Review of Palaeobotany and Palynology 281 (2020) 104281

Contents lists available at ScienceDirect

Review of Palaeobotany and Palynology

journal homepage: www.elsevier.com/locate/revpalbo

A new sequence from southern Iberia suggesting coastal Pleistocene phytodiversity hotspot

Juan Ochando a,⁎, José Antonio López-Sáez b, Sebastián Pérez-Díaz c, Julián Ramos-Fernández d, Manuel Munuera e, Santiago Fernández a, Federico B. Galacho-Jiménez f, Reyes Luelmo-Lautenschlaeger b,h,JoséS.Carrióna,g a Department of Biology (Botany Area), Faculty of Biology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain b Environmental Archaeology Research Group, Institute of History, CSIC, CCHS, Albasanz 26-28, 28037 Madrid, Spain c Grupo de Investigación Pasado y Presente Geográfico del Relieve, la Vegetación y el Paisaje (GEOREVE), Departamento de Geografía, Urbanismo y Ordenación del Territorio, Universidad de Cantabria, E.T.S. de Ingenieros de Caminos, Canales y Puertos. Avenida de los Castros, 44, 39005 Santander, Spain d Parque Arqueológico de la Araña, 29004 Málaga, Spain e Department of Agricultural Engineering, Polytechnic University of Cartagena, 30203 Cartagena, Spain f Department of Geography, University of Málaga, Avda. de Cervantes 2, 29071 Málaga, Spain g Evolutionary Studies Institute, University of Witwatersrand, Witwatersrand, South Africa h Department of Geography, University Autonoma of Madrid, Calle Francisco Tomás y Valiente, 1, 28049 Madrid, Spain article info abstract

Article history: This paper presents a palynological study of the archeological layers from the Neanderthal site Abrigo 3 del Received 6 March 2020 Complejo del Humo, in southern Spain (Málaga), with the aim of reconstructing the environmental conditions Received in revised form 14 July 2020 in the vicinity of this hominin site. The Upper Pleistocene vegetation and its variability are described, revealing Accepted 18 July 2020 a high diversity of thermophilous plant taxa throughout the cold dry phases, together with a long-term persis- Available online 22 July 2020 tence of woody taxa, including Mediterranean, mesophytes, xerothermics and conifers. With the pollen records of Maytenus senegalensis as an outstanding finding, this study demonstrates the co-existence of temperate, Med- Keywords: Palynology iterranean and Ibero-Maghrebian angiosperms on the southern coastal plains of the Iberian Pleistocene where Paleoecology Neanderthals survived for a long time. It is therefore clear that Neanderthals and early Upper Paleolithic modern Neanderthals humans lived in a litoral refugium, which was a propitious environment for maintaining a high biodiversity, in- Glacial refugia cluding potentially edible plant species. Besides, this coastal refugium offers broad possibilities for hunting, and interpopulational relationships through coastal platforms. © 2020 Published by Elsevier B.V.

1. Introduction data for human evolution studies have been provided by archeological palynology (Bonnefille, 2010; Burjachs and Julià, 1994; Burjachs et al., A vast majority of paleopalynological investigations in continental 2003; Carrión et al., 2003b, 2008, 2011, 2018, 2019a, 2019b, 2019c; context are based on lakes and bogs sequences (Bennett and Willis, González-Sampériz et al., 2010; Lechterbeck and Jensen, 2020; 2001; Birks, 2005; Ritchie, 1995). However, in Western Europe only a Ochando et al., 2019; Scott et al., 2003, 2019; Val-Peón et al., 2019), few of them extend to the Pleistocene, or they are generally not located and they represent a background which should not be undervalued. in the vicinity of hominin and/or archeological sites. This means, there- In connection with the former, the persistence of glacial refugia for fore, that in the case of Neanderthals, the reconstruction of their habitats temperate during the Pleistocene is important to note. Paleoeco- must be based on the palynological reconstruction of the sediments de- logical and phylogeographic studies have highlighted how important posited in archeological caves and rockshelters, in spite of the method- for biodiversity patterns in middle and high latitudes the existence of ological limitations broadly analyzed (Bottema, 1975; Carrión, 2002; plant refugia has been (Bhagwat and Willis, 2008; Taberlet et al., Coles and Gilbertson, 1994; Carrión et al., 1999, 2009; Davis, 1990; 1998; Willis and Whittaker, 2000). Refugia are also essential for species Fiacconi and Hunt, 2015, 2017; Hunt and Fiacconi, 2018; Navarro diversity and the level of endemism (Jansson, 2003). Furthermore, gla- et al., 2000, 2001; Sánchez-Goñi, 1993; Sánchez-Goñi et al., 2005). Re- ciations have built historical patterns traces still perceptible that par- gardless of the difficulties described by these authors, relevant habitat tially explain the distribution and richness of forest formations in Europe and North America (Svenning and Skov, 2007). Indeed, those fl ⁎ Corresponding author. Pleistocene refugia seem to have had a powerful in uence on current E-mail address: [email protected] (J. Ochando). genetic diversity of temperate forests in Europe (Hampe and Petit,

https://doi.org/10.1016/j.revpalbo.2020.104281 0034-6667/© 2020 Published by Elsevier B.V. 2 J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281

2005; Petit et al., 2003). The combination of geomorphological, paleocli- 4. Sampling and chronological framework matic and paleobotanical characteristics of the Iberian Peninsula sug- gest it played a strategic role in the survival of taxa during the A total of 26 palynological samples were collected in Abrigo 3 Quaternary (Carrión and Leroy, 2010; Leroy and Arpe, 2007; Ochando (Figs. 2, 3), where a complete sedimentary column includes 26 levels. et al., 2019; Postigo-Mijarra et al., 2008, 2010), with coastal plains The uppermost samples come from the Upper Paleolithic levels 15 being of crucial importance (Carrión et al., 2003b, 2008, 2018; Yll and (samples 1 and 2) and 16 (samples 3 to 7). No pollen samples were Carrión, 2003; Ochando et al., 2019). This is the case with the taken from the overlying levels 14 and 13, corresponding to the same archeopalynological analysis presented here in Abrigo 3 del Complejo cultural period, because they were above the stratigraphic cut, although del Humo. a TL dating of level 13 was >19 ka. Level 15 is dated by TL at >24 ka (Ramos Fernández et al., 2012). The rest of the samples, up to the base 2. Physical setting and archeological remarks of the sequence, are all assigned to stratigraphic levels of the Middle Pa- leolithic: 8 and 9 (level 17), 10 (level 18), 11 (level 19), 12 (level 20), 13 Abrigo 3 del Humo (4° 20′ 42″ W, 36° 42′ 52″ N, 5 m a.s.l.) is an (level 21), 14 and 15 (level 22), 16 (level 23, dated by TL at 35 ka), 17 to archeological site lying in the Complejo del Humo (Cuevas de la 22 (level 24), 23 (level 25), and finally 24 to 26 (level 26) (Fig. 4) Araña), east from Málaga Bay in southern Spain (Fig. 1). The main en- (Ramos Fernández et al., 2012). trance, southernly, is in the lowermost paleocliff of the territory. Abrigo 3 del Complejo del Humo is a sea balma filled with about 7 m of sedi- 5. Palynological methods ments and attributed mainly to the Upper Pleistocene (Ferre et al., 2004). The Humo cave, which gives name to the complex, opens to The laboratory treatment was carried out in the Archaeobiology Lab- Abrigo 3 and is composed of a series of galleries whose dimensions oratory (CSIC) using the method proposed by Faegri and Iversen (1989) are not too large but difficult to transit. Its origin was due to the rainwa- with densimetric separation of microfossils (Goeury and de Beaulieu, ter dissolution of Jurassic limestones and karstification processes, com- 1979). The pollen morphotypes have been identified according to bined with the detachment of large blocks from the site's roof (Ortega Faegri and Iversen (1989), Moore et al. (1991), Reille (1992, 1995) Ruiz and Ramos Fernández, 2015). and Valdés et al. (1987). In the distinction of the Plantago, references Fieldwork in this locality was first carried out by Miguel Such in from Ubera et al. (1988) were used, Renault-Miskovsky et al. (1976) Hoyo de la Mina Cave in 1917 (Such, 1920). In 1942 José Sánchez was taken as guidance for Oleaceae, and Burgaz et al. (1994) for Pistacia Montes excavated the Humo Cave access, finding tools that he attrib- lentiscus. The Maytenus senegalensis morphotype was established ac- uted to the Aurignacian, and other materials possibly of Mousterian as- cording to Perveen and Qaiser (2008). Non-pollen microfossils were ba- cription (Sánchez Montes, 1947). After him, Giménez Reyna prospected sically identified following van Geel (1986, 2001) and van Geel et al. the area, and assigned the archeological levels of Hoyo de la Mina to (1986, 1989). deep Upper Paleolithic (Giménez Reyna, 1946). Abrigo 3 del Complejo Whenever a valid sample has been given, the number of pollen del Humo was first excavated by F. Gálvez-Pacheco in 1965, who iden- grains counted or pollen sum (P.S.) has exceeded 200 grains of terres- tified in a stratigraphic profile Levallois Mousterian lithics associated trial , also housing a minimum taxonomical diversity of 20 types with abundant seashells and few bones remains. In the upper sections, (López-Sáez et al., 2003; Sánchez-Goñi, 1994). In the calculation of the this author found Aurignacian lithics (Gálvez-Pacheco, 1975). By these percentages, hydro-hygrophytes taxa and non-pollen palynomorphs dates Julián Ramos took over the fieldwork. He prospected the area (NPPs), – sometimes considered local and others extra-local – have and organized the chaotic and sometimes imprecise nomenclature of been excluded from the P.S. because they are usually overrepresented some deposits, such as Hoyo de la Mina and Cueva de Navarro 4, (López-Sáez et al., 1998, 2000, 2003; Wright and Patten, 1963). In addi- which was assigned to La Cala del Moral (Rincón de la Victoria), when tion, Cichorioideae and Aster type have been also excluded from the P.S. in fact they belonged to the neighborhood of La Araña (Málaga). The due to their anthropozoogenic nature (Bottema, 1975; Burjachs et al., Araña Caves were divided into 7 karst systems and the rock shelters 2003; Carrión, 1992b; López-Sáez et al., 2003). The relative value of present were numbered. In 1981 and 1983, Julián Ramos carried out the excluded palynomorphs has been calculated with respect to the the first excavation campaigns in Abrigo 3 del Complejo del Humo P.S. Figs. 5 and 6 show the pollen diagrams elaborated with TILIA and that confirmed the presence of the Middle Paleolithic in the deepest TGView software (Grimm, 1992, 2004). All samples, except for three levels 26 to 21 and Upper Paleolithic at the highest levels 15 to top. (10, 18 and 23), were polleniferous. A synthetic diagram was prepared Levels 17 to 20 show difficulties to be assigned to an archeological con- with the main taxa and ecological groups (Fig. 6). text. In a recent work, it has been proposed that the level 17 also contain Mousterian remains (Ramos Fernández et al., 2012). 6. Palynological results

