SITES 2005 Water Resource Site Analysis Computer Program

Total Page:16

File Type:pdf, Size:1020Kb

SITES 2005 Water Resource Site Analysis Computer Program SITES 2005 Water Resource Site Analysis Computer Program User Guide October 2007 Issued October 2007 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250–9410, or call (800) 795–3272 (voice) or (202) 720–6382 (TDD). USDA is an equal opportunity provider and employer. The SITES Water Resource Site Analysis computer program version 2005 will analyze the hydrology and hydraulics for designs typical of NRCS Preface dams and ponds. This user guide will help novice and experienced users prepare input, understand the software methodology, and interpret the output. The information needed to utilize the Integrated Development Environment (IDE) for management of input and output in the Windows® environment is provided in a single location in the guide. The remainder of the guide documents the computational portion of the program and the input and output associated with that portion. Much of the technical information provided in this user guide is repeated in the context sensitive IDE help for convenience. Therefore, the occasional user will generally not be required to become familiar with the details of the control file structure documented herein. SITES version 2005 is improved over SITES version 2000.5 and the DAMS2 routines from which it is descended through inclusion of the following features: • An Integrated Development Environment (IDE) has been added for interactive Windows® application and a data integrity check routine is provided to assist in identifying data deficiencies prior to performing computations. The IDE automatically develops the control file used by the computational routine (DAMSITE) from data entered through an interactive user interface. The interface also provides for graphical display of output and comparison of the results from multiple data files. • Earth Spillway Erosion Technology for stability and integrity analyses is now included in the SITES program. The effects of barriers in the auxiliary spillway can be analyzed. Hood inlet calculations and flood pool drawdown computations are also available. Control words have been added as needed to implement the new features. • The new default inflow hydrograph generation procedure is similar to that in the revised NRCS WinTR-20 Beta test program (NRCS, 2003), and hydrographs can have up to 5,000 points. • The Muskingum-Cunge valley flood routing procedure is the default for the damsite executable included with the IDE. • The default water surface profile procedure (WSPVRT) is based on variable retardance in the auxiliary spillway with the spillway profile defined through the inlet and exit channel to the valley floor. • The program messages are revised and categorized into errors, warnings, messages, and notes listed and described in Appendix D. • This version of the program and guide contains terminology reflecting the current Practice Standard 402 for Dams (2002) (TR–60) and the replacement of TR–2 by NEH, Part 628, Dams, Chapter 50, Earth Spillway Design (1998), Chapter 51, Earth Spillway Erosion Model (1998), and Chapter 52, Field Procedures Guide for Headcut Erodibility Index (2001). In these documents, the emergency spillway (ES) is referred to as the auxiliary spillway (AS), and the emergency spillway hydrograph (ESH) is referred to as the stability design hydrograph (SDH). The name of the former DAMS2 program is DAMSITE and the guide’s title is SITES User Guide. The design (210–728.5, SITES 2005, October 2007) i classes of dams are defined in TR–60 as low hazard, significant hazard, and high hazard replacing the old A, B, and C designations. • Those control words beginning with ES– have been changed to begin with AS– to reflect the new terminology. Similarly, the DAMS2 control word has been replaced by the SITES control word. The program will currently accept both old and new control words; use of SITES and the AS– revisions are encouraged. • The software will automatically design a dam or pond to comply with the NRCS criteria contained in either Practice Standard 402 for Dams (2002) (TR–60) or 378 for Ponds as existed when the software was developed. Criteria are constantly being updated or revised. New criteria may need to be entered manually to override existing default options in the software. If an advanced user operates outside of the IDE using the control file directly, they must enter data for the 24-hour storm to override the default 6-hour B