A Primer of Commutative Algebra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dimension Theory and Systems of Parameters
Dimension theory and systems of parameters Krull's principal ideal theorem Our next objective is to study dimension theory in Noetherian rings. There was initially amazement that the results that follow hold in an arbitrary Noetherian ring. Theorem (Krull's principal ideal theorem). Let R be a Noetherian ring, x 2 R, and P a minimal prime of xR. Then the height of P ≤ 1. Before giving the proof, we want to state a consequence that appears much more general. The following result is also frequently referred to as Krull's principal ideal theorem, even though no principal ideals are present. But the heart of the proof is the case n = 1, which is the principal ideal theorem. This result is sometimes called Krull's height theorem. It follows by induction from the principal ideal theorem, although the induction is not quite straightforward, and the converse also needs a result on prime avoidance. Theorem (Krull's principal ideal theorem, strong version, alias Krull's height theorem). Let R be a Noetherian ring and P a minimal prime ideal of an ideal generated by n elements. Then the height of P is at most n. Conversely, if P has height n then it is a minimal prime of an ideal generated by n elements. That is, the height of a prime P is the same as the least number of generators of an ideal I ⊆ P of which P is a minimal prime. In particular, the height of every prime ideal P is at most the number of generators of P , and is therefore finite. -
Prime Ideals in Polynomial Rings in Several Indeterminates
PROCEEDINGS OF THE AMIERICAN MIATHEMIIATICAL SOCIETY Volume 125, Number 1, January 1997, Pages 67 -74 S 0002-9939(97)03663-0 PRIME IDEALS IN POLYNOMIAL RINGS IN SEVERAL INDETERMINATES MIGUEL FERRERO (Communicated by Ken Goodearl) ABsTrRAcr. If P is a prime ideal of a polynomial ring K[xJ, where K is a field, then P is determined by an irreducible polynomial in K[x]. The purpose of this paper is to show that any prime ideal of a polynomial ring in n-indeterminates over a not necessarily commutative ring R is determined by its intersection with R plus n polynomials. INTRODUCTION Let K be a field and K[x] the polynomial ring over K in an indeterminate x. If P is a prime ideal of K[x], then there exists an irreducible polynomial f in K[x] such that P = K[x]f. This result is quite old and basic; however no corresponding result seems to be known for a polynomial ring in n indeterminates x1, ..., xn over K. Actually, it seems to be very difficult to find some system of generators for a prime ideal of K[xl,...,Xn]. Now, K [x1, ..., xn] is a Noetherian ring and by a converse of the principal ideal theorem for every prime ideal P of K[x1, ..., xn] there exist n polynomials fi, f..n such that P is minimal over (fi, ..., fn), the ideal generated by { fl, ..., f}n ([4], Theorem 153). Also, as a consequence of ([1], Theorem 1) it follows that any prime ideal of K[xl, X.., Xn] is determined by n polynomials. -
The Hermite–Lindemann–Weierstraß Transcendence Theorem
The Hermite–Lindemann–Weierstraß Transcendence Theorem Manuel Eberl March 12, 2021 Abstract This article provides a formalisation of the Hermite–Lindemann– Weierstraß Theorem (also known as simply Hermite–Lindemann or Lindemann–Weierstraß). This theorem is one of the crowning achieve- ments of 19th century number theory. The theorem states that if α1; : : : ; αn 2 C are algebraic numbers that are linearly independent over Z, then eα1 ; : : : ; eαn are algebraically independent over Q. Like the previous formalisation in Coq by Bernard [2], I proceeded by formalising Baker’s alternative formulation of the theorem [1] and then deriving the original one from that. Baker’s version states that for any algebraic numbers β1; : : : ; βn 2 C and distinct algebraic numbers αi; : : : ; αn 2 C, we have: α1 αn β1e + ::: + βne = 0 iff 8i: βi = 0 This has a number of immediate corollaries, e.g.: • e and π are transcendental • ez, sin z, tan z, etc. are transcendental for algebraic z 2 C n f0g • ln z is transcendental for algebraic z 2 C n f0; 1g 1 Contents 1 Divisibility of algebraic integers 3 2 Auxiliary facts about univariate polynomials 6 3 The minimal polynomial of an algebraic number 10 4 The lexicographic ordering on complex numbers 12 5 Additional facts about multivariate polynomials 13 5.1 Miscellaneous ........................... 13 5.2 Converting a univariate polynomial into a multivariate one . 14 6 More facts about algebraic numbers 15 6.1 Miscellaneous ........................... 15 6.2 Turning an algebraic number into an algebraic integer .... 18 6.3 Multiplying an algebraic number with a suitable integer turns it into an algebraic integer. -