3. Modern-day vegetation and climate The Middle Paleolithic levels 26-24 show predominance of herba- ceous taxa (ca. 45–65%) such as Poaceae, Artemisia, , Liliaceae, Abrigo 3 del Complejo del Humo is located in an area of warm and Amaranthaceae, Cichorioideae, Aster and Anthemis. The tree component temperate oceanic bioclimate, in the lower limits of the European Med- accounts for 15–20%, with mainly pines (Pinus pinea type and Pinus iterranean Region next to the Ibero-Maghrebian-Atlantic Super Prov- sylvestris/nigra type) and to a lesser extent, deciduous and evergreen ince of Northern Africa (Fig. 1). The nearby meteorological station, in Quercus. Pollen frequencies of are noticeable (ca. 30–40%). Over- Málaga city, shows an annual average temperature of 18.4 °C and an an- all, the pollen spectra suggest heliophilic vegetation dominated by Arte- nual precipitation of 507 mm. The area is located in the lower misia, Poaceae and Amaranthaceae, with xerothermic influence such as thermomediterranean belt with upper dry ombroclimate. Biogeograp- suggested by Cistaceae, Erica, Lamiaceae, Myrtus, Olea europaea, hically, it belongs to the Baetic Province, Malacitano-Axarquiense sector Phillyrea and Pistacia lentiscus. These inferred arid conditions fit with (Montes de Málaga Unit) (Pérez Latorre et al., 2008; Rivas-Martínez, the low frequencies of alder (Alnus)(Figs. 5, 6). 1987; Rivas-Martínez et al., 1997, 2002). The territory is characterized The levels 23 and 22, within Middle Paleolithic context, continue to by strong human impact (agriculture, industrial exploitation and be dominated by herbaceous plants (ca. 40–45%) with slightly lower urban planning). The vegetation present in the study area is dominated amounts of anthropogenic pollen indicators (Cichorioideae, Aster, by Ibero-Maghrebian and Mediterranean scrub with scattered pines Anthemis). It is equally noteworthy the incidence of Amaranthaceae (Pinus halepensis), patchily altered by overgrazing, fires, and extreme and Artemisia. However, the arboreal elements are now more impor- weather events (heat waves, droughts or windstorms). tant, reaching ca. 25%, especially with Pinus and Quercus, higher Alnus J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281 3

Fig. 1. Location of Abrigo 3 del Complejo del Humo in southern Spain. The three top images have been redrawn from Google Earth.

and the presence of Abies (5–8%). The layer keeps its values with and to a lesser extent Quercus, while a decline is observed in Alnus and respect to the previous levels, with the majority of the aforementioned Abies disappears. The scrub elements, however, fall significantly below taxa being present, with the first appearance of Ephedra fragilis and the 20%, and although most of them maintain some number, others disap- continuity of Viburnum.ThepresenceofGlomus and Pseudoschizaea pear (Ephedra fragilis or Myrtus), or keep presence only in a few samples circula is again noticeable (Figs. 5, 6). (Erica arborea, Maytenus, Viburnum). Glomus and Pseudoschizaea circula The most recent Middle Paleolithic levels 21-19 indicate a significant still appear suggesting the existence of erosive processes. In level 19 the change in the vegetation landscape. The herbaceous component con- parasithic fungus Diporotheca is present (Figs. 5, 6). tinues to be predominant with a maximum of 50% at level 21 and a min- The Middle Paleolithic (level 17) and the Upper Paleolithic (level imum of 27% in level 19. The tree cover is higher (ca. 30%) with Pinus, 16) show a substantial change in the pollen spectra, now with a 4 J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281

Fig. 2. Geological map of part of the Complejo del Humo where Abrigo 3 del Complejo del Humo appears.

codominance of arboreal (32–45%) and herbaceous (30–40%) there is a somewhat higher presence of anthropogenic and anth- vegetation, but above all, a significant rise in scrub (28–37%). It is ropozoogenic elements such as Aster, Boraginaceae, Polygonum worth mentioning the reappearance of Abies and the increase of aviculare and Sordaria. Vegetation during this period suggests more Alnus. Pines are about 15–20%, and both deciduous and evergreen humid and warm conditions. Finally, the Upper Paleolithic, levels Quercus are important. The shrubs are mainly represented by Ephe- 16 and 15, show similar vegetation landscape with a progressive re- dra fragilis, Myrtus, Olea, Phillyrea, Viburnum and Pistacia lentiscus. gression of the thermophilic maquia and some increase of herbs. It is noticeable the presence of the arto (Maytenus senegalensis). Abies disappears, while pines and oaks continue to be important The herbaceous layer remains similar species composition, although (Figs. 5, 6).

Fig. 3. Stratigrafical levels and profile sampled for pollen analysis in Abrigo 3 del Complejo del Humo. Redrawn from Ramos Fernández et al. (2012). J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281 5

Fig. 4. Bayesian model containing the available chronometric data from Abrigo 3 del Complejo del Humo. Redrawn from Ramos Fernández et al. (2012).

7. Vegetation history and paleobotanical remarks of these species (Cabezudo and Pérez Latorre, 2001; Pérez Latorre et al., 2006, 2008) as well as and its pollen dispersion and representa- Although some uncertainties persist about the exact chronology of tiveness (López-Sáez et al., 2013; Broothaerts et al., 2018). This picture the deposits (Ferrer et al., 2005; Ortega Ruiz and Ramos Fernández, of Pleistocene vegetation has been widely discussed before in reference 2015; Ramos Fernández et al., 2012), the palynological analysis pre- to other territories (Carrión, 1992a, 1992b, 2001, 2002; Carrión et al., sented here allows visualizing the full-glacial vegetation of the Upper 1995a, 1999, 2000, 2003b, 2008, 2018, 2019a, 2019b, 2019c; Pleistocene in a territory on the southern coastline of Spain (Fig. 4). González-Ramón et al., 2012; López-Sáez et al., 2007; Ochando et al., While noticing some fluctuation between the aridity plant indicators, 2019; Zilhão et al., 2016). it bears emphasis that even during the most arid periods, a diversity of Oaks are fairly common in the southern Iberian Pleistocene such as thermophilous taxa occur continuously in the pollen sequence. These in Bajondillo, Cueva Perneras, Sima de las Palomas, Gorham´s and Van- results therefore confirm research so far in the Málaga province guard Caves (Carrión et al., 1995a, 2003b, 2008, 2018; López-Sáez (Bajondillo: López-Sáez et al., 2007; Cortés-Sánchez et al., 2007, 2008, et al., 2007). Nowadays, the nearest populations of Quercus coccifera, 2011, 2019), southwards in Gibraltar (Gorham and Vanguard sites: Q. ilex, Q. faginea and Q. suber are located in the northern area of Montes Finlayson et al., 2006; Carrión et al., 2008, 2018) and northwards in de Málaga. Blanco-Castro et al. (1997) consider Betic holm oak (Quercus Murcia (Sima de las Palomas and Perneras sites: Carrión and Dupré, ilex) as a formation restricted to montane formation. However, the steep 1994; Carrión et al., 1995a) suggesting the existence of glacial refugia relief of some areas of the Andalusian coast allows the oaks to reach po- for temperate, Mediterranean and Ibero-Maghrebian plant taxa (Arpe sitions quite close to the coastline (for example, in La Axarquía of Má- et al., 2011; Carrión et al., 2013, 2015; González-Sampériz et al., 2010; laga). Quercus ilex must have been present during the Upper Leroy and Arpe, 2007; Magri et al., 2017; Manzano et al., 2017; Pleistocene in the coast of Málaga, as Bajondillo site indicates (López- Postigo-Mijarra et al., 2008, 2010). Sáez et al., 2007). As for the deciduous oak species, the most common The Pleistocene flora of these territories includes pines, junipers, and regionally are Quercus canariensis and Q. faginea.Thecorkoak,Quercus xerophytes such as Artemisia, Ephedra, Asphodelus,Cistaceae,Lamiaceae suber, has not been palynologically considered in this study, but it is and Amaranthaceae which may well have formed part of halophytic plausible that it was also in the vicinity of Abrigo 3 del Complejo del coastal communities (Lendínez, 2010; Lendínez et al., 2012; Salazar Humo taking into account the current potential of the species in the et al., 2014), but it is worth emphasizing the continuous occurrence of study area (Montoya, 1981, 1987). both deciduous and evergreen oaks, most likely involving Quercus It is worth mentioning the presence of pinsapo fir(Abies faginea, Q. rotundifolia and Q. coccifera. The occurrence of the alder pinsapo), whose first appearance in the pollen diagram occurs on (Alnus) and pinsapo fir(Abies pinsapo) are also pointing to an important level 23. It continues on level 22, during the Middle Paleolithic, probably patchily tree cover (Alba-Sánchez et al., 2019). What is more and then reappears again in levels 17 and 16 in the transition be- relevant is however the maintainance of the woody assemblage of tween the ending of the Middle Paleolithic and the beginning of Maytenus, Myrtus, Olea, Phillyrea and Pistacia, demonstrating the exis- the Upper Paleolithic. In all cases, its pollen percentages are suffi- tence of enclaves where winter frosts would have been absent. The ciently high – given the low dispersal capacity of this species – to pine pollen signal found in this record suggests the occurrence of coastal sustain a relative proximity of the “pinsapar” (Abies pinsapo com- platforms with Pinus pinea,confirmed by the presence of macroremains munities) to the study area (Alba-Sánchez et al., 2010). Abies in Nerja (Badal, 1990, 1998, 2001), and higher in altitude, Pinus pinsapo, is currently present in the south of the Iberian Peninsula. halepensis and Pinus nigra if we take into account the current ecology This tree is endemic to the western Baetics, with three populations: 6 .Ohnoe l eiwo aaooayadPlnlg 8 22)104281 (2020) 281 Palynology and Palaeobotany of Review / al. et Ochando J.

Fig. 5. Pollen diagram of Abrigo 3 del Complejo del Humo including trees types, shrubs types, herbs types, morphotypes of hydro-hygrophytes plants, and non-pollen microfossils.Cichorioideae,Aster type, hydro-hygrophytes taxa and non-pollen microfossils (NPPs) are out from the total pollen sum. J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281 7

Fig. 6. Synthetic pollen diagram of Abrigo 3 del Complejo del Humo including ecological groups and the main pollen contributors. Pinus include Pinus pinea type and Pinus sylvestris/nigra type. Quercus includes Quercus evergreen and Quercus deciduous (including Q. suber palynotypes). Deciduous Trees include Alnus and Quercus deciduous. Thermophytes include Quercus evergreen, Cistaceae, Ephedra fragilis, Maytenus senegalensis, Myrtus, Olea, Phillyrea and Pistacia.

