Ammonium Sulfite 121 1. Ammonium Sulflte; (NH4)2S03; [10196-04-0] 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
So2 and Wine: a Review
OIV COLLECTIVE EXPERTISE DOCUMENT SO2 AND WINE: A REVIEW SO2 AND WINE: A REVIEW 1 MARCH 2021 OIV COLLECTIVE EXPERTISE DOCUMENT SO2 AND WINE: A REVIEW WARNING This document has not been submitted to the step procedure for examining resolutions and cannot in any way be treated as an OIV resolution. Only resolutions adopted by the Member States of the OIV have an official character. This document has been drafted in the framework of Expert Group “Food safety” and revised by other OIV Commissions. This document, drafted and developed on the initiative of the OIV, is a collective expert report. © OIV publications, 1st Edition: March 2021 (Paris, France) ISBN 978-2-85038-022-8 OIV - International Organisation of Vine and Wine 35, rue de Monceau F-75008 Paris - France www.oiv.int 2 MARCH 2021 OIV COLLECTIVE EXPERTISE DOCUMENT SO2 AND WINE: A REVIEW SCOPE The group of experts « Food safety » of the OIV has worked extensively on the safety assessment of different compounds found in vitivinicultural products. This document aims to gather more specific information on SO2. This document has been prepared taking into consideration the information provided during the different sessions of the group of experts “Food safety” and information provided by Member States. Finally, this document, drafted and developed on the initiative of the OIV, is a collective expert report. This review is based on the help of scientific literature and technical works available until date of publishing. COORDINATOR OIV - International Organisation of Vine and Wine AUTHORS Dr. Creina Stockley (AU) Dr. Angelika Paschke-Kratzin (DE) Pr. -
Sulfite: Here, There, Everywhere
Sulfite: Here, There, Everywhere Max T. Baker, PhD Associate Professor Department of Anesthesia University of Iowa Inadvertent Exposures Combustion of fossil fuels, Air pollutant Large quantities as sulfur dioxide are expelled from volcanos Kilauea on the Big Island Small quantities endogenously formed in mammals from sulfur-containing amino acid metabolism Deliberate Exposures As Preservative- Wine, Beer (dates to Roman times From burning sulfur candles) Fruits and Vegetables (reduce browning, extend shelf-life) Pharmaceuticals1 Reductant - Antioxidant - Antimicrobial What are Sulfites? Oxidized Forms of the Sulfur Atom Sulfur Dioxide, MW = 64, bp = - 10oC (gaseous) Sulfur (IV) - Oxidation state of 4 S = Atomic number 16 – electrons/shell, 2,8,6 Sodium Dioxide Readily Hydrates2 Sulfur Carbon Dioxide Dioxide (irritant) H O H2O 2 Sulfurous Unstable Carbonic low acid species acid pH high pH Bisulfite Bicarbonate anion anion Sulfite Carbonate dianion dianion Forms radical Doesn’t form radical Bisulfite Can Combine with SO2 to form Metabisulfite + excess Bisulfite Metabisulfite (disulfite, pyrosulfite) “Sulfite” usually added to drugs as sodium or potassium salts of: Sulfite, Bisulfite, or Metabisulfite Endogenous to Mammals Small quantities formed from sulfur-containing amino acid metabolism - cysteine, methionine3 + - + H2O + 2H + 2 e Sulfite Sulfate Rapidly detoxified by sulfite oxidase (SOX) to form sulfate – a two electron oxidation, molybdenum dependent Two Confirmed Sulfite Toxicities Neurological abnormalities from genetic sulfite oxidase deficiency3 Allergic reactions from exogenous exposure4 Oral, parenteral, inhalational exposure: dermatitis, urticaria, flushing, hypotension, abdominal pain and diarrhea to life- threatening anaphylactic and asthmatic reactions “The overall prevalence of sulfite sensitivity in the general population is unknown and probably low. Sulfite sensitivity is seen more frequently in asthmatic than in nonasthmatic people." - FDA Prevalence – 3-10% are sulfite sensitive among asthmatic subjects. -
Environmental Protection Agency § 117.3
