Role of Vector Control in the Global Program to Eliminate Lymphatic Filariasis

Total Page:16

File Type:pdf, Size:1020Kb

Role of Vector Control in the Global Program to Eliminate Lymphatic Filariasis Role of vector control in the global program to eliminate lymphatic filariasis Bockarie, Moses J.; Pedersen, Erling Møller; White, Graham B.; Michael, Edwin Published in: Annual Review of Entomology DOI: 10.1146/annurev.ento.54.110807.090626 Publication date: 2009 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Bockarie, M. J., Pedersen, E. M., White, G. B., & Michael, E. (2009). Role of vector control in the global program to eliminate lymphatic filariasis. Annual Review of Entomology, 54, 469-487. https://doi.org/10.1146/annurev.ento.54.110807.090626 Download date: 23. sep.. 2021 ANRV363-EN54-24 ARI 7 November 2008 11:5 Role of Vector Control in the Global Program to Eliminate Lymphatic Filariasis Moses J. Bockarie,1 Erling M. Pedersen,2 Graham B. White,3 and Edwin Michael4 1Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom; email: [email protected] 2DBL-Center for Health Research and Development, Faculty of Life Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; email: [email protected] 3Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32608; email: gbwhite@ufl.edu 4Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom; email: [email protected] Annu. Rev. Entomol. 2009. 54:469–87 Key Words First published online as a Review in Advance on mosquito ecology, mass drug administration, mathematical modeling, September 17, 2008 insecticide treated nets, integrated vector management The Annual Review of Entomology is online at ento.annualreviews.org Abstract This article’s doi: Lymphatic filariasis (LF) is a major cause of acute and chronic morbid- 10.1146/annurev.ento.54.110807.090626 by NESLi2 on 04/30/09. For personal use only. ity in the tropical and subtropical parts of the world. The availability of Copyright c 2009 by Annual Reviews. safe, single-dose, drug treatment regimens capable of suppressing mi- All rights reserved crofilaremia to very low levels, along with improvements in techniques 0066-4170/09/0107-0469$20.00 for diagnosing infection, has resulted in the targeting of this major mosquito-borne disease for global elimination. The Global Program to Eliminate Lymphatic Filariasis (GPELF) was launched in 2000 with the Annu. Rev. Entomol. 2009.54:469-487. Downloaded from arjournals.annualreviews.org principal objective of breaking the cycles of transmission of Wuchereria bancrofti and Brugia spp. through the application of annual mass drug administrations (MDAs) to entire at-risk populations. Although signif- icant progress in initiating MDA programs in endemic countries has been made, emerging challenges to this approach have raised questions regarding the effectiveness of using MDA alone to eliminate LF without the inclusion of supplementary vector control. Here, we review advances in knowledge of vector ecology, vector-parasite relationships, and both empirical and theoretical evidence regarding vector management to as- sess the feasibility and strategic value of including vector control in the GPELF initiative to achieve the global elimination of LF. 469 ANRV363-EN54-24 ARI 7 November 2008 11:5 LYMPHATIC FILARIASIS remarkable improvements in techniques for di- agnosing infection, resulted in advocacy for a Lymphatic filariasis (LF) is a major cause of global strategy to eliminate the disease through LF: lymphatic acute and chronic morbidity affecting humans MDA (16, 49). This led in 1997 to the land- filariasis in tropical and subtropical areas of Asia, Africa, mark adoption by the World Health Assembly Mf: microfilaremia the Western Pacific, and some parts of the of Resolution WHA50.29 calling for the elim- Americas. More than 1.2 billion people are es- Mass drug ination of LF as a public health problem glob- administration timated to live in areas where they are at risk ally. As a result, in 2000 the World Health Or- (MDA): for the disease (86), and of the 120 million ganization, in collaboration with other inter- community-wide actual cases of LF currently thought to oc- treatment of national agencies from the public health and cur in 83 endemic countries, 91% are caused individuals with private sectors, formed a global alliance (84) by Wuchereria bancrofti while Brugia malayi and antiparasitic drugs and launched a global campaign to