Ofurban Runoff
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(P 117-140) Flood Pulse.Qxp
117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g. -
Managing Storm Water Runoff to Prevent Contamination of Drinking Water
United States Office of Water EPA 816-F-01-020 Environmental Protection (4606) July 2001 Agency Source Water Protection Practices Bulletin Managing Storm Water Runoff to Prevent Contamination of Drinking Water Storm water runoff is rain or snow melt that flows off the land, from streets, roof tops, and lawns. The runoff carries sediment and contaminants with it to a surface water body or infiltrates through the soil to ground water. This fact sheet focuses on the management of runoff in urban environments; other fact sheets address management measures for other specific sources, such as pesticides, animal feeding operations, and vehicle washing. SOURCES OF STORM WATER RUNOFF Urban and suburban areas are predominated by impervious cover including pavements on roads, sidewalks, and parking lots; rooftops of buildings and other structures; and impaired pervious surfaces (compacted soils) such as dirt parking lots, walking paths, baseball fields and suburban lawns. During storms, rainwater flows across these impervious surfaces, mobilizing contaminants, and transporting them to water bodies. All of the activities that take place in urban and suburban areas contribute to the pollutant load of storm water runoff. Oil, gasoline, and automotive fluids drip from vehicles onto roads and parking lots. Storm water runoff from shopping malls and retail centers also contains hydrocarbons from automobiles. Landscaping by homeowners, around businesses, and on public grounds contributes sediments, pesticides, fertilizers, and nutrients to runoff. Construction of roads and buildings is another large contributor of sediment loads to waterways. In addition, any uncovered materials such as improperly stored hazardous substances (e.g., household Parking lot runoff cleaners, pool chemicals, or lawn care products), pet and wildlife wastes, and litter can be carried in runoff to streams or ground water. -
Analysis of Streamflow Variability and Trends in the Meta River, Colombia
water Article Analysis of Streamflow Variability and Trends in the Meta River, Colombia Marco Arrieta-Castro 1, Adriana Donado-Rodríguez 1, Guillermo J. Acuña 2,3,* , Fausto A. Canales 1,* , Ramesh S. V. Teegavarapu 4 and Bartosz Ka´zmierczak 5 1 Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Atlántico, Colombia; [email protected] (M.A.-C.); [email protected] (A.D.-R.) 2 Department of Civil and Environmental Engineering, Instituto de Estudios Hidráulicos y Ambientales, Universidad del Norte, Km.5 Vía Puerto Colombia, Barranquilla 081007, Colombia 3 Programa de Ingeniería Ambiental, Universidad Sergio Arboleda, Escuela de Ciencias Exactas e Ingeniería (ECEI), Calle 74 #14-14, Bogotá D.C. 110221, Colombia 4 Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; [email protected] 5 Department of Water Supply and Sewerage Systems, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; [email protected] * Correspondence: [email protected] (F.A.C.); [email protected] (G.J.A.); Tel.: +57-5-3362252 (F.A.C.) Received: 29 March 2020; Accepted: 13 May 2020; Published: 20 May 2020 Abstract: The aim of this research is the detection and analysis of existing trends in the Meta River, Colombia, based on the streamflow records from seven gauging stations in its main course, for the period between June 1983 to July 2019. The Meta River is one of the principal branches of the Orinoco River, and it has a high environmental and economic value for this South American country. -
Urban Flooding Mitigation Techniques: a Systematic Review and Future Studies
water Review Urban Flooding Mitigation Techniques: A Systematic Review and Future Studies Yinghong Qin 1,2 1 College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China; [email protected]; Tel.: +86-0771-323-2464 2 College of Civil Engineering and Architecture, Guangxi University, 100 University Road, Nanning 530004, China Received: 20 November 2020; Accepted: 14 December 2020; Published: 20 December 2020 Abstract: Urbanization has replaced natural permeable surfaces with roofs, roads, and other sealed surfaces, which convert rainfall into runoff that finally is carried away by the local sewage system. High intensity rainfall can cause flooding when the city sewer system fails to carry the amounts of runoff offsite. Although projects, such as low-impact development and water-sensitive urban design, have been proposed to retain, detain, infiltrate, harvest, evaporate, transpire, or re-use rainwater on-site, urban flooding is still a serious, unresolved problem. This review sequentially discusses runoff reduction facilities installed above the ground, at the ground surface, and underground. Mainstream techniques include green roofs, non-vegetated roofs, permeable pavements, water-retaining pavements, infiltration trenches, trees, rainwater harvest, rain garden, vegetated filter strip, swale, and soakaways. While these techniques function differently, they share a common characteristic; that is, they can effectively reduce runoff for small rainfalls but lead to overflow in the case of heavy rainfalls. In addition, most of these techniques require sizable land areas for construction. The end of this review highlights the necessity of developing novel, discharge-controllable facilities that can attenuate the peak flow of urban runoff by extending the duration of the runoff discharge. -