Environmental Protection Agency § 117.3 (4) Applicability date. This paragraph TABLE 117.3—REPORTABLE QUANTITIES OF (i) is applicable beginning on February HAZARDOUS SUBSTANCES DESIGNATED PUR- 6, 2020. SUANT TO SECTION 311 OF THE CLEAN (j) Process waste water means any WATER ACT—Continued water which, during manufacturing or Cat- RQ in pounds processing, comes into direct contact Material egory (kilograms) with or results from the production or use of any raw material, intermediate Ammonium benzoate ...................... D ...... 5,000 (2,270) Ammonium bicarbonate .................. D ...... 5,000 (2,270) product, finished product, byproduct, Ammonium bichromate ................... A ....... 10 (4.54) or waste product. Ammonium bifluoride ...................... B ....... 100 (45.4) Ammonium bisulfite ......................... D ...... 5,000 (2,270) [44 FR 50776, Aug. 29, 1979, as amended at 58 Ammonium carbamate .................... D ...... 5,000 (2,270) FR 45039, Aug. 25, 1993; 65 FR 30904, May 15, Ammonium carbonate ..................... D ...... 5,000 (2,270) 2000; 80 FR 37112, June 29, 2015; 83 FR 5208, Ammonium chloride ........................ D ...... 5,000 (2,270) Feb. 6, 2018] Ammonium chromate ...................... A ....... 10 (4.54) Ammonium citrate dibasic ............... D ...... 5,000 (2,270) Ammonium fluoborate ..................... D ...... 5,000 (2,270) § 117.2 Abbreviations. Ammonium fluoride ......................... B ....... 100 (45.4) NPDES equals National Pollutant Ammonium hydroxide ..................... C -
Reregistration Eligibility Decision (RED) for Inorganic Sulfites
Reregistration Eligibility Decision – Inorganic Sulfites May 2007 Reregistration Eligibility Decision Inorganic Sulfites Special Review and Reregistration Division Office of Pesticide Programs U.S. Environmental Protection Agency 1801 South Bell Street Arlington, VA 22202 Introduction The Environmental Protection Agency (EPA) has completed its Reregistration Eligibility Decision (RED) for the inorganic sulfites case, which includes the chemicals sulfur dioxide and sodium metabisulfite. This assessment provides information to support the issuance of a Reregistration Eligibility Decision for inorganic sulfites. EPA’s pesticide reregistration process provides for the review of older pesticides (those initially registered prior to November 1984) under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) to ensure that they meet current scientific and regulatory standards. In this document, EPA presents the results of its review of the potential human health effects of dietary, drinking water and occupational/bystander exposure to inorganic sulfites, as well as its ecological risk findings. Evaluations performed by the World Health Organization (WHO), the International Agency for Research on Cancer (IARC), and the Agency for Toxic Substances and Disease Registry (ATSDR) were relied upon for this assessment, in addition to peer-reviewed evaluations performed by the Cosmetic Ingredient Review (CIR), the Organization for Economic Cooperation and Development-Screening Information Data Set (OECD-SIDS) and from other open literature sources. Based on this assessment, the Agency has determined that products containing sulfur dioxide or sodium metabisulfite are eligible for reregistration provided the necessary label changes are made. As a result of this assessment, one tolerance has been reassessed. I. Use Information The inorganic sulfites reregistration case includes the chemicals sulfur dioxide (CAS No. -
Use of SO2 in High-Ph Wines Sulfur Dioxide Dosage
Purdue extension FS-52-W Commercial Winemaking Production Series Use of SO2 in High-pH Wines Sulfur dioxide dosage By Christian Butzke Wine pH and alcohol destroy the vitamin thiamin, which is essential for the growth of Enology Professor How much free sulfur dioxide (SO2) must a winemaker add or measure to prevent Brettanomyces yeast and certain wine Department of Food Science malolactic fermentation or Brettanomyces bacteria. Only proper concentrations of Purdue University growth if a wine’s pH is 3.95? The answer free SO2 provide additional capacity to bind more products of oxidative aging, [email protected] is between 79 and 112 mg/L, depending on the alcohol content of the wine. The to cleave thiamin, or to kill unwanted SO -sensitive microbes. Brettanomyces requirements for free SO2 concentrations 2 in wine increase exponentially with pH, thrives at higher pH, at temperatures so at pH 4.0 they are 10 times higher greater than 55˚F, in larger ullages, and than at pH 3.0. This does not leave room at residual yeast nutrient levels. Luckily for rule-of-thumb or routine sulfite the thiamin break-up — given proper additions/adjustments. Sulfites added amounts of free bisulfite — occurs faster at a higher pH. Ethanol acts synergistically to wine in the form of either SO2 gas or potassium metabisulfite salt exist and enhances the bacteria-killing effect essentially in two forms: ionized bisulfite of molecular SO2, so high-alcohol wines require less SO protection (see dosage (free SO2) and sulfur dioxide gas 2 charts based on wine alcohol content (molecular SO2). -