eliminate regardless of the B. timori infections account for the other 9% LF by the year 2020 (87). The main goal of the infection status of each (42, 43, 66). These lymphatic-dwelling par- Global Program to Eliminate Lymphatic Filar- individual asites can cause severe damage to the lym- iasis (GPELF) is to break the cycle of trans- GPELF: Global phatic system, resulting in the development of mission of the parasites between mosquitoes Program to Eliminate lymphedema, genital pathology (especially hy- Lymphatic Filariasis and humans, mainly through MDA with al- droceles), and elephantiasis in some 41 mil- bendazole (ALB) in combination with either ALB: albendazole lion men, women, and children (85). A fur- ivermectin (IVR) or diethylcarbamazine citrate DEC: ther 76 million have hidden internal damage (DEC) (53, 83, 84). The Ministries of Health diethylcarbamazine to their lymphatic and renal systems. The fi- citrate of all 83 countries afflicted with LF are now larial parasites have biphasic life cycles involv- committed to taking action by setting up their Limitation: a ing the definitive mammalian host and various negative feedback own national elimination programs. By the end genera of mosquito vectors, including Anophe- process in which a of 2006, 44 of the 83 endemic countries had les, Aedes, Culex, Mansonia, and Ochlerotatus. parasite (at any stage) implemented MDA (86). compromises the W. bancrofti appears to be exclusively a human success of parasites at parasite, whereas Brugia spp. are zoonotic in the same or another limited situations. Parasite transmission is indi- stage CHALLENGES TO rect and occurs through the bite of an infective MDA CAMPAIGNS mosquito containing third-stage infective lar- Despite the progress made in initiating MDA vae (L3) that have developed through two inter- by NESLi2 on 04/30/09. For personal use only. programs, a number of challenges to these pro- mediate stages (L1 and L2) from microfilaremia grams have begun to appear. First, many coun- (Mf ) ingested with the blood meal taken by fe- tries initiating MDA have not reached national male mosquitoes on an infected human. scale even after 5–6 years and some countries face major challenges in sustaining MDA, prin- cipally as a result of significant resource con- Annu. Rev. Entomol. 2009.54:469-487. Downloaded from arjournals.annualreviews.org GLOBAL PROGRAM TO straints (86). Resource limitations and avail- ELIMINATE LYMPHATIC ability of rapid diagnostic tests have hampered FILARIASIS: EVOLUTION progress in mapping implementation units for AND CURRENT STATUS MDA. Delivering MDA in urban areas has also The absence of a nonhuman reservoir for posed operational challenges. Second, the ex- W. bancrofti and only minor animal hosts for act level and duration of treatments to achieve B. malayi means that transmission can be inter- LF elimination in different endemic regions re- rupted by reducing the Mf stage through mass main unknown (44, 45), such that it is diffi- drug administration (MDA) alone. This, along cult to predict or decide when to stop ongo- with the emergence of safe, single-dose, two- ing MDA programs. Third, a major challenge drug treatment regimens capable of reducing to implementing MDA at a level required to Mf to very low levels for one year or more and meet elimination targets within a reasonable 470 Bockarie et al. ANRV363-EN54-24 ARI 7 November 2008 11:5 time frame has been the difficulty of achieving and transmitted by the same mosquitoes (58). the required high drug coverages in endemic Similarly, vector intervention measures to con- communities (57). Fourth, there has been a shift trol dengue are in place in many parts of the Parasite control: recently toward linking MDA for LF control world where Aedes mosquitoes transmit LF (13). reduction of infection with programs for controlling other neglected Thus, an integrated strategy involving vector incidence, prevalence, tropical diseases, such as schistosomiasis, soil- control is now thought to have great potential or morbidity to a transmitted helminthiasis, and onchocerciasis to become an important supplementary compo- locally acceptable level (31, 48). This integrated approach is proving nent of the filariasis elimination strategy. Here, at which the parasitic infection is no longer to be an attractive alternative to an individual we review advances in knowledge of vector ecol- considered a public programmatic approach, because it is perceived ogy, vector-parasite relationships, population health problem to remove duplication of effort and costs in pro- dynamics of vector-based interventions, and in- Parasite elimination: grams that share common activities. However, tegrated control involving antimosquito mea- reduction of the with different objectives (e.g., parasite con- sures such as residual house spraying and dis- incidence of infection trol versus parasite elimination) and the poten- tribution of LLITNs to evaluate the feasibility to zero in a defined tial increased complexity in drug delivery (e.g., and strategic value of including vector control geographic area move