distribution default option in the DAMSITE routine. Please report any problems you find to the National Design, Construction, and Soil Mechanics Center Staff (817-509-3752) or the hydraulic engineer in your state. ii (210–728.5, SITES 2005, October 2007) The Water Resource Site Analysis Computer Program—SITES was revised by the following: Acknowledgments D. Temple, ARS, Oklahoma H. Richardson, NRCS, Washington, DC (retired) H. Fox Moody, NRCS, Beltsville, MD H. Goon, NRCS, Washington, DC (retired) M. Lobrecht, NRCS, Texas J. Brevard, NRCS, Washington, DC (retired) G. Hanson, ARS, Oklahoma E. Putnam, NRCS, New York (retired) M. Neilsen, professor, Kansas State University, Kansas D. Woodward, NRCS, Washington, DC (retired) N. Miller, NRCS, Washington, DC (retired) G. Conaway, NRCS, Oregon (retired) D. Hazlewood, NRCS, Colorado (retired) Conservation Engineering Division U.S. Department of Agriculture Natural Resources Conservation Service (210–728.5, SITES 2005, October 2007) iii iv (210–728.5, SITES 2005, October 2007) Chapter 1 Introduction ............................................................................... 1–1 Contents Chapter 2 Program Description ................................................................ 2–1 Chapter 3 SITES Integrated Development Environment ...................... 3–1 Chapter 4 Control File for DAMSITE Input ............................................. 4–1 Typical Runs for Single Structures ......................................... 4–4 Typical Runs for Systems of Structures and Subwatersheds .................................................................... 4–108 Alternate Input Possibilities ................................................ 4–132 Changes to Program Defined Input .................................... 4–153 Changes to Program Defined Criteria ................................ 4–195 Alternate Spillway Designs .................................................. 4–203 Chapter 5 Output Description ................................................................... 5–1 Chapter 6 References ................................................................................. 6–1 Chapter 7 Glossary ...................................................................................... 7–1 Chapter 8 Conversions ............................................................................... 8–1 Appendixes A SITES Integrated Development Environment Quick Start Guide ..................................................................... A–1 B SITES Integrated Development Environment: Frequently Asked Questions ................................................... B–1 C Sample Jobs ............................................................................. C–1 D Output Errors, Warnings, Messages, and Notes ................... D–1 E DAMSITE Control Words ....................................................... E–1 F Blank Worksheets .....................................................................F–1 Table 1–1 Description of DAMSITE generated files ........................ 1–4 Tables Table 4–1 Input options to obtain program generated special output files ............................................................. 4–3 Table 4–2 Examples of control words needed for various cases ...................................................................... 4–7 Table 4–3 Auxiliary spillway channel bottom profile reference numbers defined by the program ................. 4–24 Table 4–4 Complex series routing with the IDE .......................... 4–114 Table 4–5 Hydrograph storage arrays ........................................... 4–117 Table 4–6 Internal hydrograph procedures .................................. 4–118 Table 4–7 Alternative spillway designs ......................................... 4–203 Table 5–1 Abbreviations used in output ........................................... 5–2 Table 5–2 Development of rating tables computed in program (drop or hood inlet PS and earth or vegetated AS) ................................................................... 5–22 (210–728.5, SITES 2005, October 2007) v Figures Figure 2–1 DAMSITE terminology .................................................... 2–3 Figure 2–2 Simplified processing sequence in DAMSITE ............... 2–9 Figure 3–1 SITES IDE interfaces ....................................................... 3–2 Figure 3–2 Top-Level Interface ........................................................
Recommended publications
  • (P 117-140) Flood Pulse.Qxp
    117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g.
