Antiviral Drugs

Total Page:16

File Type:pdf, Size:1020Kb

Antiviral Drugs VIRUS Professor Viru Sahastrabudhhe “ Virus " VIRUS VIRUS in computer…?? A VIRUS is a program or programming code that replicates Attaches itself to a file enabling it to spread from one computer to another, leaving infections as it travels Can CONTROL your system…. Can show MESSAGES.. Can DAMAGE your files… ANTIVIRUS PROGRAMME ANTIVIRAL AGENTS Dr Satyajit , MD Asst Professor Dept of Pharmacology Viruses Obligate intracellular parasites Consist of a core genome in a protein shell and some are surrounded by a lipoprotein Lack a cell wall and cell membrane Do not carry out metabolic processes Replication depends on the host cell machinery For replication it has to attach a cell Steps for Viral Replication Binding of the virus to the host cell Penetration into the host cell Un-coating of the virion Reverse transcription Entry of DNA into the nucleus Transcription of provirus into mRNA mRNA translation by host ribosomes Assembly & budding Release of new virions Classification 1. Anti-Herpes virus Idoxuridine Acyclovir Valacyclovir Famciclovir Ganciclovir * Foscarnet * * Not marketed in India Anti-Retrovirus a) Nucleoside reverse transcriptase inhibitors (NRTIs) Zidovudine (AZT) Didanosine Zalcitabine Stavudine Lamivudine Abacavir b) Nonnucleoside reverse transcriptase inhibitors (NNRTIs) Efavirenz Nevirapine Delavirdine c) Protease inhibitors Ritonavir Indinavir Saquinavir Amprenavir Lopinavir Anti-Influenza Drugs Amantadine Rimantadine Nonselective Antiviral Drugs Ribavirin Lamivudine Interferon α Anti Herpes agents Herpes viruses 2 type:- Herpes simplex type I and II Type I cause disease of mouth, face & skin Type II affects genitals, rectum and skin Vidarabine- 1st agent to be developed Too toxic Idoxuridine, Acyclovir, Famciclovir, Ganciclovir, Foscarnet HSV I HSV II Anti herpes Agents Acyclovir - prototype Valacyclovir Famciclovir Penciclovir Trifluridine Vidarabine Mechanism of Action Acyclovir An acyclic guanosine derivative Phosphorylated by viral thymidine kinase Di-and tri-phosphorylated by host cellular kinases Inhibits viral DNA synthesis by: 1) competing with dGTP for viral DNA polymerase 2) chain termination Activity against viruses Herpes simplex I – most sensitive HSV II > VZV = EBV CMV not affected Acyclovir Oral, IV, and Topical t ½ = 3-4 hr Cleared by glomerular filtration and tubular secretion Acyclovir- Uses ¾ Herpes Simplex Virus 1 and 2 (HSV) ¾ Varicella-zoster virus (VZV) Genital Herpes simplex By type II HSV Topical /oral / parenteral Primary disease - Early 5% ointment locally 6 times a day for 10 days Late cases – 400mg TDS oral 10d Mucocutaneous H.simplex Oral/IV 15 mg/kg/day for 7 days H.Simplex keratitis Better for deep stromal infection Eye ointment 5 times a day till 3 days after healing Chikenpox Immunodeficient and neonate 15mg/kg/day for 7 days is DOC In susceptible contacts – Oral Acyclovir 400 mg 4 times a day for 7 days Side Effects: Acyclovir Stinging and burning sensation - topical Nausea, diarrhea - oral Headache Tremors Skin rash and delirium Dose dependent decrease in GFR Valacyclovir L-valyl ester of acyclovir Converted to acyclovir when ingested M.O.A.: same as acyclovir Uses: ¾ 1) recurrent genital herpes ¾ 2) herpes zoster infections Side Effects: nausea, diarrhea, and headache Famciclovir Prodrug of penciclovir A guanosine analogue M.O.A.: same as acyclovir Uses: HSV-1, HSV-2, VZV, EBV, and hepatitis B Side Effects: nausea, diarrhea, and headache Idoxuridine Thymidine analog Competes with thymidine & gets incorporated in DNA Formation of faulty DNA Synthesis of wrong viral proteins Unwanted effect ¾ Bone marrow depression Trifluridine (5-iodo-2-deoxyuridine) Trifluridine- fluorinated pyrimidine ¾ inhibits viral DNA synthesis same as