Sierra de Grazalema, in Cádiz; and Sierra de las Nieves and 1986). It reaches southwestern European border on the edges of the Reales of Sierra Bermeja, in Málaga (Alba-Sánchez et al., the Irabia swamp (Irati, Navarra), while the Montseny massif (Bar- 2018). It is noteworthy the presence in the Iberian Peninsula of celona), in the Coastal-Catalan mountain range, constitutes its the two most diverse morphologically taxa (Abies alba and A. Spanish southeast boundary. On the other hand, Abies pinsapo is lo- pinsapo), whose geographical proximity constitutes a remarkable cated within the group of south-eastern fir trees. Its Iberian distri- corological–paleobotanical curiosity (Asensi et al., 1980). Although bution is restricted to some specific points in the Serranía de the period of appearance, as well as the place of origin and subse- Ronda, in the westernmost side of the Betic mountains and whose quent migrations of the different circum-Mediterranean species of populations have been greatly reduced because of the progressive the Abies genus, remains a controversial issue as there is insufficient aridification of the climate during the Quaternary (Blanco-Castro evidences (Linares, 2011). Several authors (Gaussen, 1964; Quézel, et al., 1997; Alba-Sánchez and López-Sáez, 2013). 1978) place the origin of Mediterranean firs in the Oligocene, and Along the Andalusian Mediterranean coast, the pinsapo fir is also their subsequent diversification in the Miocene. Abies alba must represented in the pollen study of Bajondillo (López-Sáez et al., 2007): have been relatively abundant throughout Europe, a fact confirmed it appears for the first time in the Middle Paleolithic (ca. 50–42 ka), by many pollen records since Abies pollen has been found during the and reappears in the transition to the Upper Paleolithic (ca. 40–38 ka), early Pleistocene samples in some sites (Gaussen, 1944-1968; being relatively abundant during interstadial periods. In Bajondillo, López-Sáez and López-García, 1999; González-Sampériz et al., the decline of Abies pinsapo forests in the most arid climatic periods (Au- 2010). When the cold became very intense Abies took refuge in rignacian to Solutrean) is visible, even though it is still present in the more temperate areas such as Italy, southern Balkan Peninsula or area between 35 and 20 ka. In the pollen sequence of Boquete de Iberian Peninsula. It is unlikely, then, that Abies pollen occurring in Zafarraya (Lebreton et al., 2003) the pinsapo fir appears testimonially Abrigo 3 del Complejo del Humo belong to Abies alba (García in some Middle Paleolithic levels dated before 46 ka. In summary, the López and Allué Camacho, 2005; Alba-Sánchez et al., 2010). In the documentation of pinsapo fir pollen in the Abrigo del Humo comes to Iberian Peninsula, Abies alba occupies almost exclusively the great indicate a new Pleistocene location for this species in the south of the mountain complex of the Pyrenees (Ceballos, 1958; Bresset, Iberian Peninsula. 8 J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281

8. Persistence of Ibero-North African taxa during Late Quaternary Messinian (Quézel, 1985). Many of these elements with tropical origin (Coriaria, Osyris, Smilax, Tribulus, Vitex, Ziziphus) are currently The ocurrence of the arto in the area (Maytenus senegalensis)is restricted to areas in the south and southeast of Spain, mainly through- worth discussing (Plate I). The arto is a Tertiary relict, threatened spe- out the thermomediterranean thermoclimate and arid, semi-arid and cies, whose communities (artales) are especially abundant in Málaga dry ombroclimates (Díez-Garretas et al., 2005). The species is not cur- province (Mendoza-Fernández et al., 2015; Pérez Latorre et al., 2006). rently growing in Gibraltar (Galán de Mera et al., 2000) but it does Díez-Garretas et al. (2005) describe communities with this species in along the southeast coast of the Iberian Peninsula (Cabezudo and the coastal areas of Málaga, mainly dispersed on limestone slopes and Pérez Latorre, 2001). cliffs near the sea (Rincón de la Victoria, La Araña), where the arto is ac- The oldest pollen records of Maytenus in the Iberian Pleistocene ap- companied by Aristolochia baetica, Asparagus albus, A. horridus, Pistacia pear in Sima de las Palomas (Murcia) between 125 and 40–60 ka lentiscus, Rhamnus fontquerianus, R. oleoides, Chamaerops humilis and (Carrión et al., 2003b; Walker et al., 1999, 2008)(Fig. 7). Although the Olea europaea var. sylvestris. These associations develop today in the chronology of both records in Gorham´s and Vanguard Caves has neither dry thermomediterranean bioclimatic belt, apparently as a degradation been finely nor definitively established, it is clear that a great part of the stage of Quercus ilex formations (Pérez Latorre et al., 2006). Maytenus MIS 4-2 dry-cold interval is captured (Carrión et al., 2008, 2018; occurs in the pollen diagram of Abrigo del Humo sporadically during Doerschner et al., 2019), and it includes the survival of Maytenus along the Middle Paleolithic (levels 26, 20 and 17) and continuously since with other typical elements of the xerothermic scrub. Carrión et al. the transition between Middle and Upper Paleolithic layers (levels 17 (2003a) show that the favorable climatic conditions in Sierra de Gádor to 15) (Figs. 5, 6). allowed the coexistence of mesothermophytes elements such as The presence of Maytenus senegalensis in the flora of southeastern Maytenus senegalensis, Myrtus communis, Buxus balearica and Iberia, along with other elements indicating of semi-desert areas such B. sempervirens together with deciduous oak forests during mid- as Tetraclinis or Ziziphus, could have its origin in the Lower Cretaceous Holocene. Similarly, in the Mazarrón sequence (ca. 7617–1569 cal yr in connection with the paleogeographical history of the Mediterranean B.P.) (Carrión et al., 2018), Maytenus abounds in the lower part of the di- (Quézel, 1985). They co-occur with Tertiary taxa such as Fagonia, Lycium agram. The Mayteno-Periplocetum formations could have expanded and Cneorum (Axelrod and Raven, 1978; Quézel, 1983) as well as taxa of more as a consequence of human activities than as a direct cause of bio- xerophytic character (Aristida, Caralluma, Periploca, Zygophyllum)which climatic factors (Carrión et al., 1995b, 2007). Charcoal analyses in Punta represent the African eremitic element related to the arid phases of the de los Gavilanes (García-Martínez, 2009), suggest the presence of

Plate I. Maytenus senegalensis plant. a. details and spiny stem, b. details, c. Maytenus senegalensis populations. Pollen grains of Maytenus senegalensis. d. Polar vision, e, f. Equatorial vision. J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281 9

Fig. 7. Iberian Pleistocene and Holocene records of Withania frutescens, Maytenus senegalensis and Periploca laevigata.

Maytenus in the southeastern coast during ca. 4080–2456 cal yr B.P. appearance of Maytenus, Withania and Periploca is restricted to a few (Fig. 7). sites (García-Martínez, 2009; Carrión et al., 2018)(Fig. 7). Although absent from Abrigo del Humo pollen record, other taxa The occurrence of warmth-loving plant communities during the should be mentioned in this paleoecological scenario. Withania Middle-Upper Paleolithic transition in the extreme south of Iberia is frutescens appears along with other thermophytes elements (Myrtus, supported by the Mediterranean pollen sequences of Bajondillo Erica arborea, Pistacia lentiscus, Buxus, Periploca, Maytenus, Osyris, (Torremolinos, Málaga) (López-Sáez et al., 2007), Gorham`s (Gibraltar) Lycium, Calicotome, Ephedra fragilis, Cosentinia vellea, Selaginella (Carrión et al., 2008), and Vanguard (Gibraltar) (Carrión et al., 2018). denticulata, Ruta) in the Pleistocene sequences of Vanguard (Carrión This last shows Pinus, Poaceae, Chenopodiaceae, and evergreen and de- et al., 2018), Sima de las Palomas (Carrión et al., 2003b), Bajondillo ciduous Quercus accompanied by Alnus, Betula, Castanea sativa, Corylus (López-Sáez et al., 2007) and Cueva Perneras (Carrión et al., 1995a) avellana, Juglans regia, Fraxinus, Salix, Ulmus, Olea europaea, Phillyrea, (Fig. 7). With respect to the Pleistocene records of Periploca angustifolia, Buxus, Coriaria, Myrica, Rhamnus, and significantly, the thermophytes they are exclusive to the southeast of the Iberian Peninsula at the sites of Maytenus senegalensis, Withania frutescens, Calicotome, Pistacia lentiscus Sima de las Palomas (Carrión et al., 2003b) and Cueva Perneras (Carrión and Myrtus communis. On the southeastern Spanish coast, pollen spectra et al., 1995a), apart from the occurrence of Asclepiadaceae at of mesothermophilous taxa have been recovered from Middle Paleo- Almizaraque, Almería (Mariscal, 1992) during the mid-Holocene, lithic deposits of Cueva Perneras (Carrión et al., 1995a), and Sima de which should correspond to Periploca. For its part, in the Holocene, the las Palomas (Walker, 2001; Carrión et al., 2003b). These show abundant 10 J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281

