Bleeding Disorders in Congenital Syndromes Susmita N

Total Page:16

File Type:pdf, Size:1020Kb

Bleeding Disorders in Congenital Syndromes Susmita N Bleeding Disorders in Congenital Syndromes Susmita N. Sarangi, MD, Suchitra S. Acharya, MD Pediatricians provide a medical home for children with congenital abstract syndromes who often need complex multidisciplinary care. There are some syndromes associated with thrombocytopenia, inherited platelet disorders, factor deficiencies, connective tissue disorders, and vascular abnormalities, which pose a real risk of bleeding in affected children associated with trauma or surgeries. The risk of bleeding is not often an obvious feature of the syndrome and not well documented in the literature. This makes it especially hard for pediatricians who may care for a handful of children with these rare congenital syndromes in their lifetime. This review provides an overview of the etiology of bleeding in the different congenital syndromes along with a concise review of the hematologic and nonhematologic clinical manifestations. It also highlights the need and timing of diagnostic evaluation to uncover the bleeding risk in these syndromes emphasizing a primary care approach. Bleeding Disorders and Thrombosis Program, Cohen Children with congenital syndromes these patients as part of surveillance Children’s Medical Center of New York, New Hyde Park, with multiple anomalies need a or before scheduled procedures New York multidisciplinary approach to and recommends guidelines for Drs Sarangi and Acharya contributed to the their care, along with continued appropriate and timely referral to the conceptualization, content, and composition of the surveillance for rare manifestations hematologist. manuscript and approved the fi nal manuscript as such as a bleeding diathesis, which submitted. may not be evident at diagnosis. This Achieving hemostasis is a complex DOI: 10.1542/peds.2015-4360 accompanying bleeding diathesis process starting with endothelial Accepted for publication Aug 15, 2016 due to thrombocytopenia or other injury that results in platelet plug Address correspondence to Suchitra S. Acharya, coagulation defects may be a part of formation, which is then strengthened MD, Bleeding Disorders and Thrombosis Program, the syndrome that is not routinely by deposition of fibrin formed Cohen Children’s Medical Center of New York, 269- addressed. Consequently, this may go by the proteolytic coagulation 01 76th Ave, Suite 255, New Hyde Park, NY 11040. E-mail: [email protected] unrecognized in these children until cascade. Platelets initially attach they face hemostatic challenges, which to subendothelial collagen and PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). is not uncommon (given the number von Willebrand factor (vWF) via of corrective surgeries performed glycoproteins VI and 1bα (GPVI, Copyright © 2017 by the American Academy of Pediatrics for the congenital defects) in this GPIbα). This leads to activation of population leading to unanticipated platelets releasing Thromboxane FINANCIAL DISCLOSURE: The authors have indicated they have no fi nancial relationships surgical bleeding. Counseling for these A2 (TxA2) and conforming the relevant to this article to disclose. families should include discussions glycoprotein IIb/IIIa (GPIIb/IIIa) FUNDING: No external funding. regarding potential spontaneous or receptor on the platelet surface into trauma-related bleeding associated its high affinity state, which now POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential confl icts of with these syndromes that can binds to fibrinogen and vWF. This interest to disclose. evolve over time. This review aims further leads to release of platelet to highlight congenital syndromes granule contents (fibrinogen, Factor where hemostatic defects have been V, platelet factor 4, Calcium, ADP, To cite: Sarangi SN and Acharya SS. Bleeding reported, aid the treating primary care ATP, serotonin, vWF) leading to an Disorders in Congenital Syndromes. Pediatrics. 