Single Elements
Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 47 (2006), No. 1, 275-288. Single Elements B. J. Gardner Gordon Mason Department of Mathematics, University of Tasmania Hobart, Tasmania, Australia Department of Mathematics & Statistics, University of New Brunswick Fredericton, N.B., Canada Abstract. In this paper we consider single elements in rings and near- rings. If R is a (near)ring, x ∈ R is called single if axb = 0 ⇒ ax = 0 or xb = 0. In seeking rings in which each element is single, we are led to consider 0-simple rings, a class which lies between division rings and simple rings. MSC 2000: 16U99 (primary), 16Y30 (secondary) Introduction If R is a (not necessarily unital) ring, an element s is called single if whenever asb = 0 then as = 0 or sb = 0. The definition was first given by J. Erdos [2] who used it to obtain results in the representation theory of normed algebras. More recently the idea has been applied by Longstaff and Panaia to certain matrix algebras (see [9] and its bibliography) and they suggest it might be worthy of further study in other contexts. In seeking rings in which every element is single we are led to consider 0-simple rings, a class which lies between division rings and simple rings. In the final section we examine the situation in nearrings and obtain information about minimal N-subgroups of some centralizer nearrings. 1. Single elements in rings We begin with a slightly more general definition. If I is a one-sided ideal in a ring R an element x ∈ R will be called I-single if axb ∈ I ⇒ ax ∈ I or xb ∈ I. -
6. PID and UFD Let R Be a Commutative Ring. Recall That a Non-Unit X ∈ R Is Called Irreducible If X Cannot Be Written As A
6. PID and UFD Let R be a commutative ring. Recall that a non-unit x R is called irreducible if x cannot be written as a product of two non-unit elements of R i.e.∈x = ab implies either a is an unit or b is an unit. Also recall that a domain R is called a principal ideal domain or a PID if every ideal in R can be generated by one element, i.e. is principal. 6.1. Lemma. (a) Let R be a commutative domain. Then prime elements in R are irreducible. (b) Let R be a PID. Then an irreducible in R is a prime element. Proof. (a) Let (p) be a prime ideal in R. If possible suppose p = uv.Thenuv (p), so either u (p)orv (p), if u (p), then u = cp,socv = 1, that is v is an unit. Similarly,∈ if v (p), then∈ u is an∈ unit. ∈ ∈(b) Let p R be irreducible. Suppose ab (p). Since R is a PID, the ideal (a, p)hasa generator, say∈ x, that is, (x)=(a, p). Then ∈p (x), so p = xu for some u R. Since p is irreducible, either u or x must be an unit and we∈ consider these two cases seperately:∈ In the first case, when u is an unit, then x = u−1p,soa (x) (p), that is, p divides a.Inthe second case, when x is a unit, then (a, p)=(1).So(∈ ab,⊆ pb)=(b). But (ab, pb) (p). So (b) (p), that is p divides b. -
Local Topological Algebraicity of Analytic Function Germs Marcin Bilski, Adam Parusinski, Guillaume Rond
Local topological algebraicity of analytic function germs Marcin Bilski, Adam Parusinski, Guillaume Rond To cite this version: Marcin Bilski, Adam Parusinski, Guillaume Rond. Local topological algebraicity of analytic function germs. Journal of Algebraic Geometry, American Mathematical Society, 2017, 26 (1), pp.177 - 197. 10.1090/jag/667. hal-01255235 HAL Id: hal-01255235 https://hal.archives-ouvertes.fr/hal-01255235 Submitted on 13 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LOCAL TOPOLOGICAL ALGEBRAICITY OF ANALYTIC FUNCTION GERMS MARCIN BILSKI, ADAM PARUSINSKI,´ AND GUILLAUME ROND Abstract. T. Mostowski showed that every (real or complex) germ of an analytic set is homeomorphic to the germ of an algebraic set. In this paper we show that every (real or com- plex) analytic function germ, defined on a possibly singular analytic space, is topologically equivalent to a polynomial function germ defined on an affine algebraic variety. 1. Introduction and statement of results The problem of approximation of analytic objects (sets or mappings) by algebraic ones has attracted many mathematicians, see e.g. [2] and the bibliography therein. Nevertheless there are very few positive results if one requires that the approximation gives a homeomorphism between the approximated object and the approximating one. -
Algebra 557: Weeks 3 and 4