Stream Discharge (Streamflow)
The Importance of Streamflow in California’s Southern Sierra Nevada Mountains Kings River Experimental Watersheds Because 55 to 65 percent of California’s developed water comes from small streams in the Sierra Nevada, it is important to under- stand the role the snowpack has in the distribution and quantity of stream discharge (streamflow). In the southern Sierra, more than 80 percent of precipitation falls December through April. However, owing to the delay in snowmelt, there is a lag in runoff until the spring. At higher elevation sites, the spring melt does not peak until May or even June. This makes mountain water available to California during the summer months. The Kings River Experi- mental Watersheds (KREW) sites demonstrate that precipitation in the form of snow generates greater yearly discharge in a given watershed. The difference in discharge between the KREW Provi- dence site and Bull site is as much as 20 percent per year. C. Hunsaker Research Area Figure 1—KREW’s double flume system. The large flume KREW is a watershed-level, integrated ecosystem project for (background) accurately captures high flows, and the small flume headwater streams in the Sierra Nevada. Eight watersheds at two is successful at measuring lower base flows. study sites are fully instrumented to monitor ecosystem changes. Stream discharge data, just one component of the project, have been collected since 2002 from the Providence site and since 2003 from the Bull site. What is Stream Discharge? Discharge is the amount of water leaving each watershed within the stream channel. It is represented as a rate of flow such as cubic feet per second (cfs), gallons per minute (gpm), or acre-feet per year. -
From the River to You: USGS Real-Time Streamflow Information …From the National Streamflow Information Program
From the River to You: USGS Real-Time Streamflow Information …from the National Streamflow Information Program This Fact Sheet is one in a series that highlights information or recent research findings from the USGS National Streamflow Information Program (NSIP). The investigations and scientific results reported in this series require a nationally consistent streamgaging network with stable long-term monitoring sites and a rigorous program of data, quality assurance, management, archiving, and synthesis. NSIP produces multipurpose, unbiased surface-water information that is readily accessible to all. Introduction Collecting and Transmitting data are stored in a data logger in Streamflow Information the gagehouse. As part of the National Stream- On a preset schedule, typically flow Information Program, the U.S. The streamflow information every 1 to 4 hours, the streamgage Geological Survey (USGS) operates collected at most streamgages transmits all the stage information more than 7,400 streamgages nation- is stream stage (also called gage recorded since the last transmission to wide to provide streamflow informa- height). This is the height of the a Geostationary Operational Envi- tion for a wide variety of uses. These water surface above a reference level ronmental Satellite (GOES). Many uses include prediction of floods, or datum. Stream stage is measured streamgages have predetermined management and allocation of water by a variety of methods including stage thresholds. When these thresh- resources, design and operation of floats, pressure transducers, and olds are exceeded, the time between engineering structures, scientific acoustic or optical sensors (fig. 1). transmissions to the satellite will research, operation of locks and Stage data are measured at the decrease from 1 to 4 hours to every dams, and for recreational safety and time interval necessary to monitor the 15 minutes to provide more timely enjoyment. -
Pollutant Association with Suspended Solids in Stormwater in Tijuana, Mexico