acyclovir ¾ incorporates into viral and cellular DNA ¾ Uses: HSV-1 and HSV-2 (topically) Vidarabine An adenosine analog Inhibits viral DNA polymerase Incorporated into viral and cellular DNA Metabolized to hypoxanthine arabinoside Side Effects: GI intolerance, myelosuppression Anti-Cytomegalovirus Agents (CMV) 9 GancIclovir 9 Foscarnet 9 Fomivirsen Ganciclovir An acyclic guanosine analog Requires triphosphorylation for activation M.O.A.: same as acyclovir Uses: CMV*, HSV, VZV,and EBV Side Effect: myelosuppression Foscarnet An inorganic pyrophosphate Inhibits viral DNA polymerase, RNA polymerase, and HIV reverse transcriptase Does not have to be phosphorylated Uses: HSV, VZV, CMV, EBV, HHV-6, HBV, and HIV Resistance due to mutations in DNA polymerase Side Effects: hypo- or hypercalcemia ,phosphotemia Fomivirsen An oligonucleotide M.O.A.: binds to mRNA and inhibits protein synthesis and viral replication Uses: CMV retinitis Side effects: Iritis and increased IOP Anti retroviral Drugs HUMAN IMMUNE DEFICIENCY VIRUS Human immunodeficiency virus Virus classification Group: Group VI (ss RNA-RT) Family: Retroviridae Genus: Lentivirus Species z Human immunodeficiency virus 1 z Human immunodeficiency virus 2 Comparison of HIV species Species Virulence Transmittability Prevalence Purported origin HIV-1 High High Global Common Chimpanzee HIV-2 Lower Low West Africa Sooty Mangabey STRUCTURE AND GENOME OF HIV Roughly spherical About 120 nm ss-RNA Nucleocapsid- p 24 Matrix – p 17 Envelope protein – gp 120, gp41 Enzymes – RT, Integrase, Proteases HIV tropism ¾ CD4+ cells 1. T helper cells 2. Macrophage/Monocytes 3. Microglial cells 4. Langerhan cells ¾ Co receptors 1. CCR5 – β chemokines (MCP1, RANTES) 2. CXCR4 – α chemokines (SDF 1) The HIV replication cycle Classes of Antiretroviral drugs Nucleoside and nucleotide reverse transcriptase inhibitors (nRTI) Non-nucleoside reverse transcriptase inhibitors (NNRTI) Protease inhibitors (PIs) Integrase inhibitors Entry inhibitors ( fusion inhibitors) Maturation inhibitors Broad spectrum inhibitors Nucleoside and nucleotide reverse transcriptase inhibitors (nRTI) Zidovudine (AZT) Didanosine (ddI) Lamivudine (3TC) Stavudine (d4T) Zalcitabine (ddC) Abacavir (ABC) Emtricitabine (FTC) # Apricitabine, Stampidine, Elvucitabine , Racivir, Amdoxovir. NtRTIs - Tenofovir Clinical Uses Zidovudine Available in IV and oral formulations Activity against HIV-1 and HIV-2 Mainly used for treatment of HIV, decreases rate of progression and prolongs survival Prevents mother to newborn transmission of HIV Other NRTIs Didanosine- synthetic deoxy-adenosine analog; causes pancreatitis* Lamivudine- cytosine analog Zalcitabine- cytosine analog; causes peripheral neuropathy* Stavudine- thymidine analog; causes peripheral neuropathy* Abacavir- guanosine analog; more effective than the other agents; fatal hypersensitivity reactions can occur Nonnucleoside Reverse Transcriptase Inhibitors Efavirenz Nevirapine Delavirdine Diarylpyrimidines (Etravirine, Rilpivirine) Loviride Mechanism of Action NNRTIs Bind to site on viral reverse transcriptase Results in blockade of RNA dependent DNA polymerase activity Does not compete with nucleoside triphosphates Does not require phosphorylation Substrates and inhibitors of CYP3A4 b) Nonnucleoside Reverse Transcriptase Inhibitors (NNRTIs) Nevirapine - prevents transmission of HIV from mother to newborn when given at onset of labor and to the neonate at delivery Delavirdine - teratogenic Efavirenz- teratogenic Protease Inhibitors The protease enzyme cleaves precursor molecules to produce mature, infectious virions These agents inhibit protease and prevent the spread of infection These agents cause a syndrome of altered body fat distribution, insulin resistance and hyper-lipidemia Protease Inhibitors- adverse effects