Moment Matrices, Trace Matrices and the Radical of Ideals y z Itnuit Janovitz-Freireich, Bernard Mourrain Lajos Rónyai ∗ Ágnes Szántó GALAAD MTA SZTAKI INRIA, 1111 Budapest, North Carolina State University Sophia Antipolis, L´agym´anyosi u. 11 Campus Box 8205 France Hungary Raleigh, NC, 27695
[email protected] [email protected] USA fijanovi2,
[email protected] ABSTRACT 1. INTRODUCTION Let f1; : : : ; fs 2 K[x1; : : : ; xm] be a system of polynomials This paper is a continuation of our previous investigation generating a zero-dimensional ideal I, where K is an arbi- in [22, 23] to compute the approximate radical of a zero trary algebraically closed field. Assume that the factor alge- dimensional ideal which has zero clusters. The computation bra A = K[x1; : : : ; xm]=I is Gorenstein and that we have a of the radical of a zero dimensional ideal is a very important bound δ > 0 such that a basis for A can be computed from problem in computer algebra since a lot of the algorithms multiples of f1; : : : ; fs of degrees at most δ. We propose a for solving polynomial systems with finitely many solutions method using Sylvester or Macaulay type resultant matrices need to start with a radical ideal. This is also the case of f1; : : : ; fs and J, where J is a polynomial of degree δ gen- in many numerical approaches, where Newton-like methods eralizing the Jacobian, to compute moment matrices, and in are used. From a symbolic-numeric perspective, when we particular matrices of traces for A. These matrices of traces are dealing with approximate polynomials, the zero-clusters in turn allow us to compute a system of multiplicationp ma- create great numerical instability, which can be eliminated by computing the approximate radical.