Algebra 557: Weeks 3 and 4 1 Expansion and Contraction of Ideals, Primary ideals. Suppose f : A B is a ring homomorphism and I A,J B are ideals. Then A can be thought→ of as a subring of B. We denote by⊂ Ie ( expansion⊂ of I) the ideal IB = f( I) B of B, and by J c ( contraction of J) the ideal J A = f − 1 ( J) A. The following are easy to verify: ∩ ⊂ I Iec, ⊂ J ce J , ⊂ Iece = Ie , J cec = J c. Since a subring of an integral domain is also an integral domain, and for any prime ideal p B, A/pc can be seen as a subring of B/p we have that ⊂ Theorem 1. The contraction of a prime ideal is a prime ideal. Remark 2. The expansion of a prime ideal need not be prime. For example, con- sider the extension Z Z[ √ 1 ] . Then, the expansion of the prime ideal (5) is − not prime in Z[ √ 1 ] , since 5 factors as (2 + i)(2 i) in Z[ √ 1 ] . − − − Definition 3. An ideal P A is called primary if its satisfies the property that for all x, y A, xy P , x P⊂, implies that yn P, for some n 0. ∈ ∈ ∈ ∈ ≥ Remark 4. An ideal P A is primary if and only if all zero divisors of the ring A/P are nilpotent. Since⊂ thsi propert is stable under passing to sub-rings we have as before that the contraction of a primary ideal remains primary. Moreover, it is immediate that Theorem 5. -
Factorization in the Self-Idealization of a Pid 3
FACTORIZATION IN THE SELF-IDEALIZATION OF A PID GYU WHAN CHANG AND DANIEL SMERTNIG a b Abstract. Let D be a principal ideal domain and R(D) = { | 0 a a, b ∈ D} be its self-idealization. It is known that R(D) is a commutative noetherian ring with identity, and hence R(D) is atomic (i.e., every nonzero nonunit can be written as a finite product of irreducible elements). In this paper, we completely characterize the irreducible elements of R(D). We then use this result to show how to factorize each nonzero nonunit of R(D) into irreducible elements. We show that every irreducible element of R(D) is a primary element, and we determine the system of sets of lengths of R(D). 1. Introduction Let R be a commutative noetherian ring. Then R is atomic, which means that every nonzero nonunit element of R can be written as a finite product of atoms (irreducible elements) of R. The study of non-unique factorizations has found a lot of attention. Indeed this area has developed into a flourishing branch of Commutative Algebra (see some surveys and books [3, 6, 8, 5]). However, the focus so far was almost entirely on commutative integral domains, and only first steps were done to study factorization properties in rings with zero-divisors (see [2, 7]). In the present note we study factorizations in a subring of a matrix ring over a principal ideal domain, which will turn out to be a commutative noetherian ring with zero-divisors. To begin with, we fix our notation and terminology. -
Chapter 4 the Algebra–Geometry Dictionary
Chapter 4 The Algebra–Geometry Dictionary In this chapter, we will explore the correspondence between ideals and varieties. In §§1 and 2, we will prove the Nullstellensatz, a celebrated theorem which iden- tifies exactly which ideals correspond to varieties. This will allow us to construct a “dictionary” between geometry and algebra, whereby any statement about varieties can be translated into a statement about ideals (and conversely). We will pursue this theme in §§3 and 4, where we will define a number of natural algebraic operations on ideals and study their geometric analogues. In keeping with the computational emphasis of the book, we will develop algorithms to carry out the algebraic op- erations. In §§5 and 6, we will study the more important algebraic and geometric concepts arising out of the Hilbert Basis Theorem: notably the possibility of decom- posing a variety into a union of simpler varieties and the corresponding algebraic notion of writing an ideal as an intersection of simpler ideals. In §7, we will prove the Closure Theorem from Chapter 3 using the tools developed in this chapter. §1 Hilbert’s Nullstellensatz In Chapter 1, we saw that a varietyV k n can be studied by passing to the ideal ⊆ I(V)= f k[x 1,...,x n] f(a)= 0 for alla V { ∈ | ∈ } of all polynomials vanishing onV. Hence, we have a map affine varieties ideals V −→ I(V). Conversely, given an idealI k[x 1,...,x n], we can define the set ⊆ V(I)= a k n f(a)= 0 for allf I . { ∈ | ∈ } © Springer International Publishing Switzerland 2015 175 D.A. -
Elements of Minimal Prime Ideals in General Rings