Int. J. Environ. Sci. Technol. (2014) 11:319–326 DOI 10.1007/s13762-013-0214-3 ORIGINAL PAPER Pollutant association with suspended solids in stormwater in Tijuana, Mexico F. T. Wakida • S. Martinez-Huato • E. Garcia-Flores • T. D. J. Pin˜on-Colin • H. Espinoza-Gomez • A. Ames-Lo´pez Received: 24 July 2012 / Revised: 12 February 2013 / Accepted: 23 February 2013 / Published online: 16 March 2013 Ó Islamic Azad University (IAU) 2013 Abstract Stormwater runoff from urban areas is a major Introduction source of many pollutants to water bodies. Suspended solids are one of the main pollutants because of their Stormwater pollution is a major problem in urban areas. association with other pollutants. The objective of this The loadings and concentrations of water pollutants, such study was to evaluate the relationship between suspended as suspended solids, nutrients, and heavy metals, are typi- solids and other pollutants in stormwater runoff in the city cally higher in urban stormwater runoff than in runoff from of Tijuana. Seven sites were sampled during seven rain rural areas (Vaze and Chiew 2004). Stormwater has events during the 2009–2010 season and the different become a significant contributor of pollutants to water particle size fractions were separated by sieving and fil- bodies. These pollutants can be inorganic (e.g. heavy tration. The results have shown that the samples have high metals and nitrates) and/or organic, such as polycyclic concentration of total suspended solids, the values of which aromatic hydrocarbons and phenols from asphalt pavement ranged from 725 to 4,411.6 mg/L. The samples were ana- degradation (Sansalone and Buchberger 1995). -
Probabilistic Assessment of Urban Runoff Erosion Potential
307 Probabilistic assessment of urban runoff erosion potential J.A. Harris and B.J. Adams Abstract: At the planning or screening level of urban development, analytical modeling using derived probability distribution theory is a viable alternative to continuous simulation, offering considerably less computational effort. A new set of analytical probabilistic models is developed for predicting the erosion potential of urban stormwater runoff. The marginal probability distributions for the duration of a hydrograph in which the critical channel velocity is exceeded (termed exceedance duration) are computed using derived probability distribution theory. Exceedance duration and peak channel velocity are two random variables upon which erosion potential is functionally dependent. Reasonable agreement exists between the derived marginal probability distributions for exceedance duration and continuous EPA Stormwater Management Model (SWMM) simulations at more common return periods. It is these events of lower magnitude and higher frequency that are the most significant to erosion-potential prediction. Key words: erosion, stormwater management, derived probability distribution, exceedance duration. Résumé : Au niveau de la planification ou de la sélection en développement urbain, la modélisation analytique au moyen de la théorie de la distribution probabiliste dérivée est une alternative valable à la simulation continue car elle demande un effort computationnel beaucoup moindre. Dans le but de prédire le potentiel d’érosion par des eaux de ruissellement en milieu urbain, un nouvel ensemble de modèles probabilistes analytiques a été développé. Les distributions de probabilité marginales pour la durée d’un hydrogramme dans lequel la vélocité critique de courant dans le canal est dépassée (appelé durée de dépassement) sont calculées en utilisant la théorie de la distribution de probabilité dérivée. -
Leachate Quantities After Closure of a Landfill
Leachate Quantities after Closure of a Landfill Ali Khatami, Ph.D., P.E., The leachate quantities for SCS Engineers the period of 2010 through 2014 were obtained and Criteria for the solid waste analyzed. The data clearly landfills (40 CFR Part 258 shows a downward trend of or the Subtitle D Federal) leachate quantities following have been around for over 30 closure, as would be years and many municipal expected. Leachate collected solid waste (MSW) landfills from the landfill during have been constructed 2010 was reported on a with lining systems in monthly basis when leachate accordance with the Subtitle quantities after closure were D requirements. However, still high and needed to be very few Subtitle D landfills removed from the facility have been entirely closed for disposal every month. with final covers that include However, leachate quantities a geomembrane barrier layer. rapidly decreased and The significance of the final Glades County Landfill after closing. monthly shipment of leachate covers with geomembrane was no longer necessary; is that percolation of rain Since the landfill was closed in one single construction event, rain water instead, leachate was removed when water into the landfill essentially the storage tank reached a point that stops following completion of the percolation was essentially eliminated almost instantaneously considering the leachate had to be removed and final cover. Assuming the final cover quantities reported. Therefore, the the 20-year time frame the landfill was system remains intact, leachate that data did not have monthly values, but continues to be generated after closure open. It is important to note that the maximum thickness of waste in the clusters of several-months data. -