Quercus and Oleaceae, and frequent presence of thermophytes (Myrtus, Furthermore, the appearance of remains of other carnivore taxa in Erica arborea, Pistacia, Buxus, Periploca, Maytenus, Osyris, Withania, Zafarraya, such as Cuon alpinus, Vulpes vulpes, Crocuta crocuta, Panthera Lycium, Calicotome, Ephedra fragilis, Cosentinia vellea, Selaginella pardus, Mustela erminea and Mustela nivalis, could be considered more denticulata, Ruta). or less ubiquitous when it comes to the occupation of their habitats (Monclova Bohórquez et al., 2012). 9. Neanderthals surviving in coastal southern Iberia Several archeozoological studies from Middle Paleolithic sites across the Iberian Peninsula suggest that Neanderthals obtained a wide variety The palynological record of Abrigo 3 del Complejo del Humo of animal resources, similar from the pattern observed in Iberian early emerges as an optimun thermic refuge during Late Quaternary in Upper Paleolithic modern humans (Delpech and Grayson, 2007; the southern Iberian Peninsula coastline. Thus, the studied pollen se- Patou-Mathis, 2011). The use of resources of coastal origin (mainly ma- quence can be contextualized with the Neanderthal occupation in rine molluscs) during the Middle-Upper Paleolithic is notorious in de- Abrigo 3 del Complejo del Humo. The important connections be- posits such as Gorham´s, Vanguard, Bajondillo, Abrigo 3 and 4 del tween past human groups and their ecosystems can be also consid- Complejo del Humo, and Sima de las Palomas (Barton, 2000; Cáceres ered. It is clear now that the southern Iberian Neanderthals used Cuello de Oro et al., 2001; Cortés-Sánchez, 2000; Cortés-Sánchez et al., extensively the present-day thermomediterranean belts and the 2008, 2011; Fa et al., 2016; Finlayson et al., 2006; Ramos-Fernández lower mesomediterranean, since the deposits with stratigraphic se- et al., 2005; Ramos Fernández et al., 2012; Stringer et al., 2008; Walker quences of the Middle Paleolithic in the south of the Iberian Penin- et al., 2012). In any case, the consumption of shellfish seems to be a sula are contained between both bioclimatic belts (Cortés-Sánchez, complement in the diet of Neanderthal populations in the southern Ibe- 2006; Finlayson and Giles-Pacheco, 1999). The continuous coastal rian Peninsula. Thus, the meat consumption use would be determined resources exploitation is reflected mainly in the records of the Bays by the biotope in which the site is located, as happens in Boquete de of Malaga and Algeciras, where in caves there is enough evidence Zafarraya, finding species of different sizes such as the auroch (Bos to confirm a prolonged persistence of humans (Barton, 2000; primigenius), horse (Equus ferus), red deer (Cervus elaphus), ibex Cáceres Cuello de Oro et al., 2001; Cortés-Sánchez, 2000; Cortés- (Capra pyrenaica), rabbit (Oryctolagus cuniculus) and tortoise (Testudo Sánchez et al., 2008; Fa et al., 2016; Finlayson et al., 2006; Ramos- hermanni), among others (Barroso, 2003; Cortés-Sánchez et al., 1996; Fernández et al., 2005; Ramos Fernández et al., 2012; Stringer Monclova Bohórquez et al., 2012). et al., 2008). The late survival of Neanderthals in this region has Salazar-García et al. (2013) suggest that Neanderthals consumed a been associated to the persistence of these mild climatic conditions wide variety of vegetal resources. The paleoenvironmental and paleo- (Finlayson, 2008; Finlayson et al., 2006; Sepulchre et al., 2007). Nu- ecological traits of the Mediterranean in the south of the Iberian Penin- merous deposits with sequences of long-term occupation such as sula have been reconstructed by pollen studies at cave sites occupied by Gorham´s (Finlayson, 2004; Finlayson et al., 2000), Bajondillo Neanderthals, both inland and near the coast (Carrión et al., 2003b, (Cortés-Sánchez et al., 2004),Abrigo3and4delComplejodel 2013, 2015). Currently, not much is known about Neanderthal con- Humo (Ferre et al., 2004)andCarihuela(Carrión et al., 2019a)reaf- sumption of these foods, in spite of the environmental reconstructions firm these climatic conditions. of southeastern Iberia (Carrión et al., 2003b). It precisely in this context Abrigo 3 del Complejo del Humo site emerge as a remarkable where the paleobotanical findings become more relevant, because we paleofloristic record showing Paleolithic in connection with the Nean- can add now to the Neanderthal diet the possibility of a broad spectrum derthal ecology, highlighted by the existence of a forested habitat simi- of edible plants that likely grew in the vicinity of Abrigo 3 del Complejo lar to other sites of the southern Iberian Peninsula (Carrión et al., 2003b, del Humo, notably the holly oak (Quercus ilex), wild olive (Olea europaea 2008, 2018; González-Sampériz et al., 2010). This forested environment var. sylvestris), and the Stone pine (Pinus pinea). Additionally, more re- could have favored Neanderthal hunting strategies (Finlayson and cent studies have also highlighted how relevant plants were for Nean- Carrión, 2007; Rosas, 2016; Stewart et al., 2019). It seems likely that derthal diets not only in southernmost parts such as at Gorham’sCave this particular environment provided a mosaic of localities where rain- in Gibraltar (Barton et al., 1999), or the east of Iberian Peninsula in fall and warm conditions preserved resource-rich habitats (Jennings Bolomor Cave (Ochando et al., 2019), but even in northern parts of et al., 2011), in contrast with other areas of Europe where Neanderthals Spain (Hardy et al., 2012). In consequence, it is possible to say that may have not had access to supply, particularly during cold periods. For plant foods may have been particularly important in Neanderthal diets instance, archeological works in Abrigo 3 del Complejo del Humo have in south Iberian Peninsula refugia. shown a collection of molluscs close to 1000 specimens on the rocky It cannot be stressed enough that the Pleistocene vegetation land- substrates, formed mainly by mussels and limpets, among others scapes of these coastal territories were sharply different to those ob- (Ramos-Fernández et al., 2005; Ramos Fernández et al., 2012). served today, which are dominated by thermophilous scrub with From a paleoenvironmental perspective, the archeozoological re- scattered pines. Thus, the new data presented in Abrigo 3 del Complejo cords in Paleolithic sites in the coast of Málaga are limited to compare del Humo show that, as in Gibraltar (Carrión et al., 2008, 2018; with the microbotanical data from Abrigo 3 del Complejo del Humo. Finlayson and Carrión, 2007), the last Neanderthals and the first "mod- However, the proximity of Zafarraya and the chronology of the levels ern humans" lived for thousands of years in a propitious environment falling within MIS 3 (42–34 ka) can be used to establish certain for the development and permanence of diversity. This coincides with paleoenvironmental correlation. Zafarraya Cave was mainly inhabited the consideration that the appearance of evolutionary developments by large mammal species (Capra pyrenaica and Rupicapra pyrenaica) within hominins and the long permanence of populations is concen- (Monclova Bohórquez et al., 2012). The presence of Cervus elaphus, trated in the regions of greatest biological diversity in the world Ursus arctos, Lynx pardina and Felis silvestris, exclusive of forest environ- (Carrión et al., 2011). The late Pleistocene coasts of the south of the Ibe- ments, strongly suggests that the region was forested (Saarma et al., rian Peninsula are outstanding in showing the coexistence of thermo-, 2007), which fits the relatively high arboreal pollen percentages in meso-, and supramediterranean plant and animal including dry and Abrigo 3 del Complejo del Humo (Figs. 5, 6). The predominance of her- humid, wooded and treeless biotopes (Carrión et al., 2018). In addition, baceous formations (mainly Amaranthaceae, Fabaceae and Poaceae) the most thermophytic Maytenus, Calicotome, Withania, Periploca, and to some lesser extent shrubs (Erica, Juniperus, Lamiaceae and Osyris, Olea and Pistacia only coexist in the southernmost fossil sites of Olea), mainly in the lower levels of Middle Paleolithic, suggests the pres- the coastal areas that extend from Murcia to Gibraltar suggesting a ence of open areas covered with grasslands. The few remains found of coastal platform as a favorable territory for the survival of the greatest Equus caballus and E. hydruntinus in Zafarraya, possibly due to its higher diversity of environments in the Iberian Peninsula during the MIS 3 in altitude (Bignon and Eisenmann, 2006), supports this interpretation. which the late survival and extinction of the Neanderthals took place. J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281 11