Elements of minimal prime ideals in general rings W.D. Burgess, A. Lashgari and A. Mojiri Dedicated to S.K. Jain on his seventieth birthday Abstract. Let R be any ring; a 2 R is called a weak zero-divisor if there are r; s 2 R with ras = 0 and rs 6= 0. It is shown that, in any ring R, the elements of a minimal prime ideal are weak zero-divisors. Examples show that a minimal prime ideal may have elements which are neither left nor right zero-divisors. However, every R has a minimal prime ideal consisting of left zero-divisors and one of right zero-divisors. The union of the minimal prime ideals is studied in 2-primal rings and the union of the minimal strongly prime ideals (in the sense of Rowen) in NI-rings. Mathematics Subject Classification (2000). Primary: 16D25; Secondary: 16N40, 16U99. Keywords. minimal prime ideal, zero-divisors, 2-primal ring, NI-ring. Introduction. E. Armendariz asked, during a conference lecture, if, in any ring, the elements of a minimal prime ideal were zero-divisors of some sort. In what follows this question will be answered in the positive with an appropriate interpretation of \zero-divisor". Two very basic statements about minimal prime ideals hold in a commutative ring R: (I) If P is a minimal prime ideal then the elements of P are zero-divisors, and (II) the union of the minimal prime ideals is M = fa 2 R j 9 r 2 R with ar 2 N∗(R) but r2 = N∗(R)g, where N∗(R) is the prime radical. -
Notes on Irreducible Ideals
BULL. AUSTRAL. MATH. SOC. I3AI5, I3H05, I 4H2O VOL. 31 (1985), 321-324. NOTES ON IRREDUCIBLE IDEALS DAVID J. SMITH Every ideal of a Noetherian ring may be represented as a finite intersection of primary ideals. Each primary ideal may be decomposed as an irredundant intersection of irreducible ideals. It is shown that in the case that Q is an Af-primary ideal of a local ring (if, M) satisfying the condition that Q : M = Q + M where s is the index of Q , then all irreducible components of Q have index s . (Q is "index- unmixed" .) This condition is shown to hold in the case that Q is a power of the maximal ideal of a regular local ring, and also in other cases as illustrated by examples. Introduction Let i? be a commutative ring with identity. An ideal J of R is irreducible if it is not a proper intersection of any two ideals of if . A discussion of some elementary properties of irreducible ideals is found in Zariski and Samuel [4] and Grobner [!]• If i? is Noetherian then every ideal of if has an irredundant representation as a finite intersection of irreducible ideals, and every irreducible ideal is primary. It is properties of representations of primary ideals as intersections of irreducible ideals which will be discussed here. We assume henceforth that if is Noetherian. Received 25 October 1981*. Copyright Clearance Centre, Inc. Serial-fee code: OOOl*-9727/85 $A2.00 + 0.00. 32 1 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.22, on 24 Sep 2021 at 06:01:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. -
On Numbers, Germs, and Transseries
On Numbers, Germs, and Transseries Matthias Aschenbrenner, Lou van den Dries, Joris van der Hoeven Abstract Germs of real-valued functions, surreal numbers, and transseries are three ways to enrich the real continuum by infinitesimal and infinite quantities. Each of these comes with naturally interacting notions of ordering and deriva- tive. The category of H-fields provides a common framework for the relevant algebraic structures. We give an exposition of our results on the model theory of H-fields, and we report on recent progress in unifying germs, surreal num- bers, and transseries from the point of view of asymptotic differential algebra. Contemporaneous with Cantor's work in the 1870s but less well-known, P. du Bois- Reymond [10]{[15] had original ideas concerning non-Cantorian infinitely large and small quantities [34]. He developed a \calculus of infinities” to deal with the growth rates of functions of one real variable, representing their \potential infinity" by an \actual infinite” quantity. The reciprocal of a function tending to infinity is one which tends to zero, hence represents an \actual infinitesimal”. These ideas were unwelcome to Cantor [39] and misunderstood by him, but were made rigorous by F. Hausdorff [46]{[48] and G. H. Hardy [42]{[45]. Hausdorff firmly grounded du Bois-Reymond's \orders of infinity" in Cantor's set-theoretic universe [38], while Hardy focused on their differential aspects and introduced the logarithmico-exponential functions (short: LE-functions). This led to the concept of a Hardy field (Bourbaki [22]), developed further mainly by Rosenlicht [63]{[67] and Boshernitzan [18]{[21]. For the role of Hardy fields in o-minimality see [61].