Moduli Spaces from a Topological Viewpoint
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stable Homology of Automorphism Groups of Free Groups
Annals of Mathematics 173 (2011), 705{768 doi: 10.4007/annals.2011.173.2.3 Stable homology of automorphism groups of free groups By Søren Galatius Abstract Homology of the group Aut(Fn) of automorphisms of a free group on n generators is known to be independent of n in a certain stable range. Using tools from homotopy theory, we prove that in this range it agrees with homology of symmetric groups. In particular we confirm the conjecture that stable rational homology of Aut(Fn) vanishes. Contents 1. Introduction 706 1.1. Results 706 1.2. Outline of proof 708 1.3. Acknowledgements 710 2. The sheaf of graphs 710 2.1. Definitions 710 2.2. Point-set topological properties 714 3. Homotopy types of graph spaces 718 3.1. Graphs in compact sets 718 3.2. Spaces of graph embeddings 721 3.3. Abstract graphs 727 3.4. BOut(Fn) and the graph spectrum 730 4. The graph cobordism category 733 4.1. Poset model of the graph cobordism category 735 4.2. The positive boundary subcategory 743 5. Homotopy type of the graph spectrum 750 5.1. A pushout diagram 751 5.2. A homotopy colimit decomposition 755 5.3. Hatcher's splitting 762 6. Remarks on manifolds 764 References 766 S. Galatius was supported by NSF grants DMS-0505740 and DMS-0805843, and the Clay Mathematics Institute. 705 706 SØREN GALATIUS 1. Introduction 1.1. Results. Let F = x ; : : : ; x be the free group on n generators n h 1 ni and let Aut(Fn) be its automorphism group. -
On String Topology Operations and Algebraic Structures on Hochschild Complexes
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 9-2015 On String Topology Operations and Algebraic Structures on Hochschild Complexes Manuel Rivera Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/1107 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] On String Topology Operations and Algebraic Structures on Hochschild Complexes by Manuel Rivera A dissertation submitted to the Graduate Faculty in Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2015 c 2015 Manuel Rivera All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Mathematics in sat- isfaction of the dissertation requirements for the degree of Doctor of Philosophy. Dennis Sullivan, Chair of Examining Committee Date Linda Keen, Executive Officer Date Martin Bendersky Thomas Tradler John Terilla Scott Wilson Supervisory Committee THE CITY UNIVERSITY OF NEW YORK iii Abstract On string topology operations and algebraic structures on Hochschild complexes by Manuel Rivera Adviser: Professor Dennis Sullivan The field of string topology is concerned with the algebraic structure of spaces of paths and loops on a manifold. It was born with Chas and Sullivan’s observation of the fact that the in- tersection product on the homology of a smooth manifold M can be combined with the con- catenation product on the homology of the based loop space on M to obtain a new product on the homology of LM , the space of free loops on M . -
Annual Reports 2002
CENTRE DE RECERCA MATEMÀTICA REPORT OF ACTIVITIES 2002 Apartat 50 E-08193 Bellaterra [email protected] Graphic design: Teresa Sabater Printing: Limpergraf S.L. Legal Deposit: B. 9505-2003 PRESENTATION This year 2002 one must point out two events that have taken place in the Centre de Recerca Matemàtica, that should have immediate and long term consequences: the chan- ge in the legal status of the CRM and the increase of adminis- trative and secretarial personnel. The III Research Plan for Catalonia 2001-2004 con- templates the assignment of the title Centres Homologats de Recerca (Accredited Research Centres), to those centres with proved research excellence in subjects considered of strategic importance. Accordingly, the Catalan Government approved last month of July the constitution of the Consortium Centre de Recerca Matemàtica, with its own legal status, formed by the Institut d’Estudis Catalans (institution to which the CRM belonged since its creation in 1984) and the Catalan Govern- ment, which takes part in the Consortium through its Depart- ment of Universities, Research and the Information Society. With this new legal structure, the Catalan Government acquires a stronger commitment with the CRM. On one hand by setting the main guidelines of the CRM, and on the other hand by ensuring an appropriate and stable financial support that will make possible to carry out the activities planned for the quadrennial period 2003-2006. Among the innovative tools of this new stage, at the 18th anniversary of the creation of the CRM, one must point out the annual call for Research Programmes among the Cata- lan mathematical community. -
Licensed to Univ of Rochester. Prepared on Tue Jan 12 07:38:01 EST 2021For Download from IP 128.151.13.58