Diarrhea Nausea Fatigue headache Saquinavir A synthetic peptide-like substrate analog Inhibits HIV-1 protease Prevents cleavage of viral polyproteins Nelfinavir and Amprenavir M.O.A.: Specific inhibitors of the HIV-1 protease Less cross-resistance with Amprenavir Side Effects: diarrhea and flatulence Amprenavir can cause Stevens-Johnson syndrome Contraindications: inhibitor/substrate for CPY3A4 Entry Inhibitors gp41 - Enfuvirtide CCR5 - Maraviroc, Vicriviroc†, PRO 140† CD4 - Ibalizumab † † Undergoing clinical trials, not FDA approved Integrase inhibitors Raltegravir Elvitegravir # # Phase III trials Maturation inhibitors Bevirimat a drug designed to halt the development of immature HIV particles after they have emerged from human cells . HAART ???? Highly Active Anti Retroviral Therapy Treatment should be aggressive Suppress viral load to undetectable lebel - < 50 copies/ml With 3 ARDs is optimal Choice is based on efficacy, durability, tolerability and cost 9 3 drugs in regimen should belong to at least 2 different groups 9 NRTI + NRTI + NNRTI 9 NRTI + NRTI + PI 9 3 NRTI regimen is employed when a NNRTI/PI cant be used 9 PI sparing regimen more convenient with less pill burden, simple dose schedule 9 3 class regimen for advances cases HAART Combination of three or more antiretroviral drugs The preferred initial regimens are: w efavirenz + zidovudine + lamivudine w efavirenz + tenofovir + emtricitabine w lopinavir boosted with ritonavir + zidovudine + lamivudine w lopinavir boosted with ritonavir + tenofovir + emtricitabine HIV Post exposure Prophylaxis [PEP] 28-day HIV drug regimen The minimum that should be used is dual NRTIs for 28 days, with triple therapy (dual NRTIs plus a boosted PI) being offered where there is a risk of resistance . Most effective the sooner the drugs are administered. Mother-to-child transmission of HIV-1 The pregnant woman should start Zidovudine (AZT) from 28 weeks
Recommended publications
  • Failure of Initial Antiretroviral Treatment Regimens
    An update of Current Research January, 1999 The Forum for Collaborative HIV Research, (FCHR) situated within the Center for Health Policy Research (CHPR) at The George Washington University School of Public Health & Health Services, is an independent public-private partnership composed of representatives from multiple interests in the HIV clinical research arena. The FCHR primarily facilitates ongoing discussion and collaboration between appropriate stakeholders on the development and implementation of new clinical studies in HIV and on the transfer of the results of research into clinical practice. The main purpose of the FCHR is to enhance collaboration between interested groups in order to address the critical unanswered questions regarding the optimal medical management of HIV disease. By encouraging coordination among public and private HIV/AIDS clinical research efforts, the FCHR hopes to integrate these efforts into HIV/AIDS medical care settings. Therefore, studies performed by these various research entities, separately or in cooperation, can begin faster; duplication of efforts can be reduced; patient enrollment and retention can be further facilitated; and costs of getting answers to the critical questions can be shared. At present,the FCHR is staffed by three persons and consists of over one hundred members, representing all facets of the field. These include pharmaceutical companies; public and private third-party payors; health care delivery system groups; government agencies; clinical research centers; and patient advocacy groups. The Director of the FCHR is David Barr. For further information about the Forum for Collaborative HIV Research and its projects, please call William Gist at 202-530-2334 or visit our website at: www.gwumc.edu/chpr and click on HIV Research.