Neanderthals lived here in a uniquely diverse environment, and one Bignon, O., Eisenmann, V., 2006. Western European Late Glacial horse diversity and its ecological implications, Equids in Time and Space. In: Mashkour, M. (Ed.), 9th ICAZ that is markedly different to that present landscape. Conference, Durham 2002, pp. 161–171. Birks, H.J.B., 2005. Fifty years of Quaternary pollen analysis in Fennoscandia 1954-2004. Grana 44, 1–22. Blanco-Castro, E., Casado-González, M.A., Costa-Tenorio, M., Escribano-Bombín, R., García- Declaration of Competing Interest Antón, M., Génova-Fuster, M., Gómez-Manzaneque, F., Moreno-Saiz, J.C., Morla- Juaristi, C., Regato-Pajares, P., Sainz-Ollero, H., 1997. Los bosques ibéricos. Una The authors declare that they have no known competing financial interpretación geobotánica, Planeta, S.A, p. 572. fl Bonnefille, R., 2010. Cenozoic vegetation, climate changes and hominin evolution in Trop- interests or personal relationships that could have appeared to in u- ical Africa. Global Planet. Change 72, 390–411. ence the work reported in this paper. Bottema, S., 1975. The interpretation of pollen spectra from prehistoric settlements (with special attention to liguliflorae). Palaeohistoria 17, 17–35. Acknowledgements Bresset, V., 1986. Contribution a l´étude phyto-écologique des sapinières oriento- pyrénéennes. Dissertation. Universidad de Niza. Broothaerts, N., Robles, S., Abel-Schaad, D., Pérez-Díaz, S., Alba-Sánchez, F., Luelmo- The research of this work was funded by the projects MED-REFUGIA- Lautenschlaeger, R., Glais, A., López-Sáez, J.A., 2018. Reconstructing past arboreal RTI2018-101714-B-I00 (Plan Nacional I+D+I, Spanish Ministry of cover based on modern and fossil pollen data: A statistical approach for the Gredos Range (Central Spain). Rev. Palaeobot. Palynol. 255, 1–13. Economy and Competitiveness) and by the ERC-Starting Grant Proposal Burgaz, M.E., Güemes, J., Roselló, M.J., 1994. Estudios palinológicos de flora autóctona No. 805478. The development of this work was supported by Project valenciana: Anacardiaceae, Capparaceae y Coriariaceae. In: La Serna-Ramos, I. (Ed.), (CGL-BOS2015-68604-P), funded by: FEDER/Ministry of Science and In- Polen y Esporas: Contribución a su conocimiento. Universidad de La Laguna, Tenerife, pp. 9–18. novation - Agencia Estatal de Investigación, Project (PID2019- Burjachs, F., Julià, R., 1994. Abrupt climatic changes during the Last Glaciation based on 1049449GB-I00), funded by: FEDER/Ministry of Science and Innovation pollen analysis of the Abric Romaní, Catalonia, Spain. Quatern. Res. 42, 308–315. - Agencia Estatal de Investigación and Fundación Séneca (grant number Burjachs, F., López-Sáez, J.A., Iriarte, M.J., 2003. Metodología Arqueopalinológica. In: Buxó, 20788/PI/18). Reyes Luelmo Lautenschlaeger is funded by a FPU con- R., Piqué, R. (Eds.), La recogida de muestras en Arqueobotánica: objetivos y propuestas metodológicas. La gestión de los recursos vegetales y la transformación tract (Spanish Ministry of Education, Culture and Sports). FPU16/ del paleopaisaje en el Mediterráneo occidental. Museu d’Arqueologia de Catalunya, 00676. Special thanks to Charo Ramos and Julián Ramos for their kind- Barcelona, pp. 11–18. fi ness and all the facilities provided for the management and perfor- Cabezudo, B., Pérez Latorre, A.V., 2001. Datos sobre la vegetación termó la del litoral ori- ental de Málaga (España). Acta Bot. Malacitana 26, 229–240. mance of this work. Miguel Cortés helped with his comments always Cáceres Cuello de Oro, I., Fernández-Jalvo, Y., Andrews, P., 2001. Neanderthals in Van- welcome. We are grateful with Juan Devesa and Félix Carrillo for the guard Cave. In: Finlayson, C. (Ed.), Neanderthals and Modern Humans in Late Pleisto- photographs of Maytenus senegalensis (leaves, flowers and ). cene Eurasia. Abstracts, Calpe 2001 Conference, 35. Gibraltar. Carrión, J.S., 1992a. A palaeoecological study in the Western Mediterranean area. The Upper Pleistocene pollen record from Cova Beneito (Alicante, Spain). Palaeogeogr. References Palaeoclimatol. Palaeoecol. 92, 1–14. Carrión, J.S., 1992b. Late Quaternary pollen sequence from Carihuela Cave, southeastern Alba-Sánchez, F., López-Sáez, J.A., 2013. Paleobiogeografía del pinsapo en la Península Spain. Rev. Palaeobot. Palynol. 71, 37–77. ibérica durante el Cuaternario. In: López Quintanilla, J. (Ed.), Los pinsapares en Carrión, J.S., 2001. Dialectic with climatic interpretations of Late-Quaternary vegetation Andalucía (Abies pinsapo Boiss.), Conservación y sostenibilidad en el siglo XX. Junta history in Mediterranean Spain. J. Mediterr. Ecol. 2, 145–156. de Andalucía. Sevilla, pp. 33–51. Carrión, J.S., 2002. Patterns and processes of Late Quaternary environmental change in a Alba-Sánchez, F., López-Sáez, J.A., De Benito Pando, B., Linares, J.C., Nieto-Lugilde, D., montane region of Southwestern Europe. Quat. Sci. Rev. 21, 2047–2066. López-Merino, L., 2010. Past and present potential distribution of the Iberian Abies Carrión, J.S., Dupré, M., 1994. Pollen data from Mousterian sites in Southeastern Spain. species: a phytogeographic approach using fossil pollen data and species distribution AASP Contrib. Ser. 29, 17–26. models. Div. Distrib. 16, 214–228. Carrión, J.S., Leroy, S.A., 2010. Iberian floras through time: Land of diversity and survival. Alba-Sánchez, F., Abel-Schaad, D., López-Sáez, J.A., Sabariego Ruiz, S., Pérez-Díaz, S., Rev. Palaeobot. Palynol. 162, 227–230. González-Hernández, A., 2018. Paleobiogeografía de Abies spp. y Cedrus atlantica en Carrión, J.S., Dupré, M., Fumanal, M.P., Montes, R., 1995a. A palaeoenvironmental study in el Mediterráneo occidental (península ibérica y Marruecos). Ecosistemas 27, 26–37. the semiarid Southeastern Spain: The palynological and sedimentological sequence Alba-Sánchez, F., López-Sáez, J.A., Abel-Schaad, D., Sabariego Ruiz, S., Pérez-Díaz, S., at Perneras Cave (Lorca, Murcia). J. Archaeol. Sci. 22, 355–367. González-Hernández, A., Linares, J.C., 2019. The impact of climate and land-use Carrión, J.S., Munuera, M., Dupré, M., 1995b. Estudios de Palinología arqueológica en el changes on the most southerly fir forests (Abies pinsapo) in Europe. The Holocene sureste ibérico semiárido. Cuaternario y Geomorfología 9, 17–31. 29, 1176–1188. Carrión, J.S., Munuera, M., Navarro, C., Burjachs, F., Dupré, M., Walker, M., 1999. Arpe, K., Leroy, S.A.G., Mikolajewicz, U., 2011. A comparison of climate simulations for the Palaeoecological potential of pollen records in caves: the case of Mediterranean last glacial maximum with three different versions of the ECHAM model and implica- Spain. Quat. Sci. Rev. 18, 67–78. tions for summer-green tree refugia. Clim. Past 7, 91–114. Carrión, J.S., Navarro, C., Navarro, J., Munuera, M., 2000. The distribution of cluster pine Asensi, A., Rivas-Martínez, S., Guerra, J., 1980. Sobre la posición bioclimática y (Pinus pinaster) in Spain as derived from palaeoecological data: Relationships with fi – sintaxonómica de Abies pinsapo.Doc.Phytosoc5,455–465. phytosociological classi cation. The Holocene 10, 243 252. Axelrod, D.I., Raven, P., 1978. Late Cretaceous and Tertiary history of Africa. In: Werger, Carrión, J.S., Sánchez-Gómez, P., Mota, J.F., Yll, E.I., Chaín, C., 2003a. Holocene vegetation fi M.J.A. (Ed.), Biogeography and Ecology of Southern Africa. Junk, The Hague, dynamics, re and grazing in the Sierra de Gádor, southern Spain. The Holocene 13, – pp. 77–130. 839 849. Carrión, J.S., Yll, E., Walker, M., Legaz, A., Chaíns, C., López, A., 2003b. Glacial refugia of Badal, E., 1990. Aportaciones de la antracología al estudio del paisaje vegetal y su temperate, Mediterranean and Ibero-North African flora in south-eastern Spain: evolución en el Cuaternario reciente, en la costa mediterránea del País Valenciano y New evidence from cave pollen at two Neandertal man sites. Global Ecol. Biogeogr. Andalucía (18.000-3.000 BP). Dissertation. Universitat de València, p. 321. 12, 119–129. Badal, E., 1998. El interés económico del pino piñonero para los habitants de la Cueva de Carrión, J.S., Fuentes, N., González-Sampériz, P., Sánchez-Quirante, L., Finlayson, J.C., Nerja. In: Sanchidrian, J.L., Simón, E. (Eds.), La cultura del Pleistoceno superior en Fernández, S., Andrade, A., 2007. Holocene environmental change in a montane re- Andalucía. Patronato de la Cueva de Nerja, Málaga, pp. 287–300. gion of southern Europe with a long history of human settlement. Quat. Sci. Rev. Badal, E., 2001. La recolección de piñas durante la prehistoria de la Cueva de Nerja (Má- 26, 1455–1475. laga). In: Villaverde, V. (Ed.), De Neandertales a Cromañones. El inicio del Carrión, J.S., Finlayson, C., Fernández, S., Finlayson, G., Allué, E., López-Sáez, A., López- poblamiento humano en tierras valencianas. Universitat de València, Valencia, García, P., Fuentes, N., Gil, G., González-Sampériz, P., 2008. A coastal reservoir of bio- pp. 21–40. diversity for Upper Pleistocene human populations: Palaeoecological investigations Barroso, C., (Coord.) 2003. El Pleistoceno superior de la cueva del Boquete de Zafarraya. in Gorham`s Cave (Gibraltar) in the context of the Iberian Peninsula. Quat. Sci. Rev. Arqueología Monografías. Junta de Andalucía. Sevilla. 27, 2118–2135. fi Barton, R.N.E., 2000. Mousterian hearths and sell sh late neanderthal activities on Gibral- Carrión, J.S., Fernández, S., González-Sampériz, P., Leroy, S.A.G., Bailey, G.N., López-Sáez, tar. In: Finlayson, C. (Ed.), Neanderthals and Modern Humans in Late Pleistocene Eur- J.A., Burjachs, F., Gil-Romera, G., García-Antón, M., Gil-García, M.J., Parra, I., Santos, – asia. Abstracts Calpe 2001 Conference. Gibraltar, pp. 211 225. L., López-García, P., Yll, E.I., Dupré, M., 2009. Quaternary pollen analysis in the Iberian Barton, R.N.E., Currant, A.P., Fernandez-Jalvo, Y., Finlayson, J.C., Goldberg, P., Macphail, R., Peninsula: The value of negative results. Internet Archaeol. 25, 1–53. Pettitt, P.B., Stringer, C.B., 1999. Gibraltar Neanderthals and results of recent excava- Carrión, J.S., Rose, J., Stringer, C., 2011. Early human evolution in the western Palaearctic: tions in Gorham’s, Vanguard and Ibex caves. Antiquity 73, 13–23. Ecological scenarios. Quat. Sci. Rev. 30, 1281–1295. Bennett, K.D., Willis, K.J., 2001. Pollen. In: Smol, J.P., Birks, H., John, B., Last, W.M. (Eds.), Carrión, J.S., Fernández, S., González-Sampériz, P., López-Merino, L., Peña, L., Burjachs, F., Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal, and Sili- López-Sáez, J.A., García-Antón, M., Carrión-Marco, Y., Uzquiano, P., Postigo, J.M., ceous Indicators 3. Klumer Academic Publishers, Dordrecht, pp. 5–32. Barrón, E., Allué, E., Badal, E., Dupré, M., Fierro, E., Munuera, M., Rubiales, J.M., Bhagwat, S.A., Willis, K.J., 2008. Species persistence in northely glacial refugia of Europe: A García-Amorena, I., Jiménez-Moreno, G., Gil-Romera, G., Leroy, S., García-Martínez, matter of chance or biogeographical traits? J. Biogeogr. 35, 464–482. M.S., Montoya, E., Fletcher, W., Yll, E., Vieira, M., Rodríguez-Ariza, M.O., Anderson, 12 J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281