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Spatial Distribution and Seasonal Fluctuation of Mosquitoes in Dhaka
    International Journal of Fauna and Biological Studies 2013; 1 (1): 42-46 ISSN 2347-2677 IJFBS 2013; 1 (1): 42-46 Spatial Distribution and Seasonal Fluctuation of Mosquitoes in © 2013 AkiNik Publications Dhaka City Received: 17-9-2013 Accepted: 27-9-2013 Md. Rezaul Karim, Md. Muzahidul Islam, Md. Sheik Farid, Md. Abdur Rashid*, Tangin Akter, Humayun Reza Khan Md. Rezaul Karim Department of Zoology, University of Dhaka, Dhaka- ABSTRACT In an entomological study conducted from March 2011 to February 2012), mosquito larvae and adults 1000, Bangladesh were collected from different breeding sites viz. drains, coconut barks, tree holes, lakes, artificial water Md. Muzahidul Islam containers and tubs in Dhaka city utilizing long aquatic nets and sweeping nets. Altogether, 3487 Department of Zoology, mosquitoes belonging to 13 species of 4 genera namely Culex (7), Mansonia (3), Aedes (2) and Armigeres (1) were sampled, all of which were under the family Culicidae. Among the collected University of Dhaka, Dhaka- mosquitoes Cx. quinquefasciatus (29%) showed the highest abundance followed by Cx. vishnui (23%), 1000, Bangladesh Cx. tritaeniorhynchus (14%), Cx. gelidus (6%), Cx. fatigans (5%), Cx. fuscocephala (5%) , Cx. hutchinsoni (5%), Mn. annulifera (3%), Mn. uniformis (2%), Mn. indiana (2%), Ae. aegypti (2%), Ae. Md. Sheik Farid albopictus (2%) and Ar. subalbatus (1%). Maximum number of species were found in Osmani Uddan Department of Zoology, (12, n = 750) followed by Old Dhaka (11, n = 1648), Sohrawardi Uddan (9, n = 516) and Fullbaria Bus University of Dhaka, Dhaka- Station (7, n = 573). Irrespective of species specific distribution, mosquitoes were found abundantly in 1000, Bangladesh August when the rainy water creates numerous temporary breeding grounds.
    [Show full text]
  • The Resting and House Frequenting Behavior of Mansonia Annulifera, Ma
    THE RESTING AND HOUSE FREQUENTING BEHAVIOR OF MANSONIA ANNULIFERA, MA. UNIFORMIS AND MA. INDIANA, THE VECTORS OF MALAYAN FILARIASIS IN KERALA STATE, INDIA N Pradeep Kumar, S Sabesan and KN Panicker Vector Control Research Centre, Indian Council of Medical Research, Field Station, Shertallai, Kerala 688 524, India. Abstract. Mansonia annulifera, was recorded to be an endophilic species. preferring to rest indoors, while Ma. uniformis was exophilic, having a predilection for outdoor resting habitats, eg bushes and shrubs. Ma. indiana did not show a clear preference to either of these biotopes. In indoor resting collec­ tions, the unfed proportion of Ma. uniformis was significantly higher during post-dusk compared to day hours (p < 0.05), indicating that this exophilic species enters houses during dusk hours for feeding. The full fed proportion was higher during day hours compared to dusk/night hours. The semigravid propor­ tion showed a significant reduction during post-dusk hours (p < 0.05). These findings suggest that after having a blood-meal this species rest indoors and leave the houses for outdoor resting sites during the dusk hours on the subsequent night. INTRODUCTION eight fixed catching stations (Aroor, Kadakkara­ palli, Kurupankulangara, Areeparambu, Shertal­ Understanding of the resting and house fre­ lai town, Pallipuram, Muhamma, Mararikulam), quenting bahavior of vector mosquito is crucial in spread over the entire study area. Collections were organizing an adulticidal control measure against made during morning hours (0800 to 0900), them. The vectors of Brugia malayi, in the Shertal­ spending a total of six man hours at each station, lai region of Kerala, India are Mansonia annulife­at monthly intervals for a period of four years ra, Ma.
