2009 hardwood cover in the Yaquina watershed were ~1.6 times that in the Alsea watershed; other possible explanations for the difference in nitrate export between the two watersheds, besides alder, were ruled out; an

5

estimated 80% of the Yaquina's nitrate export is due to A. rubra

Oregon Cascade Mountains Wondzell and Swanson, 1996 Detailed mapping of groundwater and hyporheic flows through a conifer floodplain and an alder gravel bar, as well as quantification of N species in streamwater, secondary channel, groundwater, and gravel bar hyporheic water indicated that alder contributed high fluxes of dissolved N to aquatic habitats during fall storms

Washington Coast Range Gove et al., 2001 Deciduous forest in the Wilapa Bay watershed is dominated by A. rubra; riparian deciduous forest was correlated with ammonium

Washington Murray et al., 2000; In the Hoh River watershed, during the onset of late Olympic Peninsula Volk et al., 2003 summer/early fall storms, streams with riparian zones or catchments dominated by A. rubra have higher nitrate concentrations than do conifer-dominated streams Bechtold et al., 2003 Simulated and actual rainstorms caused large pulses of nitrate concentrations in hyporheic water underneath A. rubra stands compared to a conifer stand in a floodplain of the Queets River; resulting high-nitrate hyporheic water appeared to maintain high nitrate concentrations in-stream

SUPPLEMENTAL TABLE 2. Additional Projects with Stream Chemistry Data in the Oregon Coast Range (1990-2007) – Data Not Obtained or Collated for this Study. Project name, Primary agency/organization Data source/contacts/citations Autumn Chemistry of Oregon Coast Range Streams, USEPA WED Wigington et al., 1998 Nutrients & Estuarine Food Web Modeling Project, USEPA WED Sigleo and Frick, 2007; Brown and Ozretich, 2009 Litter Decay in Coast Range Riparian Zones, OSU Matkins et al., 2005 Alsea Watershed Study, OSU & NCASI Stednick and Kern, 1992; Scherer, 1995; Hale, 2007 Nutrient Biogeochemistry in an Upwelling-Influenced Estuary, OSU Colbert and McManus, 2003 The Effects of Land Use on Stream Nitrate Dynamics, OSU Poor, 2006; Poor and McDonnell, 2007 Lotic Intersite Nitrogen Experiment, LINX II, OSU Sobota, 2007 USGS data maintained by the Oregon Water Science Center, USGS L. Orzol (13 sites with N data) Marys River Watershed Phase I Water Quality Monitoring, MRWC Raymond et al., 2002 Oak Creek Watershed projects, OSU http://water.oregonstate.edu/oakcreek Tillamook Bay National Estuary Program, USEPA Sullivan et al., 2005

6

SUPPLEMENTAL TABLE 3. Projects with Stream Ammonium (NH4-N) and Total Dissolved Nitrogen (TDN) in the Oregon Coast Range (1990-2007) – Data Collated for This Study From Freshwater Streams Draining Watersheds Within the Oregon Coast Range. Number of sites by analyte

Project name, Primary agency/organization NH4-N TDN Freshwater Habitat Project 88 88 Oregon Streams & Rivers 1997 23 Oregon Rivers 1998 3 EMAP-West 10 Oregon Tillamook Kilchis 1998-99, OSU 16 REMAP Coast Range 42 Ambient River Monitoring 14 Reference Site Monitoring 45 Oregon Salmon Plan 137 Other project/general sampling 164 Trask Watershed Study, OSU 29 29

Willamette Research Station analytical procedure for ammonium: Gruen and Motter, 2007 OR Department of Environmental Quality Laboratory procedure for ammonium: OR DEQ, 2003

7

SUPPLEMENTAL TABLE 4. Characteristics of sites which had high nitrogen but low alder levels in Figs. 2 and 5 of the main paper. Grey shading indicates values which were above or below variable medians in Table 2 of the main paper, in a direction expected to increase stream nitrogen. For site-level land cover type, N = natural, A = agriculture, and U = urban.

Watershed - Watershed -level Watershed -level Site -level Elevation Watershed Distance level natural developed agricultural land cover # of # of lakes Site ID (m a.s.l.) area (ha) to coast (km) land cover (%) land cover (%) land cover (%) type CAFOs & reservoirs 48 212 119 14.5 91.9 8.1 0.00 N 0 0 223 5 744 9.0 95.5 4.2 0.24 A 0 0 249 168 147 50.0 89.5 5.9 4.59 A 0 0 242 4 320 0.4 84.9 15.1 0.02 U 0 0 350 7 120 10.8 18.6 20.7 60.78 A 2 0 439 15 214 11.1 21.3 12.7 66.02 A 2 0 473 25 87 1.0 89.4 9.9 0.62 A 0 0 490 69 138 13.0 90.4 9.6 0.00 N 0 0 631 98 51 4.2 87.0 13.0 0.00 N 0 0 707 190 209 11.6 92.3 7.7 0.00 N 0 0 1388 4 573 2.4 95.4 4.5 0.07 A 0 0

8

LITERATURE CITED IN THIS APPENDIX

Bechtold, J. S., R. T. Edwards and R. J. Naiman, 2003. Biotic versus hydrologic control over seasonal nitrate leaching in a floodplain forest. Biogeochemistry 63:53-71.