    [Show full text]
  • Ep 2531027 B1
    (19) TZZ ¥_Z _T (11) EP 2 531 027 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/4985 (2006.01) A61K 31/52 (2006.01) 06.05.2015 Bulletin 2015/19 A61K 31/536 (2006.01) A61K 31/513 (2006.01) A61K 38/55 (2006.01) A61P 31/18 (2006.01) (21) Application number: 11737484.3 (86) International application number: (22) Date of filing: 24.01.2011 PCT/US2011/022219 (87) International publication number: WO 2011/094150 (04.08.2011 Gazette 2011/31) (54) Therapeutic combination comprising dolutegravir, abacavir and lamivudine Therapeutische Zusammensetzung enthaltend Dolutegravir, Abacavir und Lamivudine Combinaison thérapeutique comprenant du dolutégravir, de l’abacavir et de la lamivudine (84) Designated Contracting States: (74) Representative: Gladwin, Amanda Rachel AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GlaxoSmithKline GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Global Patents (CN925.1) PL PT RO RS SE SI SK SM TR 980 Great West Road Designated Extension States: Brentford, Middlesex TW8 9GS (GB) BA ME (56) References cited: (30) Priority: 27.01.2010 US 298589 P WO-A1-2010/011812 WO-A2-2009/148600 US-A1- 2006 084 627 US-A1- 2006 084 627 (43) Date of publication of application: US-A1- 2008 076 738 US-A1- 2009 318 421 12.12.2012 Bulletin 2012/50 US-A1- 2009 318 421 US-B1- 6 544 961 (73) Proprietor: VIIV Healthcare Company • SONG1 et al: "The Effect of Ritonavir-Boosted Research Triangle Park, NC 27709 (US) ProteaseInhibitors on the HIV Integrase Inhibitor, S/GSK1349572,in Healthy Subjects", INTERNET , (72) Inventor: UNDERWOOD, Mark, Richard 15 September 2009 (2009-09-15), XP002697436, Research Triangle Park Retrieved from the Internet: URL:http: North Carolina 27709 (US) //www.natap.org/2009/ICCAC/ICCAC_ 52.htm [retrieved on 2013-05-21] Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Nnrtis – MK1439 New Classes • Maturation Inhibitors, LEDGINS, Etc
    New Antiretrovirals and New Strategies Saye Khoo HIV Pharmacology Group Declaration of Interests •www.hiv-druginteractions.org & www.hep-druginteractions.org sponsorship from Janssen, ViiV, Abbott, Merck, BMS, Gilead, Boehringer, Vertex. Editorial content remains independent. •Research Grants: Merck, ViiV •Speakers bureau: Merck, Janssen, Abbott, Roche •Travel grants: Gilead, ViiV, BMS, Janssen •TaiLor trial (NIHR-funded) Antiretroviral Stewardship Myocardial Infarction Stroke Cancer Congnitive impairment Liver, renal etc Plan Now For Then • what to give ? • Minimise resistance • when to start ? • Minimise toxicity • how to manage ? • Preserve options • Normalise Immunity • Equip for future co-morbidity New Drugs, New Formulations, New Strategies Improvements on existing classes • TAF • dolutegravir and other integrases • new NNRTIs – MK1439 New Classes • Maturation inhibitors, LEDGINS, etc New Formulations • nanoformulations • mono- or dual therapy • LA injections or implants • targeting latent reservoirs New Strategies • NRTI-sparing, PI monotherapy • targeting latent reservoirs • targeting immune activation, cardiovascular risk • etc INSTIs NRTIs PIs NNRTIs Other Approved Dolutegravir Phase 3 TAF DRVc Doravirine TAF/FTC/EVGc (MK1349) Cenicriviroc RPV-LA BMS663068 Phase 2 GSK126744 Racivir ABC/3TC/DTG Amodoxovir TAF/FTC/DRVc Elvucitabine Doravirine (MK-1439) • Pharmacology – Potent - IC95 ~19 nM (50% human serum) – Once-daily dosing; T½ 10-16h – P450 metabolism (CYP3A4/5) • No significant inhibition/induction of CYP P450s • No significant
    [Show full text]
  • ( 12 ) United States Patent
