Towards J.A.R.V.I.S. for Software Engineering: Lessons Learned in Implementing a Natural Language Chat Interface
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Realising the Potential of Algal Biomass Production Through Semantic Web and Linked Data
LEAPS: Realising the Potential of Algal Biomass Production through Semantic Web and Linked data ∗ Monika Solanki Johannes Skarka Craig Chapman KBE Lab Karlsruhe Institute of KBE Lab Birmingham City University Technology (ITAS) Birmingham City University [email protected] [email protected] [email protected] ABSTRACT In order to derive fuels from biomass, algal operation plant Recently algal biomass has been identified as a potential sites are setup that facilitate biomass cultivation and con- source of large scale production of biofuels. Governments, version of the biomass into end use products, some of which environmental research councils and special interests groups are biofuels. Microalgal biomass production in Europe is are funding several efforts that investigate renewable energy seen as a promising option for biofuels production regarding production opportunities in this sector. However so far there energy security and sustainability. Since microalgae can be has been no systematic study that analyses algal biomass cultivated in photobioreactors on non-arable land this tech- potential especially in North-Western Europe. In this paper nology could significantly reduce the food vs. fuel dilemma. we present a spatial data integration and analysis frame- However, until now there has been no systematic analysis work whereby rich datasets from the algal biomass domain of the algae biomass potential for North-Western Europe. that include data about algal operation sites and CO2 source In [20], the authors assessed the resource potential for mi- sites amongst others are semantically enriched with ontolo- croalgal biomass but excluded all areas not between 37◦N gies specifically designed for the domain and made available and 37◦S, thus most of Europe. -
Digital Workaholics:A Click Away
GSJ: Volume 9, Issue 5, May 2021 ISSN 2320-9186 1479 GSJ: Volume 9, Issue 5, May 2021, Online: ISSN 2320-9186 www.globalscientificjournal.com DIGITAL WORKAHOLICS:A CLICK AWAY Tripti Srivastava Muskan Chauhan Rohit Pandey Galgotias University Galgotias University Galgotias University [email protected] muskanchauhansmile@g [email protected] m mail.com om ABSTRACT:-In today’s world, Artificial Intelligence (AI) has become an 1. INTRODUCTION integral part of human life. There are many applications of AI such as Chatbot, AI defines as those device that understands network security, complex problem there surroundings and took actions which solving, assistants, and many such. increase there chance to accomplish its Artificial Intelligence is designed to have outcomes. Artifical Intelligence used as “a cognitive intelligence which learns from system’s ability to precisely interpret its experience to take future decisions. A external data, to learn previous such data, virtual assistant is also an example of and to use these learnings to accomplish cognitive intelligence. Virtual assistant distinct outcomes and tasks through supple implies the AI operated program which adaptation.” Artificial Intelligence is the can assist you to reply to your query or developing branch of computer science. virtually do something for you. Currently, Having much more power and ability to the virtual assistant is used for personal develop the various application. AI implies and professional use. Most of the virtual the use of a different algorithm to solve assistant is device-dependent and is bind to various problems. The major application a single user or device. It recognizes only being Optical character recognition, one user. -
Deep Almond: a Deep Learning-Based Virtual Assistant [Language-To-Code Synthesis of Trigger-Action Programs Using Seq2seq Neural Networks]
Deep Almond: A Deep Learning-based Virtual Assistant [Language-to-code synthesis of Trigger-Action programs using Seq2Seq Neural Networks] Giovanni Campagna Rakesh Ramesh Computer Science Department Stanford University Stanford, CA 94305 {gcampagn, rakeshr1}@stanford.edu Abstract Virtual assistants are the cutting edge of end user interaction, thanks to endless set of capabilities across multiple services. The natural language techniques thus need to be evolved to match the level of power and sophistication that users ex- pect from virtual assistants. In this report we investigate an existing deep learning model for semantic parsing, and we apply it to the problem of converting nat- ural language to trigger-action programs for the Almond virtual assistant. We implement a one layer seq2seq model with attention layer, and experiment with grammar constraints and different RNN cells. We take advantage of its existing dataset and we experiment with different ways to extend the training set. Our parser shows mixed results on the different Almond test sets, performing better than the state of the art on synthetic benchmarks by about 10% but poorer on real- istic user data by about 15%. Furthermore, our parser is shown to be extensible to generalization, as well as or better than the current system employed by Almond. 1 Introduction Today, we can ask virtual assistants like Amazon Alexa, Apple’s Siri, Google Now to perform simple tasks like, “What’s the weather”, “Remind me to take pills in the morning”, etc. in natural language. The next evolution of natural language interaction with virtual assistants is in the form of task automation such as “turn on the air conditioner whenever the temperature rises above 30 degrees Celsius”, or “if there is motion on the security camera after 10pm, call Bob”. -