Licensed to Univ of Rochester. Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58. License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms MEMOIRS of the American Mathematical Society This journal is designed particularly for long research papers (and groups of cognate papers) in pure and applied mathematics. It includes, in general, longer papers than those in the TRANSACTIONS. Mathematical papers intended for publication in the Memoirs should be addressed to one of the editors. Subjects, and the editors associated with them, follow: Real analysis (excluding harmonic analysis) and applied mathematics to ROBERT T. SEELEY, Department of Mathematics, University of Massachusetts-Boston, Harbor Campus, Boston, MA 02125. Harmonic and complex analysis to R. O. WELLS, Jr., School of Mathematics, Institute for Advanced Study, Princeton, N. J. 08540 Abstract analysis to W.A.J. LUXEMBURG, Department of Mathematics 253 -37, California Institute of Technology, Pasadena, CA 91125. Algebra and number theory (excluding universal algebras) to MICHAEL ARTIN, Department of Mathematics, Room 2—239, Massachusetts Institute of Technology, Cambridge, MA 02139. Logic, foundations, universal algebras and combinatorics to SOLOMON FEFERMAN, Department of Mathematics, Stanford University, Stanford, CA 94305. Topology to JAMES D. STASHEFF, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27514. Global analysis and differential geometry to ALAN D. WEINSTEIN, Department of Mathematics, California Institute of Technology, Pasadena, CA 91125. Probability and statistics to STEVEN OREY, School of Mathematics, University of Minnesota, Minneapolis, MN 55455. All other communications to the editors should be addressed to the Managing Editor, JAMES D. -
Homology Equivalences Inducing an Epimorphism on the Fundamental Group and Quillen’S Plus Construction
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 3, Pages 891{898 S 0002-9939(03)07221-6 Article electronically published on October 21, 2003 HOMOLOGY EQUIVALENCES INDUCING AN EPIMORPHISM ON THE FUNDAMENTAL GROUP AND QUILLEN'S PLUS CONSTRUCTION JOSEL.RODR´ ´IGUEZ AND DIRK SCEVENELS (Communicated by Paul Goerss) Abstract. Quillen's plus construction is a topological construction that kills the maximal perfect subgroup of the fundamental group of a space without changing the integral homology of the space. In this paper we show that there is a topological construction that, while leaving the integral homology of a space unaltered, kills even the intersection of the transfinite lower central series of its fundamental group. Moreover, we show that this is the maximal subgroup that can be factored out of the fundamental group without changing the integral homology of a space. 0. Introduction As explained in [8], [9], Bousfield's HZ-localization XHZ of a space X ([2]) is homotopy equivalent to its localization with respect to a map of classifying spaces Bf : BF1 ! BF2 induced by a certain homomorphism f : F1 !F2 between free groups. This means that a space X is HZ-local if and only if the induced ∗ map Bf :map(BF2;X) ! map(BF1;X) is a weak homotopy equivalence. More- over, the effect of Bf-localization on the fundamental group produces precisely the group-theoretical HZ-localization (i.e., f-localization) of the fundamental group, ∼ ∼ i.e., π1LBf X = Lf (π1X) = (π1X)HZ for all spaces X. A universal acyclic space for HZ-localization (i.e., Bf-localization), in the sense of Bousfield ([4]), was studied by Berrick and Casacuberta in [1]. -
String Topology and the Based Loop Space
STRING TOPOLOGY AND THE BASED LOOP SPACE ERIC J. MALM ABSTRACT. For M a closed, connected, oriented manifold, we obtain the Batalin-Vilkovisky (BV) algebra of its string topology through homotopy-theoretic constructions on its based loop space. In particular, we show that the Hochschild cohomology of the chain algebra C∗WM carries a BV algebra structure isomorphic to that of the loop homology H∗(LM). Furthermore, this BV algebra structure is compatible with the usual cup product and Ger- stenhaber bracket on Hochschild cohomology. To produce this isomorphism, we use a derived form of Poincare´ duality with C∗WM-modules as local coefficient systems, and a related version of Atiyah duality for parametrized spectra connects the algebraic construc- tions to the Chas-Sullivan loop product. 1. INTRODUCTION String topology, as initiated by Chas and Sullivan in their 1999 paper [4], is the study of algebraic operations on H∗(LM), where M is a closed, smooth, oriented d-manifold and LM = Map(S1, M) is its space of free loops. They show that, because LM fibers over M with fiber the based loop space WM of M, H∗(LM) admits a graded-commutative loop product ◦ : Hp(LM) ⊗ Hq(LM) ! Hp+q−d(LM) of degree −d. Geometrically, this loop product arises from combining the intersection product on H∗(M) and the Pontryagin or concatenation product on H∗(WM). Writing H∗(LM) = H∗+d(LM) to regrade H∗(LM), the loop product makes H∗(LM) a graded- commutative algebra. Chas and Sullivan describe this loop product on chains in LM, but because of transversality issues they are not able to construct the loop product on all of C∗LM this way. -