Safety Assessment of Sulfites As Used in Cosmetics
Safety Assessment of Sulfites as Used in Cosmetics Status: Re-Review for Panel Consideration Release Date: August 22, 2019 Panel Meeting Date: September 16-17, 2019 The 2019 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Wilbur Johnson, Jr., Senior Scientific Analyst © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Wilbur Johnson, Jr. Senior Scientific Analyst Date: August 22, 2019 Subject: Re-Review of the Safety Assessment of Sulfites The CIR Expert Panel first reviewed the safety of Sulfites in 2003. The Panel concluded that Ammonium Bisulfite, Ammonium Sulfite, Potassium Metabisulfite, Potassium Sulfite, Sodium Bisulfite, Sodium Metabisulfite, and Sodium Sulfite are safe as used in cosmetic formulations. The original report is included for your use (identified as sulfit092019orig in the pdf). Minutes from the deliberations of the original review are also included (sulfit092019min_orig). Because it has been at least 15 years since the safety assessment was published, in accordance with CIR Procedures, the Panel should consider whether the safety assessment of Sulfites should be reopened. -
Ammonium Hydrogen Sulfite Water As an Authorized Food Additive and Establish Compositional Specifications and Use Standards for This Additive
Amendment to the Ordinance for Enforcement of the Food Sanitation Act and the Specifications and Standards for Foods, Food Additives, Etc. The government of Japan will designate ammonium hydrogen sulfite water as an authorized food additive and establish compositional specifications and use standards for this additive. Background Japan prohibits the sale of food additives that are not designated by the Minister of Health, Labour and Welfare (hereinafter referred to as “the Minister”) under Article 12 of the Food Sanitation Act (Act No. 233 of 1947; hereinafter referred to as “the Act”). In addition, when specifications or standards for food additives are stipulated in the Specifications and Standards for Foods, Food Additives, Etc. (Public Notice of the Ministry of Health and Welfare No. 370, 1959), Japan prohibits the sale of those additives unless they meet the specifications or the standards pursuant to Article 13 of the Act. In response to a request from the Minister, the Committee on Food Additives of the Food Sanitation Council under the Pharmaceutical Affairs and Food Sanitation Council (hereinafter referred to as “the Committee”) has discussed the adequacy of the designation of ammonium hydrogen sulfite water as a food additive. The conclusion of the Committee is outlined below. Outline of conclusion The Minister should designate ammonium hydrogen sulfite water as a food additive unlikely to cause harm to human health pursuant to Article 12 of the Act and should establish compositional specifications and use standards for this additive pursuant to Article 13 of the Act (see Attachment for the details). Attachment Ammonium Hydrogen Sulfite Water 亜硫酸水素アンモニウム水 Standards for Use (draft) Permitted for use in grape juice used for wine production and grape wine only. -
INTERNATIONAL ŒNOLOGICAL CODEX Ammonium Hydrogen