    [Show full text]
  • High Diversity of Mosquito Vectors in Cambodian Primary Schools And
    High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission Sebastien Boyer, Sebastien Marcombe, Sony Yean, Didier Fontenille To cite this version: Sebastien Boyer, Sebastien Marcombe, Sony Yean, Didier Fontenille. High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission. PLoS ONE, Public Library of Science, 2020, 15 (6), pp.e0233669. 10.1371/journal.pone.0233669. hal-03053997 HAL Id: hal-03053997 https://hal.archives-ouvertes.fr/hal-03053997 Submitted on 11 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PLOS ONE RESEARCH ARTICLE High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission 1 2 1 1 Sebastien BoyerID *, Sebastien Marcombe , Sony Yean , Didier Fontenille 1 Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Boulevard Monivong, Phnom Penh, Cambodia, 2 Medical Entomology Unit, Ministry of Health, Institut Pasteur du Laos, Vientiane, Lao PDR * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Only few data exist in Cambodia on mosquito diversity and their potential role as vectors. Many arboviruses, such as dengue and Japanese encephalitis, are endemic and mostly affect children in the country.
    [Show full text]
  • Blood Feeding Behaviour of Mosquitoes in Japanese Encephalitis Endemic and Non-Endemic Areas
    J Vector Borne Dis 52, March 2015, pp. 108–109 Letter to the Editor Blood feeding behaviour of mosquitoes in Japanese encephalitis endemic and non-endemic areas Dear Editor, tritaeniorhynchus and 5 (56%) Ae. vexans vexans had fed on cow, while 1 (0.75%) Cx. tritaeniorhynchus had Host selection by adult mosquitoes, particularly those fed on goat. mosquito species showing a higher degree of anthropoph- The comparative analysis of feeding preference of agy play an important role in the transmission of patho- the mosquito vectors of JE virus in Cuddalore (endemic) gens to human1–2. In contrast, the prevalence of more and Thanjavur districts (non-endemic) showed that 94 zoophagic vector mosquitoes in an area leads to lower vs 81% of Cx. tritaeniorhynchus had fed on cow in the pathogen transmission to humans, as cattle and other do- two districts, followed by 0 vs 0.75% on goat; no feeding mestic animals may act as a barrier for virus transmis- was noticed on human, dog, pig and fowl. From these sion3. Some mosquito species exhibit marked temporal two districts, 9 (14.52%) and 28 (19.18%) of the samples changes in their host selection pattern4. Although, the were found negative for the tested anti-sera (cow, hu- host availability and socio-demography was similar in man, pig, dog, goat and fowl). Analysing the host selec- Cuddalore and Thanjavur districts, Tamil Nadu, India, tion pattern, it showed that 90 vs 100% of Cx. gelidus JE cases regularly occurred in Cuddalore district, while had predominantly fed on cow. In both the areas, all Cx.
    [Show full text]
  • WP PDV ICP PDP 003 Eng.Pdf
    (WP)PDV/ICP/PDP/003 .ENGLISH ONLY REPORT .. sEMINAR ON CONTROL OF BRUGIAN FILARIASIS / Spnsored by the WORLD HEALTH ORGANIZATION REGIONAL OFFICE FOR THE WESTERN PACIFIC Kuala Lumpur, Malaysia 1-5 July 1985 Not for Sale Printed and Distributed by the Regional Office for the Western Pacific of the World Health Organization Manila, Philippines July 1986 NOTE The views expressed in this report are those of the participants in the seminar and do not necessarilv reflect the policies of the Organization. This report has been prepared by the Regional Office for the Western Pacific of the World Health Organization for governments of Member States in the Region, for those who participated in the Seminar on Control of Brugian Filariasis, which was held in Kuala Lumpur, Malaysia from 1 to 5 July 1985, and for the members of the WHO Western Pacific Advisory Committee on Medical Research. CONTENTS page 1. OPENING CEREMONIES ....................................... 2. OBJECTIVES ............................................... 3. PRESENT STATUS OF THE FILARIASIS PROBLEM IN THE SOUTH PACIFIC ................................................... 2 3.1 Filariasis in China.................................. 2 3.2 Filariasis in Fiji................................... 3 3.3 Brugian filariasis in the Republic of Korea .......... 4 3.4 Filariasis 1n Malaysia............................... 5 3.5 Filariasis 1n the Philippines ........................ 5 3.6 Filariasis 1n Samoa.................................. 6 3.7 Fi larias is 1n Viet Nam ............................... 6 4. UPDATE ON LABORATORY AND FIELD TECHNIQUES IN FILARIASIS ... 6 5. FILARIASIS MANUAL FOR FIELD WORKERS ....................... 7 6. CONCLUSIONS AND RECOMHENDATrONS ........................... 7 ANNEX 9 ANNEX 2 13 1. OPENING CEREMONY The Regional Seminar on Control of Brugian Filariasis was held at the Institute for Medical Research in Ku~la Lumpur, Malaysia, from 1 to 5 July 1985.