ON the GOODWILLIE DERIVATIVES of the IDENTITY in STRUCTURED RING SPECTRA 1. Introduction a Slogan of Functor Calculus Widely
ON THE GOODWILLIE DERIVATIVES OF THE IDENTITY IN STRUCTURED RING SPECTRA DUNCAN A. CLARK Abstract. The aim of this paper is three-fold: (i) we construct a natural highly homotopy coherent operad structure on the derivatives of the identity functor on structured ring spectra which can be described as algebras over an operad O in spectra, (ii) we prove that every connected O-algebra has a naturally occurring left action of the derivatives of the identity, and (iii) we show that there is a naturally occurring weak equivalence of highly homotopy coherent operads between the derivatives of the identity on O-algebras and the operad O. Along the way, we introduce the notion of N-colored operads with levels which, by construction, provides a precise algebraic framework for working with and comparing highly homotopy coherent operads, operads, and their algebras. 1. Introduction A slogan of functor calculus widely expected to hold is that the symmetric se- quence of Goodwillie derivatives of the identity functor on a suitable model category C, denoted @∗IdC, ought to come equipped with a natural operad structure. A result of this type was first proved by Ching in [15] for C = Top∗ and more recently in the setting of 1-categories in [18]. In this paper, we construct an explicit \highly homotopy coherent" operad structure for the derivatives of the identity functor in the category of algebras over a reduced operad O in spectra. The derivatives of the identity in AlgO have previously been studied ([49], [40]) and it is known that O[n] is a model for @nIdAlgO { the n-th Goodwillie derivative of IdAlgO . -
HOCHSCHILD HOMOLOGY of STRUCTURED ALGEBRAS The
HOCHSCHILD HOMOLOGY OF STRUCTURED ALGEBRAS NATHALIE WAHL AND CRAIG WESTERLAND Abstract. We give a general method for constructing explicit and natural operations on the Hochschild complex of algebras over any prop with A1{multiplication|we think of such algebras as A1{algebras \with extra structure". As applications, we obtain an integral version of the Costello-Kontsevich-Soibelman moduli space action on the Hochschild complex of open TCFTs, the Tradler-Zeinalian and Kaufmann actions of Sullivan diagrams on the Hochschild complex of strict Frobenius algebras, and give applications to string topology in characteristic zero. Our main tool is a generalization of the Hochschild complex. The Hochschild complex of an associative algebra A admits a degree 1 self-map, Connes-Rinehart's boundary operator B. If A is Frobenius, the (proven) cyclic Deligne conjecture says that B is the ∆–operator of a BV-structure on the Hochschild complex of A. In fact B is part of much richer structure, namely an action by the chain complex of Sullivan diagrams on the Hochschild complex [57, 27, 29, 31]. A weaker version of Frobenius algebras, called here A1{Frobenius algebras, yields instead an action by the chains on the moduli space of Riemann surfaces [11, 38, 27, 29]. Most of these results use a very appealing recipe for constructing such operations introduced by Kontsevich in [39]. Starting from a model for the moduli of curves in terms of the combinatorial data of fatgraphs, the graphs can be used to guide the local-to-global construction of an operation on the Hochschild complex of an A1-Frobenius algebra A { at every vertex of valence n, an n-ary trace is performed. -
Some Results on Pseudo-Collar Structures on High-Dimensional Manifolds Jeffrey Joseph Rolland University of Wisconsin-Milwaukee
University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2015 Some Results on Pseudo-Collar Structures on High-Dimensional Manifolds Jeffrey Joseph Rolland University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Mathematics Commons Recommended Citation Rolland, Jeffrey Joseph, "Some Results on Pseudo-Collar Structures on High-Dimensional Manifolds" (2015). Theses and Dissertations. 916. https://dc.uwm.edu/etd/916 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. SOME RESULTS ON PSEUDO-COLLAR STRUCTURES ON HIGH-DIMENSIONAL MANIFOLDS By Jeffrey Joseph Rolland A Dissertation Submitted in Partial Satisfaction of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MATHEMATICS at the UNIVERSITY OF WISCONSIN-MILWAUKEE May, 2015 Abstract SOME RESULTS ON PSEUDO-COLLAR STRUCTURES ON HIGH-DIMENSIONAL MANIFOLDS by Jeffrey Joseph Rolland The University of Wisconsin-Milwaukee, 2015 Under the Supervision of Prof. Craig R. Guilbault In this paper, we provide expositions of Quillen's plus construction for high-dimensional smooth manifolds and the solution to the group extension problem. We then develop a geometric procedure due for producing a \reverse" to the plus construction, a con- struction called a semi-s-cobordism. We use this reverse to the plus construction to produce ends of manifolds called pseudo-collars, which are stackings of semi-h- cobordisms. We then display a technique for producing \nice" one-ended open man- ifolds which satisfy two of the necessary and sufficient conditions for being pseudo- collarable, but not the third. -