INTERNATIONAL ŒNOLOGICAL CODEX Ammonium Hydrogen Sulfite COEI-1-AMMHYD: 2007 AMMONIUM HYDROGEN SULFITE Ammonium bisulfite NH4HSO3 = 99.07 (Oeno 14/2000 modified by Oeno 3/2007) 1. OBJECTIVE, ORIGIN AND SCOPE OF APPLICATION This product falls in the category of preservatives and is used exclusively for fermentation operations. It makes available sulfur dioxide and ammonium ions, which can be directly assimilated by the yeast. There are regulatory restrictions on the amount of ammonium that can be added and on sulfur dioxide content. 2. LABELING The concentration of this product, as well as the safety and storage conditions, should be indicated on the label. 3. CENTESIMAL COMPOSITION NH3 17.16 SO2 64.67 4. PROPERTIES Ammonium hydrogen sulfite always takes an aqueous solution form. This solution emits a piquant sulfur dioxide odor. 5. SOLUBILITY Water at 60 °C 847 g/l Alcohol, 95% by vol. Slightly soluble 6. IDENTIFYING CHARACTERISTICS Aqueous solutions of ammonium hydrogen sulfite produce reactions of ammonium (release of ammonia in the presence of sodium hydroxide when heated) and sulfur dioxide (filter paper soaked in potassium iodate and starch turns blue). E-COEI-1-AMMHYD 1 INTERNATIONAL ŒNOLOGICAL CODEX Ammonium Hydrogen Sulfite COEI-1-AMMHYD: 2007 TESTS 7.1. Sulfur Ash As quantified as indicated in the Annex, the proportion of ammonium hydrogen sulfite ash should not be greater than 0.2 per 100. 7.2. Preparing the Solution for Tests Prepare a 10 pp 100 (m/v) solution. 7.3. Iron To 5 ml of the solution prepared for testing under paragraph 2, add 1 ml of concentrated hydrochloric acid (R), one drop of 2 pp 100 potassium permanganate (R) and 2 ml of 5 pp 100 potassium thiocyanate (R). -
United States Patent Office
United States Patent Office 3,330,620 Patented July 11, 1967 2 3,330,620 aqueous solution is used and this base is selected from METHOD FOR OXEDZNG AMMONUMSULFTE TO AMMONUMSULFATE the group consisting of pyridine, picolines, lutidines, col Angel Vian-Ortino and Vicente Martin-Municio, Madrid, lidines, quinoline, pyridic coal-tar bases, pyridic bases Spain, assignors to Empresa Auxiliar de la Industria, derived from petro-chemical processes, bases containing S.A., Madrid, Spain 5 pyridinic condensed rings and derivatives thereof. No Drawing. Fied Apr. 22, 1963, Ser. No. 274,806 The method of the present invention of converting am Claims priority, application Spain, Apr. 23, 1962, monium sulfite into ammonium sulfate may also be car 276,718 ried out by forming a dispersion of an organic, nitro 15 Claims. (C. 23-119) gen-containing base in an aqueous solution of ammonium 10 sulfate and ammonium sulfite, the organic base being in The present invention relates to a process for the soluble in the aqueous solution and being present in an quantitative oxidation of ammonium sulfite and, more amount equal to between 10% and 80% of the volume particularly, for the oxidation of ammonium sulfite which of the dispersion, passing air through the dispersion while has been formed by absorption of sulfur dioxide in aque the same is maintained at an elevated temperature of be ous ammonia solutions. Thus, the present invention is also 5 tween 40 and 140 C. and at an absolute pressure of be concerned with the recovery of sulfur dioxide from waste tween 1 and 11 atmospheres so as to substantially com gases in the form of ammonium sulfate. -
Ammonium Thiosulfate, Solution ((NH4)2S2O3) Safety Data Sheet According to Federal Register / Vol
Ammonium Thiosulfate, Solution ((NH4)2S2O3) Safety Data Sheet According To Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations And According To The Hazardous Products Regulation (February 11, 2015). Revision Date: 04/03/2019 Date of Issue: 01/22/2014 Supersedes Date: 03/08/2017 Version: 2.1 SECTION 1: IDENTIFICATION 1.1. Product Identifier Product Form: Mixture Product Name: Ammonium Thiosulfate, Solution ((NH4)2S2O3) Synonyms: Ammonium Hyposulfite, Solution 1.2. Intended Use of the Product No use is specified. 1.3. Name, Address, and Telephone of the Responsible Party Company Manufacturer Poole Chemical Co., Inc. Poole Chemical Co., Inc. P.O. Box 10 P.O. Box 10 100 N. 1st Street 100 N. 1st Street Texline, TX 79087 - United States Texline, TX 79087 - United States T 806-362-4261 T 806-362-4261 1.4. Emergency Telephone Number Emergency Number : 1-800-424-9300 (CHEMTREC) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the Substance or Mixture GHS-US/CA Classification Not classified 2.2. Label Elements GHS-US/CA Labeling No labeling applicable 2.3. Other Hazards Exposure may aggravate pre-existing eye, skin, or respiratory conditions. 2.4. Unknown Acute Toxicity (GHS-US/CA) No data available SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS 3.1. Substance Not applicable 3.2. Mixture Name Synonyms Product Identifier % * GHS Ingredient Classification Ammonium thiosulfate Ammonium thiosulphate / Thiosulfuric acid, (CAS-No.) 7783-18-8 60 Not classified diammonium salt / Thiosulfuric acid (H2S2O3), diammonium salt / Thiosulfuric acid (H2S2O3), ammonium salt (1:2) / Diammonium thiosulfate Water AQUA / Aqua (CAS-No.) 7732-18-5 40 Not classified *Percentages are listed in weight by weight percentage (w/w%) for liquid and solid ingredients. -