2017;139(2):e20154360 physician (PCP) to adequately workup extremely procoagulant surface and Downloaded from www.aappublications.org/news by guest on September 25, 2021 PEDIATRICS Volume 139 , number 2 , February 2017 :e 20154360 STATE-OF-THE-ART REVIEW ARTICLE platelet aggregation. The stage is of which 17% (43 samples) were made soon after birth. Although now set for the cascade of serine due to chromosomal anomalies. The survival beyond infancy is rare, life proteases (factors V, VII, VIII, IX, X, prevalence was 54% in Trisomy expectancy is improving. Recognizing XI, XII, XIII) activated by the release 13, 86% in Trisomy 18, 31% in thrombocytopenia is important of tissue factor, which culminate in Turner syndrome, and 6% in because these conditions have the cleaving of thrombin to form Trisomy 21–Down syndrome (DS). associated cardiac, respiratory, and an insoluble fibrin mesh leading However, Hord et al 7 reported mild craniofacial anomalies that may need to a stable clot at the site of injury. to moderate thrombocytopenia corrective or palliative surgeries. With the many players involved in (platelet counts 40 000–100 000/ Surgical planning in these patients coagulation, it can be seen how the μL) in 28% of neonates with DS. The needs a multidisciplinary team with clinical bleeding phenotype can be exact mechanism is not known, but screening blood work to identify modified by gene–gene interactions is thought to be due to decreased thrombocytopenia, which if present by improving or worsening the platelet production, from chronic will need platelet transfusions pre- integrity of clot formation directly fetal hypoxia, which also leads to and postoperatively depending upon or indirectly. Therefore, this review intrauterine growth retardation. 8 the complexity of the surgery guided will focus on congenital syndromes by the hematologist. DS (Trisomy 21) is also associated associated with quantitative with other hematologic findings, Turner syndrome (45, X) can (thrombocytopenia) and qualitative such as polycythemia, neutropenia, be associated with transient platelet function defects (ie, defects abnormal circulating blasts, thrombocytopenia (31% of patients 6) in platelet generation or defects at 1 erythroblastosis, and giant platelets. 9 in the newborn period. Due to the or more levels of platelet activation) Approximately 10% of neonates with single functional X chromosome, girls and coagulation factor deficiencies. DS have transient myeloproliferative can inherit X-linked conditions like It will also highlight congenital disorder, which can present with hemophilia, but this has only very syndromes where bleeding can isolated thrombocytopenia or rarely been described. 12 Therefore, result from defects in the underlying thrombocytosis, leukocytosis, or prolonged bleeding events warrants connective tissue or anatomic persistent peripheral blood blasts. referral to a hematologist for workup. malformations that increase These abnormal blood cells will self- Gastro-enteral bleeding can occur in predisposition to bleeding. It will resolve in most infants by 3 months Turner syndrome due to associated further discuss basic evaluation of after birth; however, 20% can have inflammatory bowel disease or these patients on the basis of a high more progressive disease. Both often unrecognized intestinal index of suspicion and highlight what transient myeloproliferative disorder telangiectasias (incidence of 7%). 13 phenotypes need specialist referral and myeloid leukemia associated for both health maintenance and DiGeorge syndrome (22q11.2 del) with DS (ML-DS), which presents prevention of surgical bleeding and is the most common micro deletion at 1 to 4 years of age, have somatic discuss general treatment principles. syndrome with associated mild mutations in the megakaryocyte Table 1 and Supplemental Tables 5 macrothrombocytopenia in 30% erythroid transcription factor and 6 summarize the key features of of patients resulting from deletion GATA-1. 10, 11 ML-DS has a preceding the congenital syndromes discussed of the contiguous GP1BB gene in myelodysplastic phase with patients in this review. the deleted Chromosome 22q11 presenting with progressive locus, which codes for the subunit anemia and thrombocytopenia, of the platelet adhesion receptor. 1 which then develops into leukemia. COMMON CONGENITAL SYNDROMES Immune dysfunction is common in ASSOCIATED WITH A BLEEDING DS-associated acute lymphoblastic these patients and it is estimated DIATHESIS leukemia develops after age 4 years, that immune thrombocytopenic presenting with cytopenias, and often purpura is 200 times more common in Chromosomal Syndromes lower platelet counts than ML-DS these patients as compared with the patients. Therefore, all DS patients 14, 15 A fault in chromosome distribution general population. These platelet should have a complete blood cell during cell division leads to abnormalities need to be identified count at birth and if found to have aneuploidy, which can be associated early on and specifically before any hematologic abnormalities with thrombocytopenia but is rarely corrective cardiac surgeries. Close should be referred to hematology. severe. Hohlfeld et al 6 in a study of collaboration with a hematologist 5194 fetal blood samples (17 to 41 Other trisomies such as Trisomy 13 before these surgeries will help avert weeks) reported 4.7% samples (247 and Trisomy 18 have very distinct bleeding complications. samples) with thrombocytopenia clinical patterns ( Table 1), Noonan syndrome is a relatively (platelet counts <150 000/μL), out and the diagnosis is usually common autosomal dominant Downloaded