    [Show full text]
  • DNA of Brugia Malayi Detected in Several Mosquito Species Collected from Balangan District, South Borneo Province, Indonesia
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.13/May-2020/24.pdf Open Access DNA of Brugia malayi detected in several mosquito species collected from Balangan District, South Borneo Province, Indonesia Supriyono Supriyono1 and Suriyani Tan2 1. Division of Parasitology and Medical Entomology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, West Java, Indonesia; 2. Department of Parasitology, Faculty of Medicine, Trisakti University, Jakarta, Indonesia. Corresponding author: Suriyani Tan, e-mail: [email protected] Co-author: SS: [email protected] Received: 17-01-2020, Accepted: 21-04-2020, Published online: 30-05-2020 doi: www.doi.org/10.14202/vetworld.2020.996-1000 How to cite this article: Supriyono S, Tan S (2020) DNA of Brugia malayi detected in several mosquito species collected from Balangan District, South Borneo Province, Indonesia, Veterinary World, 13(5): 996-1000. Abstract Background and Aim: Lymphatic filariasis (LF) is a lesser-known parasitic disease, which contributes to significant decreases in overall health. This study investigated the presence of Brugia malayi in mosquitoes collected in the South Borneo Province, Indonesia. Materials and Methods: Mosquitoes were collected through bare leg collection methods after sunset in several areas of the Hukai and Gulinggang villages in the Balangan District. The collected mosquitoes were identified based on morphological features and dissected to find microfilaria and then pooled through species for polymerase chain reaction (PCR) microfilaria detection. Results: A total of 837 female mosquitoes consisting of at least 14 species were selected; they were dissected, and no microfilariae were found. Mosquitoes were divided into 69 pools for PCR analysis.
    [Show full text]
  • Host Plant Preference of Mansonia Mosquitoes
    J. Aquat. Plant Manage. 44: 142-144 Host Plant Preference of Mansonia Mosquitoes GOUTAM CHANDRA1, A. GHOSH, D. BISWAS1 AND S. N. CHATTERJEE1 INTRODUCTION Mansonioides were obtained from a laboratory colony main- tained in the Mosquito Research Unit, Department of. Zool- Human brugian filariasis, which is caused by Brugia malayi ogy, The University of Burdwan. The colony was maintained and B. timori, affects 13 million people in the oriental region at 25 to 30°C, a pH of 6.95 to 7.03 and dissolved oxygen from (WHO 2002) and is most common in India and China (Otte- 5.5 to 6.1 mg/l in the laboratory and was kept free from ex- sen et al. 1997). The most important vectors of B. malayi, in posure to pathogens, insecticides, or repellents. Mosquito the endemic countries of South-east Asia, are different Man- larvae were fed on a fine-ground dog biscuit. The adult colo- sonia species in the subgenus Mansonioides. The vectors of the ny was provided with 10% sucrose and 10% multivitamin syr- parasite causing brugian filariasis in the Western Pacific and up, and was periodically blood-fed on restrained rats. South-east Asian regions were reviewed by Chow in 1973 and During the lab based experiment, pond water (500 ml) Ramaliangam in 1975, while Ma. annulifera was reported by was placed in each of 5 enamel bowls (bowl No. 1-5). Pond Iyengar in 1938, as an agent for transmission of B. malayi in water was sieved through a net (>500 mesh) to exclude lar- Travancore, India.
    [Show full text]
  • Effect of Water Resource Development and Management on Lymphatic Filariasis, and Estimates of Populations at Risk
    Am. J. Trop. Med. Hyg., 73(3), 2005, pp. 523–533 Copyright © 2005 by The American Society of Tropical