From Cataloguing Cards to Semantic Web 1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scientific Open-access Literature Archive and Repository Archeologia e Calcolatori 20, 2009, 111-128 REPRESENTING KNOWLEDGE IN ARCHAEOLOGY: FROM CATALOGUING CARDS TO SEMANTIC WEB 1. Introduction Representing knowledge is the basis of any catalogue. The Italian Ca- talogue was based on very valuable ideas, developed in the late 1880s, with the basic concept of putting objects in their context. Initially cataloguing was done manually, with typewritten cards. The advent of computers led to some early experimentations, and subsequently to the de�nition of a more formalized representation schema. The web produced a cultural revolution, and made the need for technological and semantic interoperability more evi- dent. The Semantic Web scenario promises to allow a sharing of knowledge, which will make the knowledge that remained unexpressed in the traditional environments available to any user, and allow objects to be placed in their cultural context. In this paper we will brie�y recall the principles of cataloguing and lessons learned by early computer experiences. Subsequently we will descri- be the object model for archaeological items, discussing its strong and weak points. In section 5 we present the web scenario and approaches to represent knowledge. 2. Cataloguing: history and principles The Italian Catalogue of cultural heritage has its roots in the experiences and concepts, developed in the late 1880s and early 1900s, by the famous art historian Adolfo Venturi, who was probably one of the �rst scholars to think explicitly in terms of having a frame of reference to describe works of art, emphasizing as the main issue the context in which the work had been produced. -
Inside Chatbots – Answer Bot Vs. Personal Assistant Vs. Virtual Support Agent
WHITE PAPER Inside Chatbots – Answer Bot vs. Personal Assistant vs. Virtual Support Agent Artificial intelligence (AI) has made huge strides in recent years and chatbots have become all the rage as they transform customer service. Terminology, such as answer bots, intelligent personal assistants, virtual assistants for business, and virtual support agents are used interchangeably, but are they the same thing? The concepts are similar, but each serves a different purpose, has specific capabilities, varying extensibility, and provides a range of business value. 2018 © Copyright ServiceAide, Inc. 1-650-206-8988 | www.serviceaide.com | [email protected] INSIDE CHATBOTS – ANSWER BOT VS. PERSONAL ASSISTANT VS. VIRTUAL SUPPORT AGENT WHITE PAPER Before we dive into each solution, a short technical primer is in order. A chatbot is an AI-based solution that uses natural language understanding to “understand” a user’s statement or request and map that to a specific intent. The ‘intent’ is equivalent to the intention or ‘the want’ of the user, such as ordering a pizza or booking a flight. Once the chatbot understands the intent of the user, it can carry out the corresponding task(s). To create a chatbot, someone (the developer or vendor) must determine the services that the ‘bot’ will provide and then collect the information to support requests for the services. The designer must train the chatbot on numerous speech patterns (called utterances) which cover various ways a user or customer might express intent. In this development stage, the developer defines the information required for a particular service (e.g. for a pizza order the chatbot will require the size of the pizza, crust type, and toppings). -
Welsh Language Technology Action Plan Progress Report 2020 Welsh Language Technology Action Plan: Progress Report 2020
Welsh language technology action plan Progress report 2020 Welsh language technology action plan: Progress report 2020 Audience All those interested in ensuring that the Welsh language thrives digitally. Overview This report reviews progress with work packages of the Welsh Government’s Welsh language technology action plan between its October 2018 publication and the end of 2020. The Welsh language technology action plan derives from the Welsh Government’s strategy Cymraeg 2050: A million Welsh speakers (2017). Its aim is to plan technological developments to ensure that the Welsh language can be used in a wide variety of contexts, be that by using voice, keyboard or other means of human-computer interaction. Action required For information. Further information Enquiries about this document should be directed to: Welsh Language Division Welsh Government Cathays Park Cardiff CF10 3NQ e-mail: [email protected] @cymraeg Facebook/Cymraeg Additional copies This document can be accessed from gov.wales Related documents Prosperity for All: the national strategy (2017); Education in Wales: Our national mission, Action plan 2017–21 (2017); Cymraeg 2050: A million Welsh speakers (2017); Cymraeg 2050: A million Welsh speakers, Work programme 2017–21 (2017); Welsh language technology action plan (2018); Welsh-language Technology and Digital Media Action Plan (2013); Technology, Websites and Software: Welsh Language Considerations (Welsh Language Commissioner, 2016) Mae’r ddogfen yma hefyd ar gael yn Gymraeg. This document is also available in Welsh. -
Download Slides