S., Peñalba, C., Gil-García, M.J., Pérez-Sanz, A., Albert, R.M., Díez, M.J., Morales, C., Díez-Garretas, B., Asensi, A., Rivas-Martínez, S., 2005. Las comunidades de Maytenus Gómez-Manzaneque, F., Parra, I., Ruiz-Zapata, B., Riera, S., Zapata, L., Ejarque, A., senegalensis subsp. europaea (Celastraceae) en la Península Ibérica. Lazaroa 26, Vegas, T., Rull, V., Scott, L., Andrade, A., Pérez-Díaz, S., Abel-Schaad, D., Moreno, E., 83–92. Hernández-Mateo, L., Ochando, J., Pérez Navarro, M.A., Sánchez Baena, J.J., Doerschner, N., Fitzsimmons, K.E., Blasco, R., Finlayson, G., Rodríguez-Vidal, J., Rosell, J., Riquelme, J.A., Iglesias, R., Franco, F., Chaín, C., Figueiral, I., Grau, E., Matos, M., Hublin, J.J., Finlayson, C., 2019. Chronology of the Late Pleistocene archaeological se- Jiménez-Espejo, F., Arribas, A., Garrido, G., Finlayson, G., Finlayson, C., Ruiz, M., quence at Vanguard Cave, Gibraltar: Insights from quartz single and multiple grain Pérez-Jordá, G., Miras, Y., 2013. Paleoflora Ibérica: Plioceno-Cuaternario. Ministerio luminescence dating. Quat. Int. 501-B, 289–302. de Economía y Competitividad, Madrid. 2 vols. Universidad de Murcia y Fundación Fa, D.A., Finlayson, J.C., Finlayson, G., Giles-Pacheco, F., Rodríguez-Vidal, J., Gutiérrez- Séneca ISBN 84-616-6797-2. López, J.M., 2016. Marine mollusc exploitation as evidenced by the Gorham's Cave Carrión, J.S., Fernández, S., González-Sampériz, P., López-Merino, L., Peña, L., Burjachs, F., (Gibraltar) excavations 1998-2005: The Middle Upper Palaeolithic transition. Quat. López-Sáez, J.A., García-Antón, M., Carrión-Marco, Y., Uzquiano, P., Postigo, J.M., Int. 407, 16–28. Barrón, E., Allué, E., Badal, E., Dupré, M., Fierro, E., Munuera, M., Rubiales, J.M., Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. 4th edn. John Wiley and Sons, García-Amorena, I., Jiménez-Moreno, G., Gil-Romera, G., Leroy, S., García-Martínez, Chichester. M.S., Montoya, E., Fletcher, W., Yll, E., Vieira, M., Rodríguez-Ariza, M.O., Anderson, Ferre, E., Cortés, M., Ramos, J., Senciales, J.M., Lozano-Francisco, M.C., Vera Peláez, J.L., S., Peñalba, C., Gil-García, M.J., Pérez-Sanz, A., Albert, R.M., Díez, M.J., Morales, C., Aguilera, R., Navarrete, I., 2004. El Cuaternario reciente en el sector oriental de la Gómez-Manzaneque, F., Parra, I., Ruiz-Zapata, B., Riera, S., Zapata, L., Ejarque, A., Bahía de Málaga. Rasas y depósitos marinos, continentales y arqueológicos. Vegas, T., Rull, V., Scott, L., Andrade, A., Pérez-Díaz, S., Abel-Schaad, D., Moreno, E., Cuaternario y Geomorfología 18, 73–93. Hernández-Mateo, L., Ochando, J., Pérez Navarro, M.A., Sánchez-Baena, J.J., Ferrer, J.E., Marqués, I., Cortés-Sánchez, M., Baldomero, A., Ramos, J., 2005. Excavaciones Riquelme, J.A., Iglesias, R., Franco, F., Chaín, C., Figueiral, I., Grau, E., Matos, M., en Cueva del Hoyo de la Mina (Málaga, Andalucía, España). Contrastación de una Jiménez-Espejo, F., Arribas, A., Garrido, G., Finlayson, G., Finlayson, C., Ruiz, M., secuencia arqueológica clásica para el estudio del Tardiglaciar-Holoceno antiguo en Pérez-Jordá, G., Miras, Y., 2015. Cinco millones de años de cambio florístico y vegetal el sur de la Península Ibérica. (dds.). In: En Sanchidrián, J.L., Márquez, A.M., Fullola, en la Península Ibérica e Islas Baleares. Ministerio de Economía y Competitividad, J.M. (Eds.), Reunión de la Cuenca mediterránea durante el Paleolítico superior Madrid https://play.google.com/store/books/details/JOS%C3%89_CARRI%C3%93N_ (38.000-10.000). IV Simposio de Prehistoria Cueva de Nerja y Reunión de la VIII coordinador_CINCO_MILLONES_DE_A%C3%91OS_DE?id=JEh1CQAAQBAJ. Comisión de la U.I.S.P.P., Fundación Cueva de Nerja. Málaga, pp. 316–325. Carrión, J.S., Ochando, J., Fernández, S., Munuera, M., Amorós, G., Blasco, R., Rosell, J., Fiacconi, M., Hunt, C., 2015. Pollen taphonomy at Shanidar Cave (Kurdish Iraq): An initial Finlayson, S., Giles, F., Jennings, R., Finlayson, G., Giles-Pacheco, F., Rodríguez-Vidal, evaluation. Rev. Palaeobot. Palynol. 223, 87–93. J., Finlayson, C., 2018. Last Neanderthals in the warmest refugium of Europe: palyno- Fiacconi, M., Hunt, C., 2017. Palynology of surface sediments from caves in the Zagros logical data from Vanguard Cave. Review of Palaeobotany and Palynology, Special Mountains (Kurdish Iraq): Patterns and processes. Rev. Palaeobot. Palynol. 239, Issue (Carrión, J. S., deMenocal, P., Scott, L., eds.): Human evolution and palaeofloras: 66–76. the contribution and potential of palaeobotany in the environmental reconstruction Finlayson, C., 2004. Neanderthals and Modern Humans. An Ecological and Evolutionary – of hominin-bearing sites. Rev. Palaeobot. Palynol. 259, 63 80. Perspective. Cambridge University Press, Cambridge. Carrión, J.S., Fernández, S., Jiménez, J., Munuera Giner, M., Ochando, J., Amorós, G., Ponce Finlayson, C., 2008. On the importance of coastal areas in the survival of Neanderthal pop- de León, M., Zollikofer, Ch., Martín-Lerma, I., Toro-Moyano, I., Hajdas, I., Walker, M.J., ulations during the Late Pleistocene. Quat. Sci. Rev. 27, 2246–2252. 2019a. The sequence at Carihuela Cave and its potential for research into Neanderthal Finlayson, C., Carrión, J.S., 2007. Rapid ecological turnover and its impact on Neanderthal – ecology and the Mousterian in southern Spain. Quat. Sci. Rev. 217, 194 216. and other human populations. Trends Ecol. Evol. 22, 213–222. Carrión, J.S., Lalueza, C., Stewart, J. (Eds.), 2019b. Neanderthals: Ecology and evolution. Finlayson, C., Giles-Pacheco, F., 1999. The southern Iberian Peninsula in the Late Pleisto- Quat. Sci. Rev. Spec. Issue. 217, 1–6. cene: Geographie, Ecology and Human occupation. In: Stringer, C.B., Barton, R.N.E., Carrión, J.S., Scott, L., deMenocal, P. (Eds.), 2019c. Paleofloras, paleovegetation and human Finlayson, J.C. (Eds.), Gibraltar and the Neanderthals 1848-1998, pp. 139–154 Oxford. evolution. Rev. Palaeobot. Palynol. Spec. Issue. 267, 32–38. Finlayson, C., Finlayson, G., Fa, D. (Eds.)., 2000. Gibraltar during the Quaternary. The Ceballos, L., 1958. Los abetos del Mundo. Rev. Montes 80, 1–12. southermost part of Europe in the last two million years Gibraltar. Coles, G.M., Gilbertson, D.D., 1994. The airfall-pollen budget of archaeologically important Finlayson, C., Giles, F., Rodríguez, J., Fa, D.A., Gutierrez, J.M., Santiago, A., Finlayson, G., caves: Creswell Crags, England. J. Archaeol. Sci. 21, 735–755. Allué, E., Baena, J., Cáceres, I., Carrión, J.S., Fernández, Y., Gleed, C.P., Jimenez, F.J., Cortés-Sánchez, M., 2000. Bajondillo Cave (Torremolinos, Málaga, Andalucía) and the López, P., López, J.A., Riquelme, J.A., Sánchez, A., Giles, F., Brown, K., Fuentes, N., Middle-Upper Palaeolithic transition in Southern Spain. In: Stringer, C.B., Barton, Valarino, C.A., Villalpando, A., Stringer, C.B., Martinez, F., Sakamoto, T., 2006. Late sur- R.N.E., Finlayson, J.C. (Eds.), Neanderthals on the Edge, pp. 123–132 Oxford. vival of Neanderthals at the southernmost extreme of Europe. Nature 443, 850–853. Cortés-Sánchez, M., 2006. El extremo occidente neandertal. El Paleolítico Medio en el sur Galán de Mera, A., Cortés, J.E., Sánchez-García, I., 2000. La vegetación del Peñón de Gibral- de la Península Ibérica. Reunión Científica-Mesa de Trabajo Neandertales Cantábricos. tar. Acta Bot. Malacitana 25, 107–130. Estado de la Cuestión. El Paleolítico Medio cantábrico: hacia una revisión actualizada Gálvez-Pacheco, A., 1975. Las covachas de la Cala del Moral. Actas XIII Congreso Nacional de su problemática. Museo de Altamira, Monografías 20, Santander, pp. 55–74. de Arqueología. Universidad de Zaragoza. Zaragoza, pp. 155–167. Cortés-Sánchez, M., Muñoz-Vivas, V.E., Sanchidrián-Torti, J.L., Simón-Vallejo, M.D., 1996. García López, J.M., Allué Camacho, C., 2005. Caracterización y potencialidades El Paleolítico en Andalucía. La dinámica de los grupos predadores de la Prehistoria fitoclimáticas de abetales (Abies alba Mill.) en la península ibérica. Ecología 19, 11–28. andaluza. Ensayo de síntesis. Repertorio bibliográfico de 225 años de investigación García-Martínez, M.S., 2009. Recursos forestales en un medio semiárido. Nuevos datos (1770-1995). Córdoba. antracológicos para la Región de Murcia desde la Edad del Bronce hasta época medi- Cortés-Sánchez, M., Ferrer-Palma, J.E., Marqués-Merelo, I., Baldomero-Navarro, A., Simón- eval. Dissertation. Universidad de Murcia, p. 678. Vallejo, M.D., 2004. Aportaciones cronoestratigráficas de Cueva Bajondillo al tránsito Gaussen, H., 1944-1968. Les Gymnospermes actuelles et fossiles. Faculté de Sciences, paleolítico medio-superior en el sur de la península ibérica. In: Santonja, M., Pérez- Toulouse. González, A., Machado, M.J. (Eds.), Geoarqueología y conservación del patrimonio, Gaussen, H., 1964. Les gymnospermes actuelles et fossiles. Travaux du Laboratoire pp. 20–26. Forestier de Toulouse 7, 321–480. Cortés-Sánchez, M., Baldomero Navarro, A., Ferrer Palma, J.F., Marqués Merelo, I., Simón Giménez Reyna, S., 1946. Memoria Arqueológica de la Provincia de Málaga hasta 1946. Vallejo, M.D., 2007. Cueva Bajondillo en el contexto de los estudios sobre el Informe y Memorias no 12, Madrid. Cuaternario reciente en el sur de la Península Ibérica. In: Cortés-Sánchez, M. (Ed.), Goeury, C., de Beaulieu, J.L., 1979. A propos de la concentration du pollen à l`aide de la Cueva Bajondillo (Torremolinos). Secuencia cronocultural y paleoambiental del liqueur de Thoulet dans le sédiments minéraux. Pollen Spores 21, 239–251. Cuaternario reciente en la Bahía de Málaga. Junta de Andalucía, Málaga, pp. 503–522. González-Ramón, A., Andreo, B., Ruiz-Bustos, A., Richards, D.A., López-Sáez, J.A., Alba- Cortés-Sánchez, M., Morales Muñiz, A., Simón Vallejo, M.D., Bergadà Zapata, M.M., Sánchez, F., 2012. Late Quaternary palaeoenvironmental record from a sedimentary Delgado Huertas, A., López García, P., López-Sáez, J.A., Lozano Francisco, M.C., fill in Cucú Cave, Almeria, SE Spain. Quat. Res. 77, 264–272. Riquelme Cantal, J.A., Roselló Izquierdo, E., Sánchez Marco, A., Vera-Peláez, J.L., González-Sampériz, P., Leroy, S., Carrión, J.S., García-Antón, M., Gil-García, M.J., Figueiral, I., 2008. Paleoenvironmental and cultural dynamics of the coast of Málaga (Andalusia, 2010. Steppes, savannahs and botanic gardens during the Pleistocene. Rev. Palaeobot. Spain) during the Upper Pleistocene and early Holocene. Quat. Sci. Rev. 27, Palynol. 162, 427–457. 2176–2193. Grimm, E.C., 1992. Tilia, version 2. Illinois State Museum, Research and Collection Center, Cortés-Sánchez, M., Morales Muñiz, A., Simón-Vallejo, M.D., Lozano-Francisco, M.C., Vera- Springfield, Springfield. IL 62703. Peláez, J.L., Finlayson, C., Rodríguez Vidal, J., Delgado Huertas, A., Jimenez-Espejo, F.J., Grimm, E.C., 2004. TGView. Illinois State Museum, Springfield. Martínez Ruiz, F., Martínez Aguirre, M.A., Pascual Granged, A., Bergadà Zapata, M.M., Hampe, A., Petit, R.J., 2005. Conserving biodiversity under climate change: The rear edge Gibaja Bao, J.F., Riquelme Cantal, J.A., López-Sáez, J.A., Rodrigo Gámiz, M., Sakai, S., matter. Ecol. Lett. 8, 461–467. Sugisaki, S., Finlayson, G., Fa, D.A., Bicho, N.F., 2011. Earliest known use of marine re- Hardy, K., Buckley, S., Collins, M.J., Estalrrich, A., Brothwell, D., Copeland, L., García- sources by Neanderthals. PLoS One 6, e24026. Tabernero, A., García-Vargas, S., de la Rasilla, M., Lalueza-Fox, C., Huguet, R., Bastir, Cortés-Sánchez, M., Jiménez-Espejo, F.J., Simón-Vallejo, M.D., Stringer, C., Lozano M., Santamaría, D., Madella, M., Wilson, J., Fernández Cortés, A., Rosas, A., 2012. Nean- Francisco, M.C., García-Alix, A., Vera Peláez, J.L., Odriozola, C.P., Riquelme-Cantal, derthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental J.A., Parrilla Giráldez, R., Maestro González, A., Ohkouchi, N., Morales-Muñiz, A., calculus. Naturwissenschaften 99, 617–626. 2019. An early Aurignacian arrival in southwestern Europe. Nat. Ecol. Evol. 3, Hunt, C.O., Fiacconi, M., 2018. Pollen taphonomy of cave sediments: What does the pollen 207–212. record in caves tell us about external environments and how do we assess its reliabil- Davis, O.K., 1990. Caves as sources of biotic remains in arid western North America. ity? Quat. Int. 485, 68–75. Palaeogeogr. Palaeoclimatol. Palaeoecol. 76, 331–348. Jansson, R., 2003. Global patterns in endemism explained by past climatic changes. Proc. Delpech, F., Grayson, D.K., 2007. Chasse et subsistance aux temps de Neandertal. In: R. Soc. B Biol. Sci. 270, 583–590. Vandermeersch, B. (Ed.), Les Néandertaliens. Biologie et cultures. Éditions du CTHS, Jennings, R., Finlayson, C., Fa, D., Finlayson, G., 2011. Southern Iberia as a refuge for the last Paris, pp. 181–198. Neanderthal populations. J. Biogeogr. 38, 1873–1885. J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281 13