    US010426780B2 (12 ) United States Patent (10 ) Patent No. : US 10 ,426 , 780 B2 Underwood (45 ) Date of Patent : Oct . 1 , 2019 ( 54 ) ANTIVIRAL THERAPY 5 ,089 , 500 A 2 / 1992 Daluge 5 ,519 ,021 A 5 / 1996 Young et al. 5 ,641 , 889 A 6 / 1997 Daluge et al . (71 ) Applicant : VIIV HEALTHCARE COMPANY , 5 ,663 , 169 A 9 /1997 Young et al. Wilmington , DE (US ) 5 ,663 , 320 A 9 / 1997 Mansour et al. 5 ,693 ,787 A 12 / 1997 Mansour et al. (72 ) Inventor : Mark Richard Underwood , Research 5 ,696 ,254 A 12 / 1997 Mansour et al. Triangle Park , NC (US ) 5 , 808 , 147 A 9 / 1998 Daluge et al. 5 ,811 , 423 A 9 / 1998 Young et al . 5 , 840 , 990 A 11/ 1998 Daluge et al . ( 73 ) Assignee : ViiV Healthcare Company , 5 , 849 , 911 A 12 / 1998 Fassler et al. Wilmington , DE (US ) 5 , 905 , 082 A 5 / 1999 Roberts et al. 5 , 914 , 332 A 6 / 1999 Sham et al . ( * ) Notice : Subject to any disclaimer , the term of this 5 ,917 ,041 A 6 / 1999 Daluge et al. patent is extended or adjusted under 35 5 ,917 , 042 A 6 / 1999 Daluge et al . 5 ,919 ,941 A 7 / 1999 Daluge et al. U . S . C . 154 (b ) by 0 days. 5 , 922 ,695 A 7 / 1999 Arimilli et al. 5 , 935 , 94 A 8 / 1999 Munger et al . (21 ) Appl. No. : 15 / 366 , 442 5 ,977 ,089 A 11/ 1999 Arimilli et al . 6 ,043 ,230 A 3 / 2000 Arimilli et al . ( 22 ) Filed : Dec .
    [Show full text]
  • HIV/AIDS Technologies: a Review of Progress to Date and Current Prospects
    Working Paper No.6 HIV/AIDS Technologies: A review of progress to date and current prospects COMMISSIONED BY: aids2031 Science and Technology Working Group AUTHORED BY: KEITH ALCORN NAM Publications Disclaimer: The views expressed in this paper are those of the author(s) and do not necessarily reflect the official policy, position, or opinions of the wider aids2031 initiative or partner organizations aids2031 Science and Technology working group A review of progress to date and current prospects October 2008 Acronyms 3TC lamivudine ANRS Agènce Nationale de Récherche sur la Sida ART Antiretroviral therapy ARV Antiretroviral AZT azidothymidine or zidovudine bDNA branched DNA CDC US Centers for Disease Control CHER Children with HIV Early Antiretroviral therapy (study) CTL Cytotoxic T-lymphocyte D4T stavudine DSMB Data and Safety Monitoring Board EFV Efavirenz ELISA Enzyme Linked Immunosorbent Assay FDC Fixed-dose combination FTC Emtricitabine HAART Highly Active Antiretroviral Therapy HBAC Home-based AIDS care HCV Hepatitis C virus HPTN HIV Prevention Trials Network HSV-2 Herpes simplex virus type 2 IAVI International AIDS Vaccine Initiative IL-2 Interleukin-2 LED Light-emitting diode LPV/r Lopinavir/ritonavir MIRA Methods for Improving Reproductive Health in Africa trial MSF Médecins sans Frontières MSM Men who have sex with men MVA Modified vaccinia Ankara NIH US National Institutes of Health NRTI Nucleoside reverse transcriptase inhibitor NNRTI Non-nucleoside reverse transcriptase inhibitor OBT Optimised background therapy PCR Polymerase
    [Show full text]
  • Lamivudine in Combination with Zidovudine, Stavudine, Or Didanosine in Patients with HIV-1 Infection
    Lamivudine in combination with zidovudine, stavudine, or didanosine in patients with HIV-1 infection. A randomized, double-blind, placebo-controlled trial Daniel R. Kuritzkes*, Ian Marschner†, Victoria A. Johnson‡, Roland Bassett†, Joseph J. Eron§, Margaret A. FischlII, Robert L. Murphy¶, Kenneth Fife**, Janine Maenza††, Mary E. Rosandich*, Dawn Bell‡‡, Ken Wood§§, Jean-Pierre Sommadossi‡, Carla PettinelliII II and the National Institute of Allergy and Infectious Disease AIDS Clinical Trials Group Protocol 306 Investigators Objective: To study the antiviral activity of lamivudine (3TC) plus zidovudine (ZDV), didanosine (ddI), or stavudine (d4T). Design: Randomized, placebo-controlled, partially double-blinded multicenter study. Setting: Adult AIDS Clinical