    [Show full text]
  • Probabilistic Extreme Flood Hydrographs That Use Paleoflood Data for Dam Safety Applications
    Probabilistic Extreme Flood Hydrographs That Use PaleoFlood Data for Dam Safety Applications Dam Safety Office Report No. DSO-03-03 Department of the Interior Bureau of Reclamation June 2003 Contents Page Introduction................................................................................................................................... 1 1.1 Background..................................................................................................................................2 1.2 Objectives....................................................................................................................................4 1.3 Acknowledgements .....................................................................................................................4 Probabilistic Extreme Flood Hydrographs from Streamflow Sampling................................. 5 2.1 General Procedure .......................................................................................................................5 2.2 Example Applications................................................................................................................11 Probabilitic Extreme Flood Hydrographs Using Rainfall-Runoff Models............................ 18 3.1 General Procedure .....................................................................................................................19 3.2 Example Applications s.............................................................................................................20 Reservoir Routing
    [Show full text]
  • Stormwater Design Manual Chapter Three
    CHAPTER 3 HYDROLOGY Chapter 3 HYDROLOGY Table of Contents 3.1 INTRODUCTION .................................................................................................... 2 3.2 HYDROLOGIC DESIGN POLICIES........................................................................ 2 3.2.1 FULLY DEVELO PED CONDITIONS......................................................................... 3 3.2.2 DRAINAG E AREA ............................................................................................... 4 3.2.3 RAINFALL DATA AND INTENSITY .......................................................................... 4 3.3 TIME OF CONCENTRATION ................................................................................. 4 3.3.1 SCS METHOD................................................................................................... 5 3.3.1.1 Lag Time .................................................................................................. 5 3.3.1.2 Travel Time .............................................................................................. 5 3.3.1.3 Sheet Flow ............................................................................................... 6 3.3.1.4 Shallow Concentrated Flow....................................................................... 7 3.3.1.5 Channelized Flow ..................................................................................... 7 3.3.2 KIRPICH EQUATION ........................................................................................... 8 3.4 RATIONAL METHOD............................................................................................
    [Show full text]
  • Impacts of a Flood Pulsing Hydrology on Plants and Invertebrates in Riparian Wetlands
    IMPACTS OF A FLOOD PULSING HYDROLOGY ON PLANTS AND INVERTEBRATES IN RIPARIAN WETLANDS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Maureen K. Drinkard August 2012 Dissertation written by Maureen K. Drinkard B.S., Kent State University, 2003 Ph.D., Kent State University, 2012 Approved by ___Ferenc de Szalay_, Chair, Doctoral Dissertation Committee ___Mark Kershner_______, Members, Doctoral Dissertation Committee _____Oscar Rocha________, ____Mandy Munro-Stasiuk_, Accepted by _____James Blank______, Chair, Department of Biological Sciences ______Raymond Craig___, Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................... vi LIST OF TABLES ................................................................................................................. vii ACKNOWLEDGEMENTS .................................................................................................... x CHAPTER I. INTRODUCTION ................................................................................................ 1 Dissertation Goals ............................................................................................. 1 Definition of the Flood Pulse Concept .............................................................. 2 Ecological and economic importance ............................................................... 3 Impacts of environmental
    [Show full text]
  • Tracing Sediment Sources with Meteoric 10Be: Linking Erosion And
    Tracing sediment sources with meteoric 10Be: Linking erosion and the hydrograph Final Report: submitted June 20, 2012 PI: Patrick Belmont Utah State University, Department of Watershed Sciences University of Minnesota, National Center for Earth-surface Dynamics Background and Motivation for the Study Sediment is a natural constituent of river ecosystems. Yet, in excess quantities sediment can severely degrade water quality and aquatic ecosystem health. This problem is especially common in rivers that drain agricultural landscapes (Trimble and Crosson, 2000; Montgomery, 2007). Currently, sediment is one of the leading causes of impairment in rivers of the US and globally (USEPA, 2011; Palmer et al., 2000). Despite extraordinary efforts, sediment remains one of the most difficult nonpoint-source pollutants to quantify at the watershed scale (Walling, 1983; Langland et al., 2007; Smith et al., 2011). Developing a predictive understanding of watershed sediment yield has proven especially difficult in low-relief landscapes. Challenges arise due to several common features of these landscapes, including a) source and sink areas are defined by very subtle topographic features that often cannot be detected even with relatively high resolution topography data (15 cm vertical uncertainty), b) humans have dramatically altered water and sediment routing processes, the effects of which are exceedingly difficult to capture in a conventional watershed hydrology/erosion model (Wilkinson and McElroy, 2007; Montgomery, 2007); and c) as sediment is routed through a river network it is actively exchanged between the channel and floodplain, a dynamic that is difficult to model at the channel network scale (Lauer and Parker, 2008). Thus, while models can be useful to understand sediment dynamics at the landscape scale and predict changes in sediment flux and water quality in response to management actions in a watershed, several key processes are difficult to constrain to a satisfactory degree.