Effects of Post-Manufacture Board Treatments on Formaldegyde Emission
Effects of post-manufacture board treatments on formaldehyde emission: a literature review (1960-1984) George E. Myers treatments. At present I suggest that impregnation of Abstract boards with aqueous solutions (Method 1) is likely to be This paper reviews the literature dealing with the the most reliable because it should permit the use of a many post-manufacture board treatments used to re large scavenger excess and also allow neutralization of duce formaldehyde emission from urea-formaldehyde board acidity to reduce resin hydrolysis. bonded boards. Such treatments have almost solely used one or more of five chemical or physical principles: 1) formaldehyde reaction with NH3, 2) formaldehyde reaction with oxygenated sulfur compounds, 3) formal This is the fifth in a planned series of six critical dehyde reaction with organic -NH functionality, 4) pH reviews of the literature on different aspects of the adjustment, and 5) physical barrier. I have categorized problem of formaldehyde emission from adhesively the available reports according to four primary board bonded wood products. The series was initiated at the treatment methods that use the five principles in differ Forest Products Laboratory, Madison, Wis., in response ent ways. The four primary treatment methods are: to a need expressed by industry representatives for an 1. Application of scavengers as solids or aqueous independent evaluation and summation of data from solutions. Ammonium bicarbonate and carbonate have diverse sources. The six aspects being reviewed concern been used as solid powders, while the solutions involved the effects of formaldehyde-to-urea mole ratio (F/U) a variety of ammonium salts, ammonium and alkali (48), ventilation rate and loading (49), temperature and metal salts with sulfur-containing anions, and urea and humidity (51), separate additions to wood furnish or other compounds having -NH functionality; veneer (52), post-manufacture treatments of boards, 2. -
Ammonium Thiosulfate 12-0-0, 26% Sulfur
Secondary Nutrients Ammonium Thiosulfate 12-0-0, 26% Sulfur Guaranteed Analysis Directions for Use: Greens, Tees and Fine Turf: Apply 3.0 - 12.0 oz. of Ammonium Thiosulfate with 1.5 -2 gallons of Total Nitrogen (N) ................................... 12.00% water per 1,000 sq. ft. (1.0 - 4.1 gallons of Ammonium Thiosulfate with 66 - 88 gallons of water per 12% Ammoniacal Nitrogen Sulfur (S) ................................................. 26.00% Acre) every 14 days throughout the growing season. Irrigate after application. This application shall provide 0.03 - 0.12 lb. of actual Nitrogen per 1,000 sq. ft. Derived from Ammonium Thiosulfate Fairways, Roughs, Sports Turf and Lawns: Apply 3.1 - 4.1 gallons of Ammonium Thiosulfate Ammonium Thiosulfate is an excellent source with 44 - 88 gallons of water per Acre (9.0 - 12.0 oz. of Ammonium Thiosulfate with 1 - 2 gallons of of ammoniacal nitrogen that is quickly absorbed water per 1,000 sq. ft.) every 14 days throughout the growing season. This application shall provide by the plant. This results in greener turf, even at 0.09 - 0.12 lb. of actual nitrogen per 1,000 sq. ft. low soil temperatures. Use when a liquid type of ammoniacal nitrogen source and sulfur are Fertigation: Apply 1.0 - 5.0 gallons per Acre (3 - 15 oz. per 1,000 sq. ft.) of Ammonium Thiosulfate required. with the irrigation water every 7 to 14 throughout the growing season. Ammonium Thiosulfate is a neutral to slightly Application Precautions: basic (7 - 8 pH), clear liquid solution, containing 12% nitrogen and 26% sulfur. Ammonium Do not apply Ammonium Thiosulfate directly on or below germinating seeds such as in a “pop Thiosulfate is compatible with most liquid up” fertilizer.