Embeddings in Manifolds
Embeddings in Manifolds 2OBERT*$AVERMAN Gerard A. Venema 'RADUATE3TUDIES IN-ATHEMATICS 6OLUME !MERICAN-ATHEMATICAL3OCIETY http://dx.doi.org/10.1090/gsm/106 Embeddings in Manifolds Embeddings in Manifolds Robert J. Daverman Gerard A. Venema Graduate Studies in Mathematics Volume 106 American Mathematical Society Providence, Rhode Island Editorial Board David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 57N35, 57N30, 57N45, 57N40, 57N60, 57N75, 57N37, 57N70, 57Q35, 57Q30, 57Q45, 57Q40, 57Q60, 57Q55, 57Q37, 57P05. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-106 Library of Congress Cataloging-in-Publication Data Daverman, Robert J. Embeddings in manifolds / Robert J. Daverman, Gerard A. Venema. p. cm. — (Graduate studies in mathematics ; v. 106) Includes bibliographical references and index. ISBN 978-0-8218-3697-2 (alk. paper) 1. Embeddings (Mathematics) 2. Manifolds (Mathematics) I. Venema, Gerard. II. Title. QA564.D38 2009 514—dc22 2009009836 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. -
String Topology of Classifying Spaces
STRING TOPOLOGY OF CLASSIFYING SPACES DAVID CHATAUR AND LUC MENICHI Dedicated to Micheline Vigu´e-Poirrierfor her 60th birthday Abstract. Let G be a finite group or a compact connected Lie group and let BG be its classifying space. Let LBG := map(S1; BG) be the free loop space of BG i.e. the space of continuous maps from the circle S1 to BG. The purpose of this paper is to study the singular homology H∗(LBG) of this loop space. We prove that when taken with coefficients in a field the homology of LBG is a homological conformal field theory. As a byproduct of our main theorem, we get a Batalin-Vilkovisky algebra structure on the cohomology H∗(LBG). We also prove an algebraic version of this result by showing that the Hochschild cohomology ∗ HH (S∗(G);S∗(G)) of the singular chains of G is a Batalin-Vilkovisky algebra. AMS Classification : 18D50, 55N91, 55P35, 55P48, 55R12, 55R35, 55R40, 57R56, 58D29, 81T40, 81T45 Key words : free loop space, Hochschild cohomology, props, string topology, topo- logical field theories Introduction Popularized by M. Atiyah and G. Segal [4, 61], topological quantum field theo- ries, more generally quantum field theories and their conformal cousins have entered with success the toolbox of algebraic topologists. Recently they appeared in a fundamental way in the study of the algebraic and differ- ential topology of loop spaces. Let M be a compact, closed, oriented d-dimensional manifold. Let LM be the free loop space of M. By definition LM is the space of continuous maps of the circle into M. -
Ring Spaces and Algebraic K-Theory
Aoo RING SPACES AND ALGEBRAIC K-THEORY J.P. May In [ZZ], Waldhausen introduced a certain functor A(X), which he thought of as the algebraic K-theory of spaces X, with a view towards applications to the study of the concordance groups of PL manifolds among other things. Actually, the most conceptual definition of A(X), from which the proofs would presumably flow most smoothly, was not made rigorous in [2Z] on the grounds that the prerequisite theory of rings up to all higher coherence homotopies was not yet available. As Waldhausen pointed out, my theory of E ring spaces [i2] gave a success- co ful codification of the stronger notion of commutative ring up to all higher coherence homotopies. We begin this paper by pointing out that all of the details necessary for a comprehensive treatment of the weaker theory appropriate in the absence of commutativity are already implicit in [IZ]. Thus we define Aco ring spaces in section i, define Aco ring spectra in section 2, and show how to pass back and forth between these structures in section 3. The reader is referred to[13] for an intuitive summary of the E ring theory that the present Aoo ring theory 0o will imitate. The general theory does not immediately imply that Waldhausen's proposed definition of A(X) can now be made rigorous. One must first analyze the structure present on the topological space M X of (n× n)-matrices with coefficients in n an A ring space X. There is no difficulty in giving MnX a suitable additive co structure, but it is the multiplicative structure that is of interest and its analysis requires considerable work.