Lebreton, V., Renault-Miskovsky, J., Carrión, J.S., Dupré, M., 2003. Estudio palinológico del record of Aesculus L. (Hippocastanaceae) in Spain. Vegetat. Hist. Archaeobot. 17, sedimento de la Cueva del Boquete de Zafarraya. Coord. In: Barroso, C. (Ed.), El 351–364. Pleistoceno Superior de la Cueva de El Boquete de Zafarraya. Junta de Andalucía, Se- Postigo-Mijarra, J.M., Morla, C., Barrón, E., Morales-Molino, C., García, S., 2010. Patterns of villa, pp. 149–160. extinction and persistence of Arctotertiary flora in Iberia during the Quaternary. Rev. Lechterbeck, J., Jensen, C.E., 2020. Exploring the potential of palynology in archaeological Palaeobot. Palynol. 162, 416–426. contexts: Proceedings of the session held at the 24th Annual Meeting of the European Quézel, P., 1978. Analysis of the flora of Mediterranean and Saharan Africa. Ann. Missour. Association of Archaeologists in Barcelona 2018. Vegetat. Hist. Archaeobot. https:// Bot. Garden 65, 479–534. doi.org/10.1007/s00334-020-00773-3. Quézel, P., 1983. Flore et végétation actuelles de l’Afrique du nord, leur signification en Lendínez, M.L., 2010. Estudio florístico y fitocenótico de la vegetación halófila andaluza: fonction de l’origine, de l’évolution et des migrations des flores et structures de vég- bases para su gestión y conservación. Dissertation. Universidad de Jaén. étation passées. Bothalia 14, 411–416. Lendínez, M.L., Marchal, F.M., Salazar, C., 2012. Una nueva asociación de vegetación Quézel, P., 1985. Definition of the Mediterranean region and the origin of its flora. In: halófila en el sureste de la península ibérica (España): Limonio Majoris- Gómez Campo, C. (Ed.), Plant conservation in the Mediterranean area. Dr W. Junk Sarcocornietum fruticosae. Lagascalia 32, 229–236. Publishers, Dordrecht, pp. 9–24. Leroy, S.A.G., Arpe, K., 2007. Glacial refugia for summer-green trees in Europe and S-W Ramos Fernández, J., Douka, K., Pike, A.W.G., Thomas, L., van Calsteren, P., Zilhão, J., 2012. Asia as proposed by ECHAM3 time-slice atmospheric model simulations. Dating of the Middle to Upper Paleolithic transition at the Abrigo 3 del Humo (Má- J. Biogeogr. 34, 2115–2128. laga, Spain). Mainake 33, 275–284. Linares, J.C., 2011. Biogeography and evolution of Abies (Pinaceae) in the Mediterranean Ramos-Fernández, J., Aguilera, R., Cortés-Sánchez, M., Bañares, M.M., 2005. El parque basin: The roles of long-term climatic change and glacial refugia. J. Biogeogr. 38, arqueológico de La Araña. Una vía para el estudio, la conservación y la puesta en 619–630. valor de yacimientos paleolíticos. In: Santonja, M., Pérez-González, A., Machado, M. López-Sáez, J.A., López-García, P., 1999. Rasgos paleoambientales de la transición (Eds.), Geoarqueología y patrimonio en la Península Ibérica y el entorno Tardiglaciar-Holoceno (16-7.5 Ka BP) en el Mediterráneo ibérico, de Levante a mediterráneo, Almazán (Soria), pp. 625–638. Andalucía. In: Fumanal, M.P. (Ed.), Geoarqueologia i Quaternari litoral. Memorial, Reille, M., 1992. Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Departament de Geografía, Universitat de València, València, pp. 139–152. Historique et Palynologie, Marseille. López-Sáez, J.A., van Geel, B., Farbos-Texier, S., Diot, M.F., 1998. Remarques Reille, M., 1995. Pollen et Spores d’Europe et d’Afrique du Nord. Supplement 1. Marseille, paléoécologiques à propos de quelques palynomorphes non-polliniques provenant Laboratoire de Botanique Historique et Palynologie. de sédiments quaternaires en France. Rev. Paléobiol. 17, 445–459. Renault-Miskovsky, J., Girard, M., Trouin, M., 1976. Observations de quelques López-Sáez, J.A., van Geel, B., Martín Sánchez, M., 2000. Aplicación de los microfósiles no d’Oléacées au microscope électronique à balayage. Bull. Assoc. française pour l’Étude polínicos en Palinología Arqueológica. In: Oliveira Jorge, V. (Ed.), Contributos das Quat. 2, 71–86. Ciências e das Technologias para a Arqueologia da Península Ibérica. Adecap, Oporto, Ritchie, J.C., 1995. Tansley Review no. 83. Current trends in studies of long-term plant pp. 11–20. community dynamics. New Phytol. 130, 469–494. López-Sáez, J.A., López García, P., Burjachs, F., 2003. Arqueopalinología: Síntesis crítica. Rivas-Martínez, S., 1987. Memoria del Mapa de Series de Vegetación de España. ICONA, Polen 12, 5–35. Serie Tecnica, Madrid. López-Sáez, J.A., López García, P., Cortés Sánchez, M., 2007. Paleovegetación del Rivas-Martínez, S., Asensi, A., Díez Garretas, B., Molero, J., 1997. Biogeographical synthesis Cuaternario reciente: Estudio arqueopalinológico. In: Cortés Sánchez, M. (Ed.), of Andalusia (southern Spain). J. Biogeogr. 24, 915–928. Cueva Bajondillo (Torremolinos). Secuencia cronocultural y paleoambiental del Rivas-Martínez, S., Días, T.E., Fernández González, F., Izco, J., Loidi, J., Penas, A., 2002. Vas- Cuaternario reciente en la Bahía de Málaga. Junta de Andalucía, Málaga, pp. 139–156. cular plant communities of Spain and Portugal. Itinera Geobot. 15, 5–432. López-Sáez, J.A., Sánchez-Mata, D., Alba-Sánchez, F., Abel-Schaad, D., Gavilán, R.G., Pérez- Rosas, A., 2016. La evolución del género `Homo´. Los Libros de la Catarata-CSIC, Madrid. Díaz, S., 2013. Discrimination of Scots pine forests in the Iberian Central System (Pinus Saarma, U., Ho, S.Y.W., Pybus, O.G., Kaljuste, M., Tumanov, I.L., Kojola, I., Vorobiev, A.A., sylvestris var. iberica) by means of pollen analysis. Phytosociological considerations. Markov, N.I., Saveljev, A.P., Valdmann, H., Lyapunova, E.A., Abramov, A.V., Männil, Lazaroa 34, 191–208. P., Korsten, M., Vulla, E., Pazetnov, S.V., Pazetnov, V.S., Putchkovskiy, S.V., Roko, Magri, D., Di Rita, F., Aranbarri, J., Fletcher, W., González-Sampériz, P., 2017. Quaternary A.M., 2007. Mitogenetic structure of brown bears (Ursus arctos L.) in northeastern disappearance of tree taxa from Southern Europe: Timing and trends. Quat. Sci. Europe and a new time frame for the formation of European brown bear lineages. Rev. 163, 23–55. Mol. Ecol. 16, 401–413. Manzano, S., Carrión, J.S., López-Merino, L., González-Sampériz, P., Munuera, M., Salazar, C., Marchal, F.M., Lendínez, M.L., 2014. Análisis fitogeográfico de la vegetación Fernández, S., Martín-Lerma, I., Gómez Ferreras, M.C., 2017. Mountain strongholds halófila en Andalucia (S. España). In: Alonso Vargas, M.A., Guezlaoui, B.-E., Gallardo, for woody angiosperms during the Late Pleistocene in SE Iberia. Catena 149, 701–712. A.J. (Eds.), Ecología de halófitos en hábitats mediterráneos. Universidad de Alicante, Mariscal, B., 1992. Las turberas españolas: un patrimonio a recuperar. Quercus 71, 31–32. Alicante, pp. 187–213. Mendoza-Fernández, A.J., Marínez-Hernández, F., Pérez-García, F.J., Garrido-Becerra, J.A., Salazar-García, D.C., Power, R.C., Sanchis Serra, A., Villaverde, V., Walker, M.J., Henry, A.G., Benito, B.M., Salmerón-Sánchez, E., Guirado, J., Merlo, M.E., Mota, J.F., 2015. Extreme 2013. Neanderthal diets in central and southeastern Mediterranean Iberia. Quat. Int. habitat loss in a Mediterranean habitat: Maytenus senegalensis subsp. europaea. 318, 3–18. PlantBiosyst.149,503–511. Sánchez Montes, J., 1947. La exploración de la Cueva del Montijano. II Congreso de Monclova Bohórquez, A., Barroso Ruíz, C., Caparrós, M., Moigne, A.M., 2012. Una Arqueología del S.E. español, Albacete, 1946. Cartagena. aproximación a la comprensión de la fauna de macromamíferos de la cueva de Sánchez-Goñi, M.F., 1993. De la taphonomie pollinique à la reconstitution de Zafarraya (Alcaucín, Málaga). Menga, Rev. Prehist. Andalucía 3, 83–105. l`environnement. L`exemple de la región cantabrique. BAR International Series 586, Montoya, J.M., 1981. Áreas potenciales y óptimas de Quercus suber L. en España. Oxford, p. 207. Comunicaciones INIA, Serie de Recursos Naturales 11 Madrid. Sánchez-Goñi, M.F., 1994. L’environnement de l’homme préhistorique dans la région Montoya, J.M., 1987. Los Alcornocales. SEA-MAPA, Madrid. cantabrique d’après la taphonomie pollinique des grottes. L’Anthropologie 98, Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen analysis. 2nd edition. Blackwell 379–417. Scientific Publications, London. Sánchez-Goñi, M.F., Loutre, M.F., Crucifix, M., Peyron, O., Santos, L., Duprat, J., Malaizé, B., Navarro, C., Carrión, J.S., Navarro, J., Munuera, M., Prieto, A.R., 2000. An experimental Turon, J.L., Peypouquet, J.P., 2005. Increasing vegetation and climate gradient in West- approach to the palynology of cave deposits. J. Quat. Sci. 15, 603–619. ern Europeo over the Last Glacial Inception (122–110 ka): Data-model comparison. Navarro, C., Carrión, J.S., Munuera, M., Prieto, A.R., 2001. Cave surface pollen and the Earth Planet. Sci. Lett. 231, 111–130. palynological potential of karstic cave sediments in palaeoecology. Rev. Palaeobot. Scott, L., Fernandez-Jalvo, Y., Carrión, J.S., Brink, J.S., 2003. Preservation and interpretation Palynol. 117, 245–265. of pollen in hyena corprolites: taphonomical observations from Spain and Southern Ochando, J., Carrión, J.S., Blasco, R., Fernández, S., Amorós, G., Munuera, M., Sañudo, P., Africa. Palaeontol. Afr. 39, 83–91. Fernández Peris, J., 2019. Silvicolous Neanderthals in the Far West: The Mid- Scott, L., van Aardt, A.C., Brink, J.S., Toffolo, M.B., Ochando, J., Carrión, J.S., 2019. Palynology Pleistocene palaeoecological sequence of Bolomor Cave (Valencia, Spain). Quat. Sci. of the Florisbad spring mound and hominin and Middle Stone Age grassland environ- Rev. 217, 247–267. ments, South Africa. Rev. Palaeobot. Palynol. 265, 13–26. Ortega Ruiz, A., Ramos Fernández, J., 2015. A preview of the study about the rock art of Sepulchre, P., Ramstein, G., Kageyama, M., Vanhaeren, M., Krinner, G., Sánchez-Goñi, M.F., Cueva del Humo, La Araña (Málaga). Rev. Atlánt. Mediterr. 17, 41–51. d’Errico, F., 2007. H4 abrupt event and late Neanderthal presence in Iberia. Earth Patou-Mathis, M., 2011. Néandertal un grand chasseur. Les Dossiers d’Archéologie 345, Planet. Sci. Lett. 258, 283–292. 58–61. Stewart, J.R., García-Rodríguez, O., Knul, M.V., Sewell, L., Montgomery, H., Thomas, M.G., Pérez Latorre, A., Gavira, O., Cabezudo, B., 2006. Notas sobre la vegetación de Andalucía. Diekmann, Y., 2019. Palaeoecological and genetic evidence for Neanderthal power lo- VII. Acta Bot. Malacitana 31, 177–180. comotion as an adaptation to a Woodland environment. Quat. Sci. Rev. 217, 310–315. Pérez Latorre, A., Caballero, G., Casimiro-Soriguer Solanas, F., Gavira, O., Cabezudo, B., Stringer, C., Finlayson, C., Barton, R.N.E., Fernández-Jalvo, Y., Cáceres, I., Sabin, R.C., Rhodes, 2008. Vegetación del Sector Malacitano-Axarquiense (Comarca de la Axarquía, E.J., Currant, A.P., Rodríguez-Vidal, J., Giles-Pacheco, F., Riquelme-Cantal, J.A., 2008. Montes de Málaga y Corredor de Colmenar). Málaga (España). Acta Bot. Malacitana Neanderthal exploitation of marine mammals in Gibraltar. Proc. Natl Acad. Sci. 105, 33, 215–270. 14319–14324. Perveen, A., Qaiser, M., 2008. Pollen flora of Pakistan-LVIII. Celastraceae. Pak. J. Bot. 40, Such, M., 1920. Avance al estudio de la caverna Hoyo de la Mina. Boletín de la Sociedad 957–962. Malagueña de Ciencias, Málaga, pp. 1919–1920. Petit, R.J., Aguinagalde, I., de Beaulieu, J.L., Bittkau, C., Brewer, S., Cheddadi, R., Ennos, R., Svenning, J.C., Skov, F., 2007. Ice age legacies in the geographical distribution of tree spe- Fineschi, S., Grivet, D., Lascoux, M., Mohanty, A., Müller-Starck, G., Demesure- cies richness in Europe. Global Ecol. Biogeogr. 16, 234–245. Musch, B., Palmé, A., Martín, J.P., Rendell, S., Vendramin, G.G., 2003. Glacial refugia: Taberlet, P., Fumagalli, L., Wust-Saucy, A.G., Cosson, J.F., 1998. Comparative Hotspots but not melting pots of genetic diversity. Science 300, 1563–1565. phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464. Postigo-Mijarra, J.M., Gómez-Manzaneque, F., Morla, C., 2008. Survival and long-term Ubera, J.L., Galán, C., Guerrero, F.H., 1988. Palynological study of the genus Plantago in the maintenance of tertiary trees in the Iberian Peninsula during the Pleistocene: First Iberian Peninsula. Grana 27, 1–15. 14 J. Ochando et al. / Review of Palaeobotany and Palynology 281 (2020) 104281