Trials Units. Patients: Treatment-naive HIV-infected adults with 200–600 × 106 CD4 T lymphocytes/l. Interventions: Patients were openly randomized to a d4T or a ddI limb, then randomized in a blinded manner to receive: d4T (80 mg/day), d4T plus 3TC (300 mg/day), or ZDV (600 mg/day) plus 3TC, with matching placebos; or ddI (400 mg/day), ddI plus 3TC (300 mg/day), or ZDV (600 mg/day) plus 3TC, with matching placebos. After 24 weeks 3TC was added for patients assigned to the monotherapy arms. Main outcome measure: The reduction in plasma HIV-1 RNA level at weeks 24 and 48. From the *University of Colorado Health Sciences Center and Veterans Affairs Medical Center, Denver, Colorado, the †Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts, the
    [Show full text]
  • WO 2013/164559 Al 7 November 2013 (07.11.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/164559 Al 7 November 2013 (07.11.2013) P O P C T (51) International Patent Classification: (74) Agent: TURNER, Craig; A.A. Thornton & Co, 235 High A61K 9/16 (2006.01) A61K 31/427 (2006.01) Holborn, London WC1V 7LE (GB). A61K 9/20 (2006.01) A61K 31/513 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/GB20 13/000 193 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) Date: International Filing DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 3 May 20 13 (03.05.2013) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (25) Filing Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (26) Publication Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (30) Priority Data: RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 1380/MUM/2012 3 May 2012 (03.05.2012) IN TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 2590/MUM/2012 6 September 2012 (06.09.2012) IN ZM, ZW.
    [Show full text]
  • Recent Advances in Antiviral Therapy J Clin Pathol: First Published As 10.1136/Jcp.52.2.89 on 1 February 1999
    J Clin Pathol 1999;52:89–94 89 Recent advances in antiviral therapy J Clin Pathol: first published as 10.1136/jcp.52.2.89 on 1 February 1999. Downloaded from Derek Kinchington Abstract indicated that using a combination of drugs In the early 1980s many institutions in might overcome this problem. The only Britain were seriously considering available drugs during the late 1980s were two whether there was a need for specialist other nucleotide reverse transcriptase inhibi- departments of virology. The arrival of tors (NRTI) which also targeted HIV reverse HIV changed that perception and since transcriptase (HIV-RT): 2',3'-dideoxycytidine then virology and antiviral chemotherapy (ddC) and 2',3'-dideoxyinosine (ddI).56 In have become two very active areas of bio- vitro combination studies gave surprising medical research. Cloning and sequencing results: those viruses that became highly resist- have provided tools to identify viral en- ant to ZDV remained sensitive to both ddC zymes and have brought the day of the and ddI.7 Furthermore, neither cross resistance “designer drug” nearer to reality. At the nor interference between the drugs was an other end of the spectrum of drug discov- issue, and subsequent clinical experience ery, huge numbers of compounds for showed that patients benefited when these two screening can now be generated by combi- compounds were used in combination with natorial chemistry. The impetus to find ZDV.8 It was also found by in vitro studies that drugs eVective against HIV has also virus isolated from patients on long term ZDV stimulated research into novel treatments monotherapy had become insensitive to ZDV, for other virus infections including her- but regained sensitivity when these patients pesvirus, respiratory infections, and were switched to ddI monotherapy.