Recommended publications
  • Crofab Brochure
    Control With Confidence The only antivenom derived from native US pit vipers to treat envenomations from all species of North American pit vipers1 CroFab is the only antivenom Derived from geographically and clinically relevant US snakes for comprehensive coverage of all North American pit viper envenomations1 Designed with small, venom-specific protein (Fab) fragments for rapid neutralization of venom toxins throughout affected tissue1,2 With Level 1 evidence in the treatment of copperhead envenomation3 Manufactured to yield the highest level of quality, purity, and safety1 With a proven efficacy and safety profile, backed by >20 years of clinical experience1 Reliably supplied throughout the United States4 CroFab meets World Health Organization (WHO) guidelines for effective antivenom, utilizing venom from 4 clinically relevant pit viper species native to the United States.1,5 Indication CroFab® Crotalidae Polyvalent Immune Fab (Ovine) is a sheep-derived antivenin indicated for the management of adult and pediatric patients with North American crotalid envenomation. The term crotalid is used to describe the Crotalinae subfamily (formerly known as Crotalidae) of venomous snakes which includes rattlesnakes, copperheads and cottonmouths/water moccasins. Important Safety Information Contraindications Do not administer CroFab® to patients with a known history of hypersensitivity to any of its components, or to papaya or papain unless the benefits outweigh the risks and appropriate management for anaphylactic reactions is readily available. Warnings and Precautions Coagulopathy: In clinical trials, recurrent coagulopathy (the return of a coagulation abnormality after it has been successfully treated with antivenin), characterized by decreased fibrinogen, decreased platelets, and elevated prothrombin time, occurred in approximately half of the patients studied; one patient required re-hospitalization and additional antivenin administration.
    [Show full text]
  • Hemoglobin Interaction with Gp1ba Induces Platelet Activation And
    ARTICLE Platelet Biology & its Disorders Hemoglobin interaction with GP1bα induces platelet activation and apoptosis: a novel mechanism associated with intravascular hemolysis Rashi Singhal,1,2,* Gowtham K. Annarapu,1,2,* Ankita Pandey,1 Sheetal Chawla,1 Amrita Ojha,1 Avinash Gupta,1 Miguel A. Cruz,3 Tulika Seth4 and Prasenjit Guchhait1 1Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region, Biotech Science Cluster, Faridabad, India; 2Biotechnology Department, Manipal University, Manipal, Karnataka, India; 3Thrombosis Research Division, Baylor College of Medicine, Houston, TX, USA, and 4Hematology, All India Institute of Medical Sciences, New Delhi, India *RS and GKA contributed equally to this work. ABSTRACT Intravascular hemolysis increases the risk of hypercoagulation and thrombosis in hemolytic disorders. Our study shows a novel mechanism by which extracellular hemoglobin directly affects platelet activation. The binding of Hb to glycoprotein1bα activates platelets. Lower concentrations of Hb (0.37-3 mM) significantly increase the phos- phorylation of signaling adapter proteins, such as Lyn, PI3K, AKT, and ERK, and promote platelet aggregation in vitro. Higher concentrations of Hb (3-6 mM) activate the pro-apoptotic proteins Bak, Bax, cytochrome c, caspase-9 and caspase-3, and increase platelet clot formation. Increased plasma Hb activates platelets and promotes their apoptosis, and plays a crucial role in the pathogenesis of aggregation and development of the procoagulant state in hemolytic disorders. Furthermore, we show that in patients with paroxysmal nocturnal hemoglobinuria, a chronic hemolytic disease characterized by recurrent events of intravascular thrombosis and thromboembolism, it is the elevated plasma Hb or platelet surface bound Hb that positively correlates with platelet activation.
