And Adélie Penguin (Pygoscelis Adeliae) on the Antarctic Peninsula
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Postspreading Rifting in the Adare Basin, Antarctica: Regional Tectonic Consequences
Article Volume 11, Number 8 4 August 2010 Q08005, doi:10.1029/2010GC003105 ISSN: 1525‐2027 Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences R. Granot Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA Now at Institut de Physique du Globe de Paris, 4 Place Jussieu, F‐75005 Paris, France ([email protected]) S. C. Cande Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA J. M. Stock Seismological Laboratory, California Institute of Technology, 1200 East California Boulevard, 252‐21, Pasadena, California 91125, USA F. J. Davey Institute of Geological and Nuclear Sciences, PO Box 30368, Lower Hutt, New Zealand R. W. Clayton Seismological Laboratory, California Institute of Technology, 1200 East California Boulevard, 252‐21, Pasadena, California 91125, USA [1] Extension during the middle Cenozoic (43–26 Ma) in the north end of the West Antarctic rift system (WARS) is well constrained by seafloor magnetic anomalies formed at the extinct Adare spreading axis. Kinematic solutions for this time interval suggest a southward decrease in relative motion between East and West Antarctica. Here we present multichannel seismic reflection and seafloor mapping data acquired within and near the Adare Basin on a recent geophysical cruise. We have traced the ANTOSTRAT seismic stratigraphic framework from the northwest Ross Sea into the Adare Basin, verified and tied to DSDP drill sites 273 and 274. Our results reveal three distinct periods of tectonic activity. An early localized deforma- tional event took place close to the cessation of seafloor spreading in the Adare Basin (∼24 Ma). -
Southernmost Record of the Magellanic Penguin Spheniscus Magellanicus in Antarctica
Barbosa et al.: Southernmost record of the Magellanic Penguin in Antarctica 79 SOUTHERNMOST RECORD OF THE MAGELLANIC PENGUIN SPHENISCUS MAGELLANICUS IN ANTARCTICA ANDRÉS BARBOSA1, LUIS M. ORTEGA-MORA2, FRANCISCO T. GARCÍA-MORENO3, FRANCISCO VALERA1 & MARIA JOSÉ PALACIOS1 1Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC C/General Segura, 1, E-04001, Almería, Spain ([email protected]) 2Grupo SALUVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, E-28040, Madrid, Spain 3Jefatura de Apoyo Veterinario, Inspección General de Sanidad de la Defensa, Clínicas Especiales, planta 5, Glorieta del Ejército s/n, E-28047, Madrid, Spain Received 15 June 2006, accepted 4 November 2006 The Magellanic Penguin Spheniscus magellanicus breeds along We photographed a single Magellanic Penguin on Avian Island the southern South American coast from Cape Horn to central (67°46′S, 68°43′W), Marguerite Bay, Antarctic Peninsula on Chile on the Pacific coast and to central Argentina on the Atlantic 18 February 2006 in the presence of Adélie Penguins Pygoscelis coast. It also breeds in the Falkland Islands at 54°S (del Hoyo et al. adeliae. The bird was completing its moult into adult plumage and 1992, Williams 1995). During winter, the non-breeding distribution appeared to be healthy (Fig. 1). From the pale brown appearance extends northwards as far as 30°S on the Pacific Chilean coast and of the few old feathers still attached to the bird, it is likely, but to southern Brazil (23°S) on the Atlantic (del Hoyo et al. 1992). not completely certain, that it was in juvenile plumage when it There are vagrant non-breeding records from Australia and New commenced its moult. -
African Penguin Colony
An Innovative and Inspiring Space for a Growing African Penguin Colony enguins are among the most iconic and beloved avian groups, and the PCincinnati Zoo & Botanical Garden is embarking on an opportunity to further their engagement in care and conservation of African Penguins. This species in particular is endangered in their native range and requires the collective focus of zoos, aquariums, and other conservation organizations to ensure its survival into the future. The Cincinnati Zoo is seeking to construct a new habitat space for African Penguins that will allow for our colony to grow from 11 birds to 30+, which will contribute immensely to ex-situ conservation efforts, not to mention inspiring our visitors to care more about the species’ plight. A brand new habitat offers the opportunity to dream and innovate and truly bring the best experience to its animal residents. The new African Penguin habitat at the Cincinnati Zoo will be three times larger than the current space and offer a variety of new habitat feature to maximize their welfare, including: a dynamic pool area to encourage natural swimming behavior and exercise, natural substrates to dig into and to promote improved foot health, outdoor heating and cooling so that penguins can stay outside longer in the year, and a dramatically larger indoor bedroom area with a pool and UV-transmitting skylights to ensure health and comfort during our Cincinnati winter. African Penguin reproduction will be a key goal of this new habitat, and the new habitat and bedroom area will offer the opportunity to expand our nesting sites and maximize successful rearing of chicks. -
Ice Shelf Advance and Retreat Rates Along the Coast of Queen Maud Land, Antarctica K