    [Show full text]
  • AVT-080205-Ait-Khaled
    Antiviral Therapy 8:111-120 HIV-1 reverse transcriptase and protease resistance mutations selected during 16–72 weeks of therapy in isolates from antiretroviral therapy-experienced patients receiving abacavir/efavirenz/amprenavir in the CNA2007 study Mounir Ait-Khaled1*, Abdelrahim Rakik2, Philip Griffin2, Chris Stone2, Naomi Richards3, Deborah Thomas4, Judith Falloon5 and Margaret Tisdale2 for the CNA2007 international study team 1GlaxoSmithKline, HIV Clinical Development and Medical Affairs Europe, Greenford, UK 2GlaxoSmithKline, International Clinical Virology, Stevenage, UK 3GlaxoSmithKline, Statistics, Greenford, UK 4GlaxSmithKline, North American Medical Affairs, Research Triangle Park, NC, USA 5National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md., USA *Corresponding author: Tel: +44 208 966 2703; Fax: +44 208 966 4514; E-mail: [email protected] Objective: To determine HIV-1 reverse transcriptase (RT) TAMs were observed, new L74V or I mutations developed and protease (PRO) mutations selected in isolates from in 39 and 16% of isolates, respectively, however, new antiretroviral therapy (ART)-experienced patients receiving M184V mutations were only detected in isolates from two an efavirenz/abacavir/amprenavir salvage regimen. patients, one of whom had added lamivudine + didano- Methods: Open-label, single arm of abacavir, 300 mg sine. M184V was common at baseline (55%) and twice daily, amprenavir, 1200 mg twice daily and maintained in 22/27 (81%) isolates (five of these 22 efavirenz, 600 mg once daily, in ART-experienced added lamivudine or didanosine, or both). The PRO muta- patients of which 42% were non-nucleoside reverse tran- tions selected were in accordance with the distinct scriptase inhibitor-naive. The virology population resistance profile of amprenavir compared with other examined consisted of all patients who took at least 16 protease inhibitors.
    [Show full text]
  • Multi-Class Immune-Based Therap I Es Co Combination Drugs AZ T
    m- IMMUNE-BASED THERAP o /R) c VIR, A LPV ) MULTI-CLASSA NFV VIR, A S T N (INDIN COMBINATION DRUGSA VIR, REZIST AZ R 754) P A ) AVX C + Inhibitors Protease RTV VIR/RITON ) CRIXIV AB A OM (KIVEXA, COMBIVIR (ZIDOVUDINE + LAMIVUDINE, AZT + 3TC) EMTRIVA Protease754, Inhibitors C VIR, (EMTRICITABINE, FTC) EPIVIR (LAMIVUDINE, 3TC) EPZICOM (KIVEXA, TPV T A PZI HE EPT (NELFIN SPD OVIR DISOPROXIL ABACAVIR + LAMIVUDINE, ABC + 3TC) RETROVIR (ZIDOVUDINE, AZT, E HIBITO F VIR, , LOPIN ZDV) TRIZIVIR (ABACAVIR + ZIDOVUDINE + LAMIVUDINE, ABC + AC A A S IR N IN TRUGGLE FOR AZT + 3TC) TRUVADA (TENOFOVIR DF + EMTRICITABINE, TDF + V ENO A ) T ABINE ( ABINE FTC) VIDEX & VIDEX EC (DIDANOSINE, DDI) VIREAD (TENOFOVIR T TV I THE (ALUVI C DISOPROXIL FUMARATE, TDF) ZERIT (STAVUDINE, D4T) ZIAGEN A (ABACAVIR, ABC) RACIVIR (RCV) AMDOXOVIR (AMDX, DAPD) ORVIR (RITON N PRI VIR, A ) IREAD ( A A V APRICITABINE (SPD754, AVX754)ELVUCITABINE (ACH- TORS ) LETR N ) A I 126,443, BETA-L-FD4C) COMBIVIR (ZIDOVUDINE + FPV A Z I LAMIVUDINE, AZT + 3TC) EMTRIVA (EMTRICITABINE, ) K A ) APTIVUS (TIPR DAPD T VIR, IPTASE IPTASE , A FTC) EPIVIR (LAMIVUDINE, 3TC) EPZICOM (KIVEXA, A PV A SQV CCESS TO ABACAVIR + LAMIVUDINE, ABC + 3TC) RETROVIR R Z ( PIVIR (LAMIVUDINE, 3TC) B A This book documents the struggle that has been faced by those E (ZIDOVUDINE, AZT, ZDV) TRIZIVIR (ABACAVIR + T AMDX VIR, VIR, A A A I STRUGGLEA requiring treatment for HIV/AIDS in India, and those affected ZIDOVUDINE + LAMIVUDINE, ABC + AZT + 3TC) MPREN AVIR + ZIDOVUDINE + LAMIVUDINE, SC EY A C TRUVADA (TENOFOVIR DF + EMTRICITABINE, by HIV/AIDS, since the first recorded incidence of HIV/AIDS in FOR R N ) TDF + FTC) VIDEX & VIDEX EC (DIDANOSINE, QUIN India in 1986.