Valdés, B., Díez, M.J., Fernández, I., 1987. Atlas polínico de Andalucía Occidental. Instituto Walker, M.J., Gibert, J., Sánchez, F., Lombardi, A.V., Serrano, I., Gómez, A., Eastham, A., de Desarrollo Regional n° 43, Universidad de Sevilla, Excma. Sevilla, Diputación de Ribot, F., Arribas, A., Cuenca, A., Albadalejo, S., Andreu, J.A., 1999. Excavations at Cádiz. new sites of early man in Murcia: Sima de las Palomas del Cabezo Gordo and Val-Peón, C., Expósito, I., Soto, M., Burjachs, F., 2019. A taphonomic approach to the pollen Cueva Negra del Estrecho del Río Quípar de la Encarnación. Human Evol. 14, 99–123. assemblage from layer M of the Abric Romaní archaeological site (NE Iberian Penin- Walker, M.J., Gibert, J., López, M.V., Lombardi, A.V., Pérez-Pérez, A., Zapata, J., Ortega, J., sula). Rev. Palaeobot. Palynol. 270, 19–39. Higham, T., Pike, A., Schwenninger, J.-L., Zilhão, J., Trinkaus, E., 2008. Late Neandertals van Geel, B., 1986. Application of fungal and algal remains and other microfossils in pal- in Southeastern Spain: Sima de las Palomas del Cabezo Gordo, Murcia, Spain. Proc. ynological analyses. In: Berglund, B.E. (Ed.), Handbook of Holocene Palaeoecology Natl. Acad. Sci. USA 105, 20631–20636. and Palaeohydrology. Wiley, Chichester, pp. 497–505. Walker, M.J., López Martínez, M.V., Ortega Rodrígañez, J., Haber Uriarte, M., López van Geel, B., 2001. Non-pollen palynomorphs. In: Smol, J.P., Smol, J.P., Birks, H.J.B., Last, Jiménez, A., Avilés Fernández, A., Polo Camacho, J.L., Campillo Boj, M., García Torres, W.M. (Eds.), Tracking environmental change using lake sediments. Terrestrial, J., Carrión García, J.S., San Nicolas del Toro, M., Rodríguez Estrella, T., 2012. The exca- Algal, and Siliceous Indicators 3. Kluwer Academic Publishers, Dordrecht, pp. 99–119. vation of the buried articulated Neanderthal skeletons at Sima de las Palomas van Geel, B., Klink, A.G., Pals, J.P., Wiegers, J., 1986. An upper Eemian lake deposit from (Murcia, SE Spain). Quat. Int. 259, 7–21. Twente, eastern Netherlands. Rev. Palaeobot. Palynol. 46, 31–61. Willis, K.J., Whittaker, R.J., 2000. The refugial debate. Science 287, 1406–1407. van Geel, B., Coope, G.R., Van der Hammen, T., 1989. Palaeoe- cology and stratigraphy of Wright, H.E., Patten, H.J., 1963. The pollen sum. Pollen spores 5, 445–450. the Lateglacial type section at Usselo (The Netherlands). Rev. Palaeobot. Palynol. 60, Yll, R., Carrión, J.S., 2003. Refugios glaciares de vegetación mediterránea y su relación con 25–129. la ocupación humana en el Ibérico. Polen 13, 19–30. Walker, M.J., 2001. Excavations at Cueva Negra del Estrecho del Río Quípar and Sima de Zilhão, J., Ajas, A., Badal, E., Burow, C., Kehl, M., López-Sáez, J.A., Pimenta, C., Preece, R.C., las Palomas del Cabezo Gordo: two sites in Murcia (south-east Spain) with Neander- Sanchis, A., Sanz, M., Weniger, G.-C., White, D., Wood, R., Angelucci, D.E., Villaverde, thal skeletal remains, Mousterian palaeolithic assemblages and late Middle to early V., Zapata, J., 2016. Cueva Antón: a multi-proxy MIS 3 to MIS 5a palaeoenvironmental Upper Pleistocene fauna. In: Milliken, S., Cook, J. (Eds.), A very remote period indeed. record for SE Iberia. Quat. Sci. Rev. 146, 251–273. Papers on the palaeolithic presented to Derek Roe. Oxbow Books, Oxford, pp. 153–159.