Distributed Hydrologic Modeling for Streamflow Prediction at Ungauged Basins
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2008 Distributed Hydrologic Modeling For Streamflow Prediction At Ungauged Basins Christina Bandaragoda Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Civil and Environmental Engineering Commons Recommended Citation Bandaragoda, Christina, "Distributed Hydrologic Modeling For Streamflow Prediction At Ungauged Basins" (2008). All Graduate Theses and Dissertations. 62. https://digitalcommons.usu.edu/etd/62 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DISTRIBUTED HYDROLOGIC MODELING FOR STREAMFLOW PREDICTION AT UNGAUGED BASINS by Christina Bandaragoda A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Civil and Environmental Engineering UTAH STATE UNIVERSITY Logan, UT 2007 ii ABSTRACT Distributed Hydrologic Modeling for Prediction of Streamflow at Ungauged Basins by Christina Bandaragoda, Doctor of Philosophy Utah State University, 2008 Major Professor: Dr. David G. Tarboton Department: Civil and Environmental Engineering Hydrologic modeling and streamflow prediction of ungauged basins is an unsolved scientific problem as well as a policy-relevant science theme emerging as a major -
Introduction and Characteristics of Flow
Introduction and Characteristics of Flow By James W. LaBaugh and Donald O. Rosenberry Chapter 1 of Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water Edited by Donald O. Rosenberry and James W. LaBaugh Techniques and Methods Chapter 4–D2 U.S. Department of the Interior U.S. Geological Survey Contents Introduction.....................................................................................................................................................5 Purpose and Scope .......................................................................................................................................6 Characteristics of Water Exchange Between Surface Water and Ground Water .............................7 Characteristics of Near-Shore Sediments .......................................................................................8 Temporal and Spatial Variability of Flow .........................................................................................10 Defining the Purpose for Measuring the Exchange of Water Between Surface Water and Ground Water ..........................................................................................................................12 Determining Locations of Water Exchange ....................................................................................12 Measuring Direction of Flow ............................................................................................................15 Measuring the Quantity of Flow .......................................................................................................15 -
Probabilistic Extreme Flood Hydrographs That Use Paleoflood Data for Dam Safety Applications
Probabilistic Extreme Flood Hydrographs That Use PaleoFlood Data for Dam Safety Applications Dam Safety Office Report No. DSO-03-03 Department of the Interior Bureau of Reclamation June 2003 Contents Page Introduction................................................................................................................................... 1 1.1 Background..................................................................................................................................2 1.2 Objectives....................................................................................................................................4 1.3 Acknowledgements .....................................................................................................................4 Probabilistic Extreme Flood Hydrographs from Streamflow Sampling................................. 5 2.1 General Procedure .......................................................................................................................5 2.2 Example Applications................................................................................................................11 Probabilitic Extreme Flood Hydrographs Using Rainfall-Runoff Models............................ 18 3.1 General Procedure .....................................................................................................................19 3.2 Example Applications s.............................................................................................................20 Reservoir Routing