    [Show full text]
  • September 8, 2008 RUNOFF CALCULATIONS the Following
    BEE 473 Watershed Engineering Fall 2004 RUNOFF CALCULATIONS The following provide the minimum necessary equations for determining runoff from a design storm, i.e., a storm with duration ≈ to the watershed’s time of concentration. When peak flow is the critical design parameter engineers usually design for this storm duration because it represents the most intense storm (shortest duration) for which the entire watershed contributes flow to the outlet. This section emphasizes peak runoff; we will discuss design criteria for runoff volume later in conjunction with ponds, flood routing, and detention basin design A. Time of Concentration: B. Rational Method C. Curve Number Method 1. Calculating Runoff Volume 2. Synthetic Triangular Hydrograph 3. Calculating Peak Runoff (NRCS Graphical Method) September 8, 2008 BEE 473 Watershed Engineering Fall 2004 A. Time of Concentration Equations Dozens of equations have been proposed for the time of concentration. Below are four of the most commonly used that generally agree with each other within 25%. Eqs. A.3 and A.4 consistently predict longer times of concentration, especially for low runoff potentials. The following were adopted from Chow (19XX) 0.77 -0.385 Kirpich (1940): tc = 0.0078L S (A.1) where tc = time of concentration (min.) L = length of channel or ditch from headwater to outlet (ft) S = average watershed slope L1.15 Soil Conservation Service (SCS) (1972): t = (A.2) c 7700H 0.38 where tc = time of concentration (hr) L = length of longest flow path (ft) H = difference in elevation between
    [Show full text]
  • Influences on Watershed Hydrology
    Modeling Sediment Loss on Geomorphic Graded Reforestation Lands in Kentucky Geomorphic Reclamation and Natural Stream Design at Coal Mines: A Technical Interactive Forum Richard C. Warner, Carmen T. Agouridis, and Christopher D. Barton April 29, 2009 1 Sustainable Mining/Reclamation • Similar (minor changes) – Hydrology – Sediment – Water quality • chemistry • organic material • nutrients – Visual • geomorphic – land form – natural streams • forest 2 Objective • Contrast hydrologic and sediment response of two alternative head-of-hollow fill design and reclamation techniques – Traditional (compacted spoil with grass cover) – Geomorphic (landform, natural streams and Forest Reclamation Approach) 3 CURRENT FUTURE Forest Forest Cont our Mining Count our Mining Dit ch Weep Berm Dit ch Weep Berm Dit ch Dit ch Ro ck Rip-Rap Head-of-hollow Ephemeral Head-of-hollow Channel Compact ed Fill Loose-dumped Nat ural St ream Ephemeral Fill Ro ck Two Porous Rip - Rap Check Dams Channel S e d i ment Po nd Flocculat ion S e d i ment Po nd 4 Objective • Design a head-of-hollow fill that mimics the natural landform, forest, hydrology and erosion of pre-development natural Appalachian forest – peak flow – runoff volume – hydrograph characteristics – erosion rates – sediment concentration and loads 5 Key Modeling Timeframes • Natural forest • Traditional head-of-hollow fill – compacted spoil – grass vegetated cover • Geomorphic head-of-hollow – loose-dumped spoil overlays compacted fill – ephemeral and intermittent streams – forest cover 6 Key Modeling Parameters
    [Show full text]
  • Timing of Each Process Forms the Full Hydrograph
    STREAM HYDROGRAPH - PLOT OF DISCHARGE VS TIME AT ONE LOCATION DISCHARGE - VOLUME OF WATER FLOWING PAST A POINT OVER A TIME Timing of each process forms the full hydrograph The RUNOFF CYCLE - Events During Precipitation COMPONENTS OF STREAMFLOW & STREAM/AQUIFER INTERACTION Consider how the timing of these processes affect infiltration and runoff Ground Water RECHARGE is the water that reaches the water table Base Flow is the portion of stream flow from Ground Water that discharges to the stream 1 RELATIONSHIP BETWEEN PRECIPITATION AND INFILTRATION Precipitation Rate Infiltration Capacity No depression storage or overland flow ration rate