Binkley, D., J. F. Kimmins and M. C. Feller, 1982. Water chemistry profiles in an early- and a mid-successional forest in coastal British Columbia. Canadian Journal of Forest Research 12:240-248.

Brown, C. A. and R. J. Ozretich, 2009. Coupling between the coastal ocean and Yaquina Bay, Oregon: importance of oceanic inputs relative to other nitrogen sources. Estuaries and Coasts 32:219-237.

Colbert, D. and J. McManus, 2003. Nutrient biogeochemistry in an upwelling-influenced estuary of the Pacific Northwest (Tillamook Bay, Oregon, USA). Estuaries 26:1205-1219.

Compton, J. E., M. R. Church, S. T. Larned and W. E. Hogsett, 2003. Nitrogen export from forested watersheds in the Oregon Coast Range: the role of N2-fixing red alder. Ecosystems 6:773-785.

Gesch, D. B., 2007. The national elevation dataset. In: Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd Edition, D. Maune (Editor). American Society for Photogrammetry and Remote Sensing. Layer accessed January 1, 2006, http://ned.usgs.gov/Ned, Bethesda, Maryland, pp. 99- 118.

Goldman, C. R., 1961. The contribution of alder trees (Alnus Tenuifolia) to the primary productivity of Castle Lake, California. Ecology 42:282-288.

Gove, N. E., R. T. Edwards and L. L. Conquest, 2001. Effects of scale on land use and water quality relationships: a longitudinal basin-wide perspective. Journal of the American Water Resources Association 37:1721- 1734.

Gruen, R. and K. Motter, 2007. Standard operating procedure for the determination of ammonia in fresh waters, WRS 30A.3. Willamette Research Station Analytical Laboratory, Corvallis, Oregon, Dynamac/WED/EP-D- 06-013, March 2003 - revised March 2007.

Hale, V. C., 2007. A physical and chemical characterization of stream water draining three Oregon Coast Range catchments. In: Forest Engineering. Oregon State University, Corvallis.

Herlihy, A. T. and J. C. Sifneos, 2008. Developing nutrient criteria and classification schemes for wadeable streams in the conterminous US. Journal of the North American Benthological Society 27:932-948.

Hu, F. S., B. P. Finney and L. B. Brubaker, 2001. Effects of holocene Alnus expansion on aquatic productivity, nitrogen cycling, and soil development in Southwestern Alaska. Ecosystems V4:358-368.

Hurd, T. M. and D. J. Raynal, 2004. Comparison of nitrogen solute concentrations within alder (Alnus incana ssp. rugosa) and non-alder dominated wetlands. Hydrological Processes 18:2681-2697.

Johnson, A. C. and R. T. Edwards, 2002. Physical and chemical processes in headwater channels with red alder. Pages 101-108 in Johnson AC, Haynes RW, Monserud RA, eds. Congruent Management of Multiple

9

Resources: Proceedings from the Wood Compatibility Initiative Workshop. US Forest Service General Technical Report PNW-GTR-553.

LEMMA Landscape Ecology, Modeling, Mapping and Analysis, 2008. 2000 GNN/IMAP Coast Range vegetation layer, mr9_sppsz, released on 2/2008. Accessed February 15, 2008, http://www.fsl.orst.edu/lemma.

Leonard, R. L., L. A. Kaplan, J. F. Elder, R. N. Coats and C. R. Goldman, 1979. Nutrient transport in surface runoff from a subalpine watershed, Lake Tahoe Basin, California. Ecological Monographs 49:281-310.

Matkins, J., S. Perakis and D. E. Hibbs, 2005. Litter decay in Coast Range riparian zones: biogeochemical controls and implications for terrestrial and aquatic food chains. 2005 Annual Report, Cooperative Forest Ecosystem Research Program, Corvallis, OR: 87-90.

Murray, G. L. D., R. L. Edmonds and J. L. Marra, 2000. Influence of partial harvesting on stream temperatures, chemistry, and turbidity in forests on the Western Olympic Peninsula, Washington. Northwest Science 74:151-164.

Naymik, J., Y. D. Pan and J. Ford, 2005. Diatom assemblages as indicators of timber harvest effects in coastal Oregon streams. Journal of the North American Benthological Society 24:569-584.

O'Keefe, T. C. and R. T. Edwards, 2002. Evidence for hyporheic transfer and removal of marine-derived nutrients in a sockeye stream in southwest Alaska. American Fisheries Society Symposium 33:99-107.