a platform for all that we know savas parastatidis http://savas.me savasp transition from web to apps increasing focus on information (& knowledge) rise of personal digital assistants importance of near-real time processing http://aptito.com/blog/wp-content/uploads/2012/05/smartphone-apps.jpg today... storing computing computers are huge amounts great tools for of data managing indexing example google and microsoft both have copies of the entire web (and more) for indexing purposes tomorrow... storing computing computers are huge amounts great tools for of data managing indexing acquisition discovery aggregation organization we would like computers to of the world’s information also help with the automatic correlation analysis and knowledge interpretation inference data information knowledge intelligence wisdom expert systems watson freebase wolframalpha rdbms google now web indexing data is symbols (bits, numbers, characters) information adds meaning to data through the introduction of relationship - it answers questions such as “who”, “what”, “where”, and “when” knowledge is a description of how the world works - it’s the application of data and information in order to answer “how” questions G. Bellinger, D. Castro, and A. Mills, “Data, Information, Knowledge, and Wisdom,” Inform. pp. 1–4, 2004 web – the data platform web – the information platform web – the knowledge platform foundation for new experiences “wisdom is not a product of schooling but of the lifelong attempt to acquire it” representative examples wolframalpha watson source: -
Knowledge Extraction for Hybrid Question Answering
KNOWLEDGEEXTRACTIONFORHYBRID QUESTIONANSWERING Von der Fakultät für Mathematik und Informatik der Universität Leipzig angenommene DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fachgebiet Informatik vorgelegt von Ricardo Usbeck, M.Sc. geboren am 01.04.1988 in Halle (Saale), Deutschland Die Annahme der Dissertation wurde empfohlen von: 1. Professor Dr. Klaus-Peter Fähnrich (Leipzig) 2. Professor Dr. Philipp Cimiano (Bielefeld) Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am 17. Mai 2017 mit dem Gesamtprädikat magna cum laude. Leipzig, den 17. Mai 2017 bibliographic data title: Knowledge Extraction for Hybrid Question Answering author: Ricardo Usbeck statistical information: 10 chapters, 169 pages, 28 figures, 32 tables, 8 listings, 5 algorithms, 178 literature references, 1 appendix part supervisors: Prof. Dr.-Ing. habil. Klaus-Peter Fähnrich Dr. Axel-Cyrille Ngonga Ngomo institution: Leipzig University, Faculty for Mathematics and Computer Science time frame: January 2013 - March 2016 ABSTRACT Over the last decades, several billion Web pages have been made available on the Web. The growing amount of Web data provides the world’s largest collection of knowledge.1 Most of this full-text data like blogs, news or encyclopaedic informa- tion is textual in nature. However, the increasing amount of structured respectively semantic data2 available on the Web fosters new search paradigms. These novel paradigms ease the development of natural language interfaces which enable end- users to easily access and benefit from large amounts of data without the need to understand the underlying structures or algorithms. Building a natural language Question Answering (QA) system over heteroge- neous, Web-based knowledge sources requires various building blocks. -
Datatone: Managing Ambiguity in Natural Language Interfaces for Data Visualization Tong Gao1, Mira Dontcheva2, Eytan Adar1, Zhicheng Liu2, Karrie Karahalios3
DataTone: Managing Ambiguity in Natural Language Interfaces for Data Visualization Tong Gao1, Mira Dontcheva2, Eytan Adar1, Zhicheng Liu2, Karrie Karahalios3 1University of Michigan, 2Adobe Research 3University of Illinois, Ann Arbor, MI San Francisco, CA Urbana Champaign, IL fgaotong,[email protected] fmirad,[email protected] [email protected] ABSTRACT to be both flexible and easy to use. General purpose spread- Answering questions with data is a difficult and time- sheet tools, such as Microsoft Excel, focus largely on offer- consuming process. Visual dashboards and templates make ing rich data transformation operations. Visualizations are it easy to get started, but asking more sophisticated questions merely output to the calculations in the spreadsheet. Asking often requires learning a tool designed for expert analysts. a “visual question” requires users to translate their questions Natural language interaction allows users to ask questions di- into operations on the spreadsheet rather than operations on rectly in complex programs without having to learn how to the visualization. In contrast, visual analysis tools, such as use an interface. However, natural language is often ambigu- Tableau,1 creates visualizations automatically based on vari- ous. In this work we propose a mixed-initiative approach to ables of interest, allowing users to ask questions interactively managing ambiguity in natural language interfaces for data through the visualizations. However, because these tools are visualization. We model ambiguity throughout the process of often intended for domain specialists, they have complex in- turning a natural language query into a visualization and use terfaces and a steep learning curve. algorithmic disambiguation coupled with interactive ambigu- Natural language interaction offers a compelling complement ity widgets. -
Directions in AI Research and Applications at Siemens Corporate