    [Show full text]
  • Common Gene Polymorphisms Associated with Thrombophilia
    Chapter 5 Common Gene Polymorphisms Associated with Thrombophilia Christos Yapijakis, Zoe Serefoglou and Constantinos Voumvourakis Additional information is available at the end of the chapter http://dx.doi.org/10.5772/61859 Abstract Genetic association studies have revealed a correlation between DNA variations in genes encoding factors of the hemostatic system and thrombosis-related disease. Certain var‐ iant alleles of these genes that affect either gene expression or function of encoded protein are known to be genetic risk factors for thrombophilia. The chapter presents the current genetics and molecular biology knowledge of the most important DNA polymorphisms in thrombosis-related genes encoding coagulation factor V (FV), coagulation factor II (FII), coagulation factor XII (FXII), coagulation factor XIII A1 subunit (FXIIIA1), 5,10- methylene tetrahydrofolate reductase (MTHFR), serpine1 (SERPINE1), angiotensin I-con‐ verting enzyme (ACE), angiotensinogen (AGT), integrin A2 (ITGA2), plasma carboxypeptidase B2 (CPB2), platelet glycoprotein Ib α polypeptide (GP1BA), thrombo‐ modulin (THBD) and protein Z (PROZ). The molecular detection methods of each DNA polymorphism is presented, in addition to the current knowledge regarding its influence on thrombophilia and related thrombotic events, including stroke, myocardial infarction, deep vein thrombosis, spontaneous abortion, etc. In addition, best thrombosis prevention strategies with a combination of genetic counseling and molecular testing are discussed. Keywords: Thrombophilia, coagulation
    [Show full text]
  • The Mutational Landscape of Myeloid Leukaemia in Down Syndrome
    cancers Review The Mutational Landscape of Myeloid Leukaemia in Down Syndrome Carini Picardi Morais de Castro 1, Maria Cadefau 1,2 and Sergi Cuartero 1,2,* 1 Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; [email protected] (C.P.M.d.C); [email protected] (M.C.) 2 Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain * Correspondence: [email protected] Simple Summary: Leukaemia occurs when specific mutations promote aberrant transcriptional and proliferation programs, which drive uncontrolled cell division and inhibit the cell’s capacity to differentiate. In this review, we summarize the most frequent genetic lesions found in myeloid leukaemia of Down syndrome, a rare paediatric leukaemia specific to individuals with trisomy 21. The evolution of this disease follows a well-defined sequence of events and represents a unique model to understand how the ordered acquisition of mutations drives malignancy. Abstract: Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators—such as cohesin, CTCF or EZH2—and Citation: de Castro, C.P.M.; Cadefau, in signalling mediators of the JAK/STAT and RAS pathways.
    [Show full text]
  • Adult Acute Myeloid Leukemia with Trisomy 11 As the Sole Abnormality
    Letters to the Editor 2254 Adult acute myeloid leukemia with trisomy 11 as the sole abnormality is characterized by the presence of five distinct gene mutations: MLL-PTD, DNMT3A, U2AF1, FLT3-ITD and IDH2 Leukemia (2016) 30, 2254–2258; doi:10.1038/leu.2016.196 sequencing approach at the DNA level were also analyzed at the RNA level by visual inspection of the BAM files. The clinical characteristics and outcomes of 23 patients with Trisomy of chromosome 11 (+11) is the second most common sole +11 are summarized in Table 1. The patients were isolated trisomy in acute myeloid leukemia (AML) patients.1 The presence of +11 is associated with intermediate2,3 or poor 4–6 Table 1. Pretreatment clinical and molecular characteristics and patient outcomes. Whereas the clinical characteristics of solitary outcome of patients with acute myeloid leukemia (AML) and sole +11 +11 have been well established,4–6 relatively little is known about the mutational landscape of sole +11 AML in the age of next- Characteristica Sole +11 AML (n = 23) generation sequencing techniques that allow examination of multiple genes relevant to AML pathogenesis.6 So far, the most Age, years Median 71 common molecular feature in AML with isolated +11 is the – presence of a partial tandem duplication of the MLL (KMT2A) gene Range 25 84 (MLL-PTD), which is detectable in up to 90% of patients.7 Age group, n (%) Furthermore, a frequent co-occurrence of the FLT3 internal o60 years 18 (78) tandem duplication (FLT3-ITD) with MLL-PTD has been reported.8 ⩾ 60 years 5 (22) The aim of our study was to better characterize the mutational Female sex, n (%) 5 (22) landscape of adult AML patients with sole +11.