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. C4, PAGES 7097–7106, APRIL 15, 2001 Ice shelf advance and retreat rates along the coast of Queen Maud Land, Antarctica K. T. Kim,1 K. C. Jezek,2 and H. G. Sohn3 Byrd Polar Research Center, The Ohio State University, Columbus, Ohio Abstract. We mapped ice shelf margins along the Queen Maud Land coast, Antarctica, in a study of ice shelf margin variability over time. Our objective was to determine the behavior of ice shelves at similar latitudes but different longitudes relative to ice shelves that are dramatically retreating along the Antarctic Peninsula, possibly in response to changing global climate. We measured coastline positions from 1963 satellite reconnaissance photography and 1997 RADARSAT synthetic aperture radar image data for comparison with coastlines inferred by other researchers who used Landsat data from the mid-1970s. We show that these ice shelves lost ϳ6.8% of their total area between 1963 and 1997. Most of the areal reduction occurred between 1963 and the mid-1970s. Since then, ice margin positions have stabilized or even readvanced. We conclude that these ice shelves are in a near-equilibrium state with the coastal environment. 1. Introduction summer 0Њ isotherm [Tolstikov, 1966, p. 76; King and Turner, 1997, p. 141]. Following Mercer’s hypothesis, we might expect Ice shelves are vast slabs of glacier ice floating on the coastal these ice shelves to be relatively stable at the present time. ocean surrounding Antarctica. They are a continuation of the Following the approach of other investigators [Rott et al., ice sheet and form, in part, as glacier ice flowing from the 1996; Ferrigno et al., 1998; Skvarca et al., 1999], we compare the interior ice sheet spreads across the ocean surface and away position of ice shelf margins and grounding lines derived from from the coast. -
Antarctic Peninsula
Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno. -
Chinstrap Penguin Declines
Author's personal copy Polar Biol DOI 10.1007/s00300-012-1230-3 ORIGINAL PAPER First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins Ron Naveen • Heather J. Lynch • Steven Forrest • Thomas Mueller • Michael Polito Received: 18 April 2012 / Revised: 25 July 2012 / Accepted: 31 July 2012 Ó Springer-Verlag 2012 Abstract Deception Island (62°570S, 60°380W) is one of 1986/1987. A comparative analysis of high-resolution satel- the most frequently visited locations in Antarctica, prompt- lite imagery for the 2002/2003 and the 2009/2010 seasons ing speculation that tourism may have a negative impact suggests a 39 % (95th percentile CI = 6–71 %) decline on the island’s breeding chinstrap penguins (Pygoscelis (from 85,473 ± 23,352 to 52,372 ± 14,309 breeding pairs) antarctica). Discussions regarding appropriate management over that 7-year period and provides independent confirma- of Deception Island and its largest penguin colony at Baily tion of population decline in the abundance of breeding Head have thus far operated in the absence of concrete chinstrap penguins at Baily Head. The decline in chinstrap information regarding the current size of the penguin popu- penguins at Baily Head is consistent with declines in this lation at Deception Island or long-term changes in abun- species throughout the region, including sites that receive dance. In the first ever field census of individual penguin little or no tourism; as a consequence of regional environ- nests at Deception Island (December 2–14, 2011), we find mental changes that currently represent the dominant influ- 79,849 breeding pairs of chinstrap penguins, including ence on penguin dynamics, we cannot ascribe any direct link 50,408 breeding pairs at Baily Head and 19,177 breeding between chinstrap declines and tourism from this study. -
Colour Aberrations in African Penguins 19 COLOUR ABERRATIONS in AFRICAN PENGUINS SPHENISCUS DEMERSUS
Traisnel et al.: Colour aberrations in African Penguins 19 COLOUR ABERRATIONS IN AFRICAN PENGUINS SPHENISCUS DEMERSUS GWENDOLINE TRAISNEL1, LORIEN PICHEGRU1, HENVIK J. VISSER2 & LLOYD C. EDWARDS3 1 DST-NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Institute for Coastal and Marine Research and Department of Zoology at the Nelson Mandela University, Port Elizabeth, South Africa ([email protected]) 2 Addo Elephant Marine Section, South African National Parks, Port Elizabeth, South Africa 3 Raggy Charters, Port Elizabeth, South Africa Received 31 July 2017, accepted 3 October 2017 ABSTRACT TRAISNEL, G., PICHEGRU, L., VISSER, H.J. & EDWARDS, L.C. 2018. Colour aberrations in African Penguins Spheniscus demersus. Marine Ornithology 46: 19–22. Colour aberrations among wild birds are of long-time interest because they are uncommon, particularly in seabirds, although recent publications have revealed varying forms of aberrations in cormorants and penguins. In African Penguins Spheniscus demersus, there have been previous sightings of abnormal plumages, particularly in Algoa Bay, South Africa. This paper reveals new cases of plumage aberrations in African Penguins: leucism, “brown,” and phaeomelanism, all within Algoa Bay. While all aberrations seemed of natural origin, one in the shape of a number eight may have resulted from human actions. Key words: African Penguin, abnormal plumages, Algoa Bay, leucism, phaeomelanism, “brown” INTRODUCTION but also an effort on the part of the scientific community to report these rare observations. For example, albinism has been recently Production of melanin pigments eumelanin and phaeomelanin recorded in shags and cormorants (Cook et al. 2012, Crossland can be subject to alterations, both of heritable and non-heritable 2012), as has isabel (incorrect term, as the mutation involved was origin, resulting in abnormalities in plumage colour (van Grouw “brown”) (Oosthuizen & De Bruyn, 2009) and ino (Juàres et al. -
Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole. -
Antarctic Primer
Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state. -
Advisory Committee on Reactor Safeguards (ACRS)
Federal Register / Vol. 77, No. 95 / Wednesday, May 16, 2012 / Notices 28903 FOR FURTHER INFORMATION CONTACT: Dates Detailed meeting agendas and meeting Polly A. Penhale at the above address or October 1, 2012 to December 30, 2012. transcripts are available on the NRC (703) 292–7420. Web site at http://www.nrc.gov/reading- Nadene G. Kennedy, rm/doc-collections/acrs. Information SUPPLEMENTARY INFORMATION: The Permit Officer, Office of Polar Programs. regarding topics to be discussed, National Science Foundation, as [FR Doc. 2012–11840 Filed 5–15–12; 8:45 am] changes to the agenda, whether the directed by the Antarctic Conservation BILLING CODE 7555–01–P meeting has been canceled or Act of 1978 (Pub. L. 95–541), as rescheduled, and the time allotted to amended by the Antarctic Science, present oral statements can be obtained Tourism and Conservation Act of 1996, from the Web site cited above or by has developed regulations for the NUCLEAR REGULATORY contacting the identified DFO. establishment of a permit system for COMMISSION Moreover, in view of the possibility that various activities in Antarctica and the schedule for ACRS meetings may be designation of certain animals and Advisory Committee on Reactor adjusted by the Chairman as necessary certain geographic areas requiring Safeguards (ACRS) Meeting of the to facilitate the conduct of the meeting, special protection. The regulations ACRS Subcommittee on Fukushima; persons planning to attend should check establish such a permit system to Notice of Meeting with these references if such designate Antarctic Specially Protected The ACRS Subcommittee on rescheduling would result in a major Areas. -
A Global Population Assessment of the Chinstrap Penguin (Pygoscelis
www.nature.com/scientificreports OPEN A global population assessment of the Chinstrap penguin (Pygoscelis antarctica) Noah Strycker1*, Michael Wethington2, Alex Borowicz2, Steve Forrest2, Chandi Witharana3, Tom Hart4 & Heather J. Lynch2,5 Using satellite imagery, drone imagery, and ground counts, we have assembled the frst comprehensive global population assessment of Chinstrap penguins (Pygoscelis antarctica) at 3.42 (95th-percentile CI: [2.98, 4.00]) million breeding pairs across 375 extant colonies. Twenty-three previously known Chinstrap penguin colonies are found to be absent or extirpated. We identify fve new colonies, and 21 additional colonies previously unreported and likely missed by previous surveys. Limited or imprecise historical data prohibit our assessment of population change at 35% of all Chinstrap penguin colonies. Of colonies for which a comparison can be made to historical counts in the 1980s, 45% have probably or certainly declined and 18% have probably or certainly increased. Several large colonies in the South Sandwich Islands, where conditions apparently remain favorable for Chinstrap penguins, cannot be assessed against a historical benchmark. Our population assessment provides a detailed baseline for quantifying future changes in Chinstrap penguin abundance, sheds new light on the environmental drivers of Chinstrap penguin population dynamics in Antarctica, and contributes to ongoing monitoring and conservation eforts at a time of climate change and concerns over declining krill abundance in the Southern Ocean. Chinstrap penguins (Pygoscelis antarctica) are abundant in Antarctica, with past estimates ranging from 3–8 million breeding pairs, and are considered a species of “least concern” by BirdLife International1, but the popula- tion dynamics of this species are not well understood and several studies have highlighted signifcant declines at monitored sites2–6. -
Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes Antipodes)
viruses Article Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes antipodes) Subir Sarker 1,* , Ajani Athukorala 1, Timothy R. Bowden 2,† and David B. Boyle 2 1 Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; [email protected] 2 CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia; [email protected] (T.R.B.); [email protected] (D.B.B.) * Correspondence: [email protected]; Tel.: +61-3-9479-2317; Fax: +61-3-9479-1222 † Present address: CSIRO Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia. Abstract: Emerging viral diseases have become a significant concern due to their potential con- sequences for animal and environmental health. Over the past few decades, it has become clear that viruses emerging in wildlife may pose a major threat to vulnerable or endangered species. Diphtheritic stomatitis, likely to be caused by an avipoxvirus, has been recognised as a signifi- cant cause of mortality for the endangered yellow-eyed penguin (Megadyptes antipodes) in New Zealand. However, the avipoxvirus that infects yellow-eyed penguins has remained uncharacterised. Here, we report the complete genome of a novel avipoxvirus, penguinpox virus 2 (PEPV2), which was derived from a virus isolate obtained from a skin lesion of a yellow-eyed penguin. The PEPV2 genome is 349.8 kbp in length and contains 327 predicted genes; five of these genes were found to be unique, while a further two genes were absent compared to shearwaterpox virus 2 (SWPV2).