biifiliibecause precip rate << infiltration capacity Infilt infiltration depression storage begins to fill immediately time depression storage due to starthigh overland precip flow rate begins to fill after time t1 depression storage depression storage rate ate ate r start overland flow r overland flow overland flow Infiltration Infiltration Precipitation Precipitation infiltration infiltration time time HYDROGRAPH FOR ONE STORM @ one point DIRECT PERCIPITATION 2 To Manage Water, We Want to Know How Often a Flow Is Equaled or Exceeded DURATION CURVE - % of Time a Flow Is Equaled or Exceeded Plot of Discharge vs Probability of Occurrence To create: Rank Flows, as m, From Highest to Lowest 1 to N If 2 Values Are Equal, Assign Separate Rank P = 100 * (m/(n+1)) Normalize flow by basin area to compare basins of different size More severe floods e. g. crystalline rock, very little soil, poor infiltration,These rapid can be generated runoff, high peak flows, low basefor any flows type of flow: Moderateaverage conditions annual, in averageglacial outwash daily, with good infiltrationlow flow, peak but rapidflow, etcthrough Q___ flow, moderate peak and base flows BasinArea Mild floods e.g.
    [Show full text]
  • First Flush Study 1999-2000 Report
    First Flush Study 1999-2000 Report June 2000 CTSW-RT-00-016 Contents Executive Summary Section 1 Introduction .................................................................................................. 1-1 1.1 Background ...............................................................................................................1-1 1.2 Overview of the First Flush Study .........................................................................1-1 1.2.1................................................................................................. Program Objective 1-1 1.2.2.......................................................................................................... Study Design 1-2 1.3 Report Organization.................................................................................................1-2 Section 2 Monitoring Locations and Equipment..................................................... 2-1 2.1 Monitoring Locations...............................................................................................2-1 2.2 Monitoring Equipment ............................................................................................2-6 Section 3 Sampling Handling, Analytical Methods, and Procedures................. 3-1 3.1 Storm Water Sampling.............................................................................................3-1 3.2 Wet Weather Response ............................................................................................3-1 3.3 Key Water Quality Constituents ............................................................................3-3
    [Show full text]
  • 28. AC20 Penright
    Downstream Sediment Interception A Unique Application for Proprietary Best Management Practice (BMP) Technology Peter Enright My Background Role at • Civil Site and Infrastructure Group • 6.5 years in the water/engineering industry • Design of water/wastewater/stormwater infrastructure • Master planning and hydraulic/hydrologic modelling Today’s Presentation Outline • Rainfall, Runoff and Water Quality • Downstream Structural BMP Application • Regulation of Sediment Removal and Sizing BMPs • Alternative Analysis Methodology • Conclusions Rainfall, Runoff and Water Quality Catchment Response Storm Event Surface Runoff Stormwater • Total Depth • Cover Type • Hydrology of Rainfall • Topography • Inlet Types • Distribution • Infiltration • Land Use Over Time • Connectivity • Pretreatment Hyetograph Hydrograph Catchment Response Examples Parking Lot Catchment Response Examples Sports Field Water Quality Overview Typical Stormwater Pollutants • Sediment AKA Total Suspended Solids (TSS) • Nitrogen, Phosphorus, Chloride, and Hydrocarbons • Micro-organisms and Toxic Organics Predicting Water Quality Factors Effecting Stormwater Pollutant Load • Land Use/Type of Pollutants Present • Frequency of Cleaning/Flushing Rainfall • Hydrology and Treatment Train • Intensity and Duration of Rainfall Event Concept of “First Flush” ➢ Pollutant concentration varies over time Unique BMP Application Existing Upstream Catchment Area Minimal TSS removal Opportunity Downstream Intercept upstream TSS • Retroactive treatment • Minimize downstream maintenance Regulation