    [Show full text]
  • Klinefelter, Turner & Down Syndrome
    Klinefelter, Turner & Down Syndrome A brief discussion of gamete forma2on, Mitosis and Meiosis: h7ps://www.youtube.com/watch?v=zGVBAHAsjJM Non-disjunction in Meiosis: • Nondisjunction "not coming apart" is the failure of a chromosome pair to separate properly during meiosis 1, or of two chromatids of a chromosome to separate properly during meiosis 2 or mitosis. • Can effect each pair. • Not a rare event. • As a result, one daughter cell has two chromosomes or two chromatids and the other has none • The result of this error is ANEUPLOIDY. 4 haploid gametes 2 gametes with diploid 2 gametes with haploid number of x and 2 lacking number of X chromosome, 1 x chromosome gamete with diploid number of X chromosome, and 1 gamete lacking X chromosome MEIOSIS MITOSIS Nondisjunc2on at meiosis 1 = All gametes will be abnormal Nondisjunc2on at meiosis 2 = Half of the gametes are normal (%50 normal and %50 abnormal) Down’s Syndrome • Karyotype: 47, XY, +21 Three copies of chromosome 21 (21 trisomy) • The incidence of trisomy 21 rises sharply with increasing maternal age (above 37), but Down syndrome can also be the result of nondisjunction of the father's chromosome 21 (%15 of cases) • A small proportion of cases is mosaic* and probably arise from a non-disjunction event in early zygotic division. *“Mosaicism, used to describe the presence of more than one type of cells in a person. For example, when a baby is born with Down syndrome, the doctor will take a blood sample to perform a chromosome study. Typically, 20 different cells are analyzed.
    [Show full text]
  • Detection of Turner Syndrome by Quantitative PCR of SHOX and VAMP7 Genes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Academico Digital UANL GENETIC TESTING AND MOLECULAR BIOMARKERS ORIGINAL ARTICLES Volume 19, Number 2, 2015 ª Mary Ann Liebert, Inc. Pp. 1–5 DOI: 10.1089/gtmb.2014.0236 Detection of Turner Syndrome by Quantitative PCR of SHOX and VAMP7 Genes Marisol Ibarra-Ramı´rez,1 Michelle de Jesu´s Zamudio-Osuna,1 Luis Daniel Campos-Acevedo,1 Hugo Leonid Gallardo-Blanco,1 Ricardo Martin Cerda-Flores,2 Ira´m Pablo Rodrı´guez-Sa´nchez,1 and Laura Elia Martı´nez-de-Villarreal1 Turner Syndrome (TS) is an unfavorable genetic condition with a prevalence of 1:2500 in newborn girls. Prompt and effective diagnosis is very important to appropriately monitor the comorbidities. The aim of the present study was to propose a feasible and practical molecular diagnostic tool for newborn screening by quantifying the gene dosage of the SHOX, VAMP7, XIST, UBA1, and SRY genes by quantitative polymerase chain reaction (qPCR) in individuals with a diagnosis of complete X monosomy, as well as those with TS variants, and then compare the results to controls without chromosomal abnormalities. According to our results, the most useful markers for these chromosomal variants were the genes found in the pseudoautosomic regions 1 and 2 (PAR1 and PAR2), because differences in gene dosage (relative quantification) between groups were more evident in SHOX and VAMP7 gene expression. Therefore, we conclude that these markers are useful for early detection in aneuploidies involving sex chromosomes. Introduction Guidelines of the American College of Endocrinology for the management of patients with TS emphasize the benefit of urner syndrome (TS) affects 1 in 2500/3000 live- early detection through newborn screening methods (Bondy Tborn girls and is characterized by short stature, gonadal et al., 2007).