    [Show full text]
  • AVCC Figure Template
    Schinazi 11/2/08 14:00 Page 343 Antiviral Chemistry & Chemotherapy 18:343–346 Short communication Cellular pharmacology of 9-(β-D-1,3-dioxolan-4-yl) guanine and its lack of drug interactions with zidovudine in primary human lymphocytes Brenda I Hernandez-Santiago, Aleksandr Obikhod, Emilie Fromentin, Selwyn J Hurwitz and Raymond F Schinazi* Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA *Corresponding author: Tel: 404 728 7711; Fax: 404 728 7726; E-mail: [email protected] Amdoxovir, currently in Phase II clinical trials, is different resistance mutations, co-formulation of rapidly converted to 9-(β-D-1,3-dioxolan-4- the these two drugs is an attractive proposition. A yl)guanine (DXG) by adenosine deaminase in vitro combination study between DXG and ZDV and in humans. The cellular pharmacology of DXG showed no reduction of DXG-TP or ZDV-TP. Taken in primary human lymphocytes, including together, these results suggest that an appropri- dose–response relationships, intracellular half-life ately designed DXG prodrug could be given once of DXG triphosphate (DXG-TP), and combination a day and that co-formulation with ZDV might be studies were determined. DXG produced high a possibility. levels of DXG-TP with a long half-life (16 h) in acti- vated human peripheral blood mononuclear cells. Keywords: cellular pharmacology, DXG, nucleoside Since zidovudine (ZDV) and DXG select for analogues, NRTI The emergence of resistant HIV strains during therapy has inhibitor of HIV-1, HIV-2 and hepatitis B virus (HBV) made it a major challenge to develop drugs that delay, in human cell lines.
    [Show full text]
  • HIV-1 Antiretroviral Drug Therapy
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press HIV-1 Antiretroviral Drug Therapy Eric J. Arts1 and Daria J. Hazuda2 1Ugandan CFAR Laboratories, Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 2Merck Research Laboratories, West Point, Pennsylvania 19486 Correspondence: [email protected]; [email protected] The most significant advance in the medical management of HIV-1 infection has been the treatment of patients with antiviral drugs, which can suppress HIV-1 replication to undetect- able levels. The discovery of HIV-1 as the causative agent of AIDS together with an ever- increasing understanding of the virus replication cycle have been instrumental in this effort by providing researchers with the knowledge and tools required to prosecute drug discovery efforts focused on targeted inhibition with specific pharmacological agents. To date, an arsenal of 24 Food and Drug Administration (FDA)-approved drugs are available for treatment of HIV-1 infections. These drugs are distributed into six distinct classes based on their molecular mechanism and resistance profiles: (1) nucleoside-analog reverse tran- scriptase inhibitors (NNRTIs), (2) non–nucleoside reverse transcriptase inhibitors (NNRTIs), (3) integrase inhibitors, (4) protease inhibitors (PIs), (5) fusion inhibitors, and (6) coreceptor antagonists. In this article, we will review the basic principles of antiretroviral drug therapy, the mode of drug action, and the factors leading to treatment failure (i.e., drug resistance). BASIC PRINCIPLES OF ANTIRETROVIRAL development and approval for human use is THERAPY described in Figure 1. Since the first HIV-1 specific antiviral drugs efore 1996, few antiretroviral treatment were given as monotherapy in the early 1990s, Boptions for HIV-1 infection existed.
    [Show full text]