AI Magazine Volume 11 Number 1 (1991)(1990) (© AAAI) Research in Progress of linguistic phenomena. The com- Directions in AI Research putational work concerns questions of adequate processing models and algorithms, as embodied in the and Applications at actual interfaces being developed. These topics are explored in the Siemens Corporate Research framework of three projects: The nat- ural language consulting dialogue and Development project (Wisber) takes up research- oriented topics (descriptive grammar formalisms and linguistically adequate grammar specification, handling of Wolfram Buettner, Klaus Estenfeld, discourse, and so on), the data-access Hans Haugeneder, and Peter Struss project (Sepp) focuses on the practi- cal application of state-of-the-art technology, and the work on gram- mar-development environments ■ Many barriers exist today that prevent particular, Prolog extensions; and (4) (Ape) centers on the problem of ade- effective industrial exploitation of current design and analysis of neural networks. quate tools for specifying linguistic and future AI research. These barriers can The lab’s 26 researchers are orga- knowledge sources and efficient pro- only be removed by people who are work- nized into four groups corresponding cessing methods. ing at the scientific forefront in AI and to these areas. Together, they provide Wisber is jointly funded by the know potential industrial needs. Siemens with innovative software The Knowledge Processing Laboratory’s German government and several research and development concentrates in technologies, appropriate applications, industrial and academic partners. the following areas: (1) natural language prototypical implementations of AI The goal of the project is to develop interfaces to knowledge-based systems and systems, and evaluations of new a knowledge-based advice-giving databases; (2) theoretical and experimen- techniques and trends. -
A Generator of Natural Language Semantic Parsers for Virtual
Genie: A Generator of Natural Language Semantic Parsers for Virtual Assistant Commands Giovanni Campagna∗ Silei Xu∗ Mehrad Moradshahi Computer Science Department Computer Science Department Computer Science Department Stanford University Stanford University Stanford University Stanford, CA, USA Stanford, CA, USA Stanford, CA, USA [email protected] [email protected] [email protected] Richard Socher Monica S. Lam Salesforce, Inc. Computer Science Department Palo Alto, CA, USA Stanford University [email protected] Stanford, CA, USA [email protected] Abstract CCS Concepts • Human-centered computing → Per- To understand diverse natural language commands, virtual sonal digital assistants; • Computing methodologies assistants today are trained with numerous labor-intensive, → Natural language processing; • Software and its engi- manually annotated sentences. This paper presents a method- neering → Context specific languages. ology and the Genie toolkit that can handle new compound Keywords virtual assistants, semantic parsing, training commands with significantly less manual effort. data generation, data augmentation, data engineering We advocate formalizing the capability of virtual assistants with a Virtual Assistant Programming Language (VAPL) and ACM Reference Format: using a neural semantic parser to translate natural language Giovanni Campagna, Silei Xu, Mehrad Moradshahi, Richard Socher, into VAPL code. Genie needs only a small realistic set of input and Monica S. Lam. 2019. Genie: A Generator of Natural Lan- sentences for validating the neural model. Developers write guage Semantic Parsers for Virtual Assistant Commands. In Pro- templates to synthesize data; Genie uses crowdsourced para- ceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’19), June 22–26, 2019, phrases and data augmentation, along with the synthesized Phoenix, AZ, USA. -
Virtual Assistant Services Portfolio
PORTFOLIO OF Virtual Assistant Services www.riojacinto.com WELCOME Hey there! My name is Rio Jacinto and I am a Virtual Assistant passionately helping busy business owners, women entrepreneurs and bloggers succeed by helping them with their website, social media accounts and others so they have more time to attract more ideal clients! I understand, You're here because you need an extra pair of hands to manage other business tasks that you're no longer have time to do. I get it, your main responsibility is to focus on building your business. I can help you with that. As a business owner you want to save some time to do more important roles in your business and I am here to help you and make that happen. Please check out my services and previous works in the next few pages. I can't wait to work with you! HOW CAN I HELP YOU MY SERVICES Creating Graphics using Canva Creating ebooks Personal errands (purchasing gifts for loved ones / family members online) Creating landing pages and sales pages FB Ads, Chatbots Hotel and Flight Booking Preparing Slideshows for Webinars or Presentations Recruitment and Outsourcing Management (source for other team members like writers) Social Media Management (Facebook, LinkedIn, Youtube, Pinterest, Instagram.) Creation of Basic Squarespace/Shopify Website Manage your Blog (Basic Squarespace/Shopify website Management) Filter and reply to comments on your blog Other virtual services, as available. PORTFOLIO FLYERS/MARKETING PORTFOLIO WEBSITE PORTFOLIO PINTEREST PORTFOLIO SOCIAL MEDIA GRAPHICS Facebook PORTFOLIO SOCIAL MEDIA GRAPHICS Instagram PORTFOLIO PRESENTATION WHITE PAPER RATES CHOOSE HERE FOR THE BEST PACKAGE THAT SUITS YOU Social Media Management Package starts from $150/mo *graphics creation/curation/scheduling/client support Pinterest Management Package starts from $50/wk *client provides stock photo or additional $2/ea.