    [Show full text]
  • Familial Multiple Coagulation Factor Deficiencies
    Journal of Clinical Medicine Article Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis Barbara Preisler 1,†, Behnaz Pezeshkpoor 1,† , Atanas Banchev 2 , Ronald Fischer 3, Barbara Zieger 4, Ute Scholz 5, Heiko Rühl 1, Bettina Kemkes-Matthes 6, Ursula Schmitt 7, Antje Redlich 8 , Sule Unal 9 , Hans-Jürgen Laws 10, Martin Olivieri 11 , Johannes Oldenburg 1 and Anna Pavlova 1,* 1 Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany; [email protected] (B.P.); [email protected] (B.P.); [email protected] (H.R.); [email protected] (J.O.) 2 Department of Paediatric Haematology and Oncology, University Hospital “Tzaritza Giovanna—ISUL”, 1527 Sofia, Bulgaria; [email protected] 3 Hemophilia Care Center, SRH Kurpfalzkrankenhaus Heidelberg, 69123 Heidelberg, Germany; ronald.fi[email protected] 4 Department of Pediatrics and Adolescent Medicine, University Medical Center–University of Freiburg, 79106 Freiburg, Germany; [email protected] 5 Center of Hemostasis, MVZ Labor Leipzig, 04289 Leipzig, Germany; [email protected] 6 Hemostasis Center, Justus Liebig University Giessen, 35392 Giessen, Germany; [email protected] 7 Center of Hemostasis Berlin, 10789 Berlin-Schöneberg, Germany; [email protected] 8 Pediatric Oncology Department, Otto von Guericke University Children’s Hospital Magdeburg, 39120 Magdeburg, Germany; [email protected] 9 Division of Pediatric Hematology Ankara, Hacettepe University, 06100 Ankara, Turkey; Citation: Preisler, B.; Pezeshkpoor, [email protected] B.; Banchev, A.; Fischer, R.; Zieger, B.; 10 Department of Pediatric Oncology, Hematology and Clinical Immunology, University of Duesseldorf, Scholz, U.; Rühl, H.; Kemkes-Matthes, 40225 Duesseldorf, Germany; [email protected] B.; Schmitt, U.; Redlich, A.; et al.
    [Show full text]
  • Turner Syndrome (TS) Is a Genetic Disease That Affects About Physical Signs of TS May Include: 1 in Every 2,500 Female Live Births
    Notes: A Guide for Caregivers For easily accessible answers, education, and support, visit Nutropin.com or call 1-866-NUTROPIN (1-866-688-7674). 18 19 of patients with Your healthcare team is your primary source Turner Syndrome of information about your child’s treatment. Please see the accompanying full Prescribing Information, including Instructions for Use, and additional Important Safety Information througout and on pages 16-18. Models used for illustrative purposes only. Nutropin, Nutropin AQ, and NuSpin are registered trademarks, Nutropin GPS is a trademark, and NuAccess is a service mark of Genentech, Inc. © 2020 Genentech USA, Inc., 1 DNA Way, So. San Francisco, CA 94080 M-US-00005837(v1.0) 06/20 FPO Understanding Turner Syndrome What is Turner Syndrome? Turner Syndrome (TS) is a genetic disease that affects about Physical signs of TS may include: 1 in every 2,500 female live births. TS occurs when one • Short stature of a girl’s two X chromosomes is absent or incomplete. • Webbing of the neck Chromosomes are found in all cells of the human body. They contain the genes that determine the characteristics of a • Low-set, rotated ears person such as the color of hair or eyes. Every person has • Arms that turn out slightly at the elbows 22 pairs of chromosomes containing these characteristics, • Low hairline at the back of the head and one pair of sex chromosomes. • A high, arched palate in the mouth Normally cells in a female’s body contain two “X” chromosomes Biological signs of TS may include: (Fig. 1). • Underdevelopment of the ovaries In girls with TS, part or • Not reaching sexual maturity or starting all of one X chromosome a menstrual period (Fig.
    [Show full text]
  • Therapeutic Antibody-Like Immunoconjugates Against Tissue Factor with the Potential to Treat Angiogenesis-Dependent As Well As Macrophage-Associated Human Diseases
    antibodies Review Therapeutic Antibody-Like Immunoconjugates against Tissue Factor with the Potential to Treat Angiogenesis-Dependent as Well as Macrophage-Associated Human Diseases Zhiwei Hu ID Department of Surgery Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA; [email protected]; Tel.: +1-614-685-4606 Received: 10 October 2017; Accepted: 18 January 2018; Published: 23 January 2018 Abstract: Accumulating evidence suggests that tissue factor (TF) is selectively expressed in pathological angiogenesis-dependent as well as macrophage-associated human diseases. Pathological angiogenesis, the formation of neovasculature, is involved in many clinically significant human diseases, notably cancer, age-related macular degeneration (AMD), endometriosis and rheumatoid arthritis (RA). Macrophage is involved in the progression of a variety of human diseases, such as atherosclerosis and viral infections (human immunodeficiency virus, HIV and Ebola). It is well documented that TF is selectively expressed on angiogenic vascular endothelial cells (VECs) in these pathological angiogenesis-dependent human diseases and on disease-associated macrophages. Under physiology condition, TF is not expressed by quiescent VECs and monocytes but is solely restricted on some cells (such as pericytes) that are located outside of blood circulation and the inner layer of blood vessel walls. Here, we summarize TF expression on angiogenic VECs, macrophages and other diseased cell types in these human diseases. In cancer, for example, the cancer cells also overexpress TF in solid cancers and leukemia. Moreover, our group recently reported that TF is also expressed by cancer-initiating stem cells (CSCs) and can serve as a novel oncotarget for eradication of CSCs without drug resistance.