    [Show full text]
  • 1 Predicting the Outflow Hydrograph from A
    HydroVision International 2013 -- Denver, CO -- July 23-26, 2013 PREDICTING THE OUTFLOW HYDROGRAPH FROM A POTENTIAL POWER CANAL BREACH Tony L. Wahl1 ABSTRACT Many small hydropower developments utilize open canals that carry a risk for failure and consequent flooding, so project owners and operators need the ability to predict the characteristics of canal breach floods. A program of physical model tests and numerical unsteady-flow simulations has led to the development of appraisal-level tools for predicting canal-breach hydrographs. The procedures yield estimates of the time needed for initiation and development of a breach, the magnitude of the peak outflow, and the duration of the recession limb of the flood hydrograph. These tools can help identify reaches that have the potential to produce floods with serious consequences. This can aid emergency planning and help to prioritize the need for more detailed investigations and preventive management actions. This paper demonstrates the use of the method and illustrates the importance of key input parameters, especially the erodibility of the embankment soil. Keywords: breaching, canal failure, embankments, hydraulic modeling, outflow hydrographs INTRODUCTION The Bureau of Reclamation (Reclamation) is responsible for more than 8,000 miles of canals in the western U.S., most conveying irrigation water and a few associated with hydropower and pumped-storage developments. Failures of irrigation canal embankments have occurred periodically throughout Reclamation’s operating history. When these canals were constructed, most adjacent lands were primarily agricultural or undeveloped. Development of adjacent lands over time has led to greater interest in understanding the potential impacts and consequences of canal embankment failures on surrounding areas.
    [Show full text]
  • Controls on Thermal Discharge in Yellowstone National Park, Wyoming
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2007 CONTROLS ON THERMAL DISCHARGE IN YELLOWSTONE NATIONAL PARK, WYOMING Jacob Steven Mohrmann The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Mohrmann, Jacob Steven, "CONTROLS ON THERMAL DISCHARGE IN YELLOWSTONE NATIONAL PARK, WYOMING" (2007). Graduate Student Theses, Dissertations, & Professional Papers. 1239. https://scholarworks.umt.edu/etd/1239 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. CONTROLS ON THERMAL DISCHARGE IN YELLOWSTONE NATIONAL PARK, WYOMING By Jacob Steven Mohrmann B.A. Environmental Science, Northwest University, Kirkland, WA, 2003 Thesis presented in partial fulfillment of the requirements for the degree of Masters of Science in Geology The University of Montana Missoula, MT Fall 2007 Approved by: Dr. David A. Strobel, Dean Graduate School Dr. Nancy Hinman Committee Chair Dr. William Woessner Committee Member Dr. Solomon Harrar Committee Member Mohrmann, Jacob, M.S., Fall 2007 Geology Controls on Thermal Discharge in Yellowstone National Park, Wyoming Director: Nancy W. Hinman Significant fluctuations in discharge occur in hot springs in Yellowstone National Park on a seasonal to decadal scale (Ingebritsen et al., 2001) and an hourly scale (Vitale, 2002). The purpose of this study was to determine the interval of the fluctuations in discharge and to explain what causes those discharge patterns in three thermally influenced streams in Yellowstone National Park.
    [Show full text]