Aeroacoustics in High Speed Trains
Total Page:16
File Type:pdf, Size:1020Kb
Universidad Politécnica de Madrid Doctoral dissertation: AEROACOUSTICS IN HIGH SPEED TRAINS by Félix Sorribes Palmer Advisors: Prof. Dr. Ing. Ángel Sanz Andrés Prof. Dr. Ing. Gustavo Alonso Rodrigo E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, December 2014 Resumen Este trabajo se centra en el estudio de problemas aeroacústicos en los trenes de alta ve- locidad. Se han considerado dos escenarios en los que las ondas de presión generadas son críticos para el confort de los pasajeros. Uno es el debido a las ondas de presión que genera el tren cuando entra y sale de un túnel, que a su vez producen saltos de presión de baja frecuencia en el tren (cuando se cruzan con él) y en los alrededores del túnel cuando alcanzan la salida. Se estudia este fenómeno, y se propone un sistema aeroelás- tico basado en el galope transversal para disminuir la energía de estas ondas, y se analiza la energía extraíble de las ondas utilizando cuerpos con diferentes secciones transversales [Sorribes-Palmer and Sanz-Andres, 2013]. La influencia de la geometría de los portales en la energía radiada hacia el exterior de túnel es analizada experimentalmente, prestando especial atención a las boquillas porosas. Las ondas de presión en el interior del túnel se han analizado mediante el método de las características. Se han realizado ensayos experimentales para estimar la energía reflejada hacia el interior del túnel al alcanzar las ondas de presión el portal de salida del túnel. Se ha estudiado la formación e interacción entre el portal del túnel y la onda de choque generada en los túneles de gran longitud y pequeña fricción. Se propone un método para describir de forma aproximada el ruido radiado al exterior. Por otro lado se ha estudiado el ruido de media y alta frecuencia de origen aerod- inámico. Se ha estudiado la influencia del desprendimiento de la capa límite sobre el tren. Se propone una metodología basada en una sección de tren característica para predecir rápidamente el nivel de presión de sonido dentro y fuera del tren para todo el rango de frecuencias. Se han realizado medidas experimentales en vía de los espectros de presión sobre la superficie del tren, y de la transmisibilidad de las uniones entre estructura y reves- timiento. Los resultados experimentales se han utilizado en los modelos vibroacústicos. El método de la sección del tren característica es especialmente útil a altas frecuencias cuando todo el tren se puede modelar mediante el ensamblaje de diferentes secciones características utilizando el análisis estadístico de la energía. Summary This work is focused on the study of aeroacoustic problems in high speed trains. We have considered two scenarios in which the pressure waves generated are critical for passengers comfort. The first one is due to the pressure waves generated by a train entering in a tunnel. These waves generate pressure gauges inside the train (when they find each other) and outside of the tunnel portals. This phenomenon has been studied, and an aeroelastic system based on transverse galloping to reduce the energy of these waves is proposed. The maximum extractable energy by using bodies with different cross-section shapes is analyzed. The influence of the portals geometry in the energy radiated outwards the tunnel is analyzed experimentally, with particular attention to the porous exits. The pressure waves inside the tunnel have been analyzed using the method of char- acteristics. Experimental tests to estimate the energy reflected into the tunnel when the pressure waves reach the tunnel portal have been performed. We have studied the genera- tion and interaction between the tunnel portal and a shock wave generated in long tunnels with small friction. A method to describe in an approximated way the pressure radiated outside the tunnel is proposed. In the second scenario, middle and high frequency noise generated aerodynamically has been studied, including the influence of the detachment of the boundary layer around the train. A method based on a train section to quickly predict the sound pressure level inside and outside the train has been proposed. Experimental test have been performed on board to evaluate the pressure power spectra on the surface of the train, and the transmis- sibility of the junctions between the structure and trim. These experimental results have been used in the vibroacoustic models. The low frequency pressure waves generated with the train during the tunnel crossing has been identified in the pressure spectrum. The train characteristic section method is especially useful at high frequencies, when the whole train can be modeled by assembling different sections using the statistical en- ergy analysis. The sound pressure level inside the train