OR DEQ, 2003. Standard operating procedure - ammonia nitrogen by automated phenate, version 3.0. Oregon Department of Environmental Quality Laboratory Division, DEQ04-LAB-0018-SOP, December 2, 2003.

Patton, C. J. and J. R. Kryskalla, 2003. Methods of analysis by the U.S. Geological Survey Water Quality Laboratory--Evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water. USGS Water-Resources Investigations Report 03-4174, Denver, Colorado.

Poor, C. J., 2006. The Effects of Land Use on Stream Nitrate Concentrations: From the Catchment Scale to the Regional Scale. In: Civil Engineering. Oregon State University, Corvallis.

Poor, C. J. and J. J. McDonnell, 2007. The effects of land use on stream nitrate dynamics. Journal of Hydrology 332:54-68.

Raymond, R., K. Snyder, D. Moore and A. Grube, 2002. Marys River Watershed Phase I Water Quality Monitoring. Marys River Watershed Council and E & S Environmental Chemistry, Inc, Sept. 2002. (1 August 2006; www.mrwc.net).

Scherer, R. A., 1995. The short term temporal and spatial variability of nitrogen and phosphorus in two Oregon Coast Range streams. In: Forest Engineering. Oregon State University, Corvallis.

Sigleo, A. C. and W. E. Frick, 2007. Seasonal variation in river discharge and nutrient export to a northeastern Pacific estuary. Estuarine, Coastal and Shelf Science 73:368-378.

Sigleo, A. C., W. E. Frick and L. Prieto, 2010. Red alder (Alnus rubra) distribution influences nitrate discharge to coastal estuaries: comparison of two Oregon watersheds. Northwest Science 84:336-350.

10

Sobota, D. J., 2007. Linkages among land use, riparian zones, and uptake and transformation of nitrate in stream ecosystems. In: Fisheries Science. Oregon State University, Corvallis, p. 169.

Sounhein, R., 2000. Heads of tide for coastal streams in Oregon, March 1989 report, Oregon Department of State Lands Engineering Section, 2000. Accessed March 1, 2008, http://www.oregon.gov/DSL/PERMITS/docs/heads_of_tide_1989.pdf; GIS data layer: http://www.oregon.gov/DAS/EISPD/GEO/alphalist.shtml.

Stanley, E. H. and J. T. Maxted, 2008. Changes in the dissolved nitrogen pool across land cover gradients in Wisconsin streams. Ecological Applications 18:1579-1590.

Stednick, J. D. and T. J. Kern, 1992. Long term effects of timber harvesting in the Oregon Coast Range: the New Alsea Watershed Study (NAWS). In: Interdisciplinary Approaches in Hydrology and Hydrogeology, M. E. Jones and A. Laenen (Editors). American Institute of Hydrology, pp. 502-510.

Stottlemyer, R., 1992. Nitrogen mineralization and streamwater chemistry, Rock Creek watershed, Denali National Park, Alaska, USA. Arctic and Alpine Research 24:291-303.

Stottlemyer, R. and D. Toczydlowski, 1999. Seasonal relationships between precipitation, forest floor, and streamwater nitrogen, Isle Royale, Michigan. Soil Science Society of America Journal 63:389-398.

Sullivan, T. J., K. U. Snyder, E. Gilbert, J. M. Bischoff, M. Wustenberg, J. Moore and D. Moore, 2005. Assessment of water quality in association with land use in the Tillamook Bay Watershed, Oregon, USA. Water, Air, & Soil Pollution 161:3-23.

Sytsma, M., 2005. Final Report: Regional Lake Management Planning for TMDL Development. Center for Lakes and Reservoirs, Portland State University, report prepared for Oregon Department of Environmental Quality (DEQ Contract Number: 009-03). Accessed August 9, 2007, www.clr.pdf.edu.

Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger and K. E. Bencala, 1989. Retention And Transport Of Nutrients In A 3rd-Order Stream In Northwestern California - Hyporheic Processes. Ecology 70:1893- 1905.

U.S. Fish and Wildlife Service, 2008. National Wetlands Inventory website. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. Accessed January 1, 2008, http://www.fws.gov/wetlands.

Volk, C. J., P. M. Kiffney and R. L. Edmonds, 2003. Role of riparian red alder in the nutrient dynamics of coastal streams of the Olympic Peninsula, Washington, USA. American Fisheries Society Symposium 34:213-225.

Wigington, P. J., Jr., M. R. Church, T. C. Strickland, K. N. Eshleman and J. Van Sickle, 1998. Autumn chemistry of Oregon Coast Range streams. Journal of the American Water Resources Association 34:1035-1049.

Wondzell, S. M. and F. J. Swanson, 1996. Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream .2. Nitrogen cycling. Journal of the North American Benthological Society 15:20-34.

11