    [Show full text]
  • ABC of Clinical Genetics CHROMOSOMAL DISORDERS II
    ABC of Clinical Genetics CHROMOSOMAL DISORDERS II BMJ: first published as 10.1136/bmj.298.6676.813 on 25 March 1989. Downloaded from Helen M Kingston Developmental delay in Chromosomal abnormalities are generally associated with multiple child with deletion of congenital malformations and mental retardation. Children with more than chromosome 13. one physical abnormality, particularly ifretarded, should therefore undergo chromosomal analysis as part of their investigation. Chromosomal disorders are incurable but can be reliably detected by prenatal diagnostic techniques. Amniocentesis or chorionic villus sampling should be offered to women whose pregnancies are at increased risk-namely, women in their mid to late thirties, couples with an affected child, and couples in whom one partner carries a balanced translocation. Unfortunately, when there is no history of previous abnormality the risk in many affected pregnancies cannot be predicted beforehand. Autosomal abnormalities Parents Non-dysjunction Trisomy 21 (Down's syndrome) Down's syndrome is the commonest autosomal Gametes trisomy, the incidence in liveborn infants being one in 650, although more than half of conceptions with trisomy 21 do not survive to term. Affected children have a characteristic Offspring facial appearance, are mentally retarded, and Trisomy 21 often die young. They may have associated Non-dysjunction of chromosome 21 leading to Down's syndrome. congenital heart disease and are at increased risk recurrent for infections, atlantoaxial instability, http://www.bmj.com/ -- All chromosomal abnormalities at and acute leukaemia. They are often happy and 100 - ainniocentesis ---- Downl's syndrome at amniocentesis Risk for trisomy 21 in liveborn infants affectionate children who are easy to manage.
    [Show full text]
  • Intracerebral Bleeding in Young Infants Due to Rare Etiologies–A
    eona f N tal l o B a io n l r o u g y o J Tewari et al., J Neonatal Biol 2016, 5:2 Journal of Neonatal Biology DOI: 10.4172/2167-0897.1000221 ISSN: 2167-0897 Case Report Open access Intracerebral Bleeding in Young Infants due to Rare Etiologies–A Report of two Cases Vishal Vishnu Tewari1*, Kunal Tewari2 and Ritu Mehta3 1Department of Pediatrics, Army Hospital (Referral and Research), New Delhi, India 2Department of Anaesthesia, Classified Specialist Anesthesia, Base Hospital, New Delhi, India 3Department of Pathology, All India Institute of Medical Sciences, New Delhi, India *Corresponding author: Vishal Vishnu Tewari, Department of Pediatrics, Army Hospital, New Delhi, India,Tel: +91-8826118889, E-mail: [email protected] Rec date: April 29, 2016; Acc date: May 16, 2016; Pub date: May 23, 2016 Copyright: © 2016 Tewari VV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Neonates and young infants are physiologically encumbered by an inadequate hemostatic mechanism. They may also have inherited or acquired bleeding disorders which may have a catastrophic presentation with intracerebral hemorrhage. The need to reach an accurate diagnosis is paramount in order to provide accurate therapy and genetic counseling. We report two infants who presented with unprovoked life threatening massive intracerebral hemorrhage. The first infant was diagnosed and managed for congenital factor V deficiency while the second infant had Glanzmann thrombasthenia. Keywords: Intracerebral bleeding; Congenital factor V deficiency; disorder in the family.
    [Show full text]