is evaluated inside and outside the tunnel. Acknowledgments First of all I would like to acknowledge the director of Instituto Universitario de Micro- gravedad “Ignacio Da Riva”, Prof. Dr. Ing. José Meseguer, for giving me the opportunity to work in the institute. I have been able to work in different areas and learn a lot from many persons in the institute, specially from my advisors Prof. Dr. Ing. Angel Sanz An- drés and Prof. Dr. Ing. Gustavo Alonso Rodrigo, and i want to thank them their patience to listen and explain every time I needed it. I also want to thank the rest of the people of the institute for their support: Álvaro Cuerva, Oscar López, Santiango Pindado, Sebas- tian Franchini, Javier Pérez, Isabel Pérez, Alejandro Martínez, Mohsen Ghaemi, Rafael García, Sergio Ávila, Alejandro Gómez, etc.. I want to thank the late Prof. Dr. Ing. Jesús López Díez for all his help on introducing me to the world of vibroacoustics. I am really grateful to Universidad Politécnica de Madrid for the scholarship to spend a three months visit at TU Berlin, where they let me use their facilities to perform ex- perimental test and also helped me to understand vibroacoustic modeling, this experience was highly useful to focus my work and to push forward this dissertation. I want to thank my friends for cheering my up during the tough moments and for sharing their time with me: Marcos, Diego, Laura, Joseba, Eduardo, Pedro, etc. I render thanks to Dani for reading everything I gave him. Lastly, I would like to thank my family, for their support and encouragement, because having them by my side made everything look possible. And most of all for my loving girlfriend Julija for her patience, unconditional love and faithful support. A life full of possibilities is open to us now, and I am willing to explore it with you “ljubezen”, rtm. Contents Contents i List of Figures iii List of Tables ix 1 Introduction 1 1.1 Noise sources in high speed trains ..................... 1 1.2 Objectives and content structure ...................... 9 2 Pressure waves in high speed railway tunnels 11 2.1 Introduction ................................. 11 2.2 Mathematical model for prediction of pressure waves inside a tunnel . 15 2.2.1 Condition for the existence of a plane wave ............ 16 2.2.2 Propagation of the signature .................... 17 2.3 Hydrostatic pressure influence on high speed railway tunnels cross-section sizing .................................... 22 2.4 Non-linear propagation and pressure wave steepening inside a tunnel . 25 2.5 Pressure wave interaction at the tunnel exit ................. 29 2.6 Experimental set-up ............................ 31 2.7 Results and discussion ........................... 42 2.7.1 Reflected wave at the horns ..................... 42 2.7.2 Reflected and transmitted wave at airshafts ............ 43 2.7.3 Reflected and transmitted wave at a perforated section ....... 44 2.7.4 Reflected wave at perforated exits ................. 45 2.8 Conclusions ................................. 49 3 Energy extraction from aerodynamic instabilities 51 3.1 Introduction ................................. 51 3.2 Mathematical model ............................. 53 3.2.1 Extracted power in a general case ................. 56 3.2.2 Comparison between numerical integration method and polyno- mial expansion ........................... 60 3.2.3 Influence of the number of discretization points .......... 60 i ii CONTENTS 3.2.4 Comparison of the numerical integration method with the polyno- mial expansion at a point different from the origin. ........ 62 3.3 Experimental set-up ............................ 65 3.4 Results and discussion ........................... 67 3.4.1 Biconvex airfoil .......................... 67 3.4.2 D-shape body ............................ 70 3.4.3 Rhomboidal cross-section bodies .................. 72 3.4.4 Triangle cross-section bodies .................... 75 3.4.5 Square cross-section bodies ..................... 76 3.5 Conclusions ................................. 80 4 Interior noise prediction in high speed trains 83 4.1 Introduction ................................. 83 4.2 Numerical analysis ............................. 85 4.2.1 Basic acoustic concepts and definitions .............. 85 4.2.2 Methodology ............................ 93 4.2.3 Structural and fluid models ..................... 93 4.2.4 Loads ................................ 99 4.2.4.1 Structure-borne ...................... 99 4.2.4.2 Airborne .........................101 4.3 Experimental set-up ............................102 4.4 Tests definition ...............................104 4.4.1 Aerodynamic noise characterization ................104 4.4.1.1 SPL in open field .....................104 4.4.1.2 SPL inside a tunnel ....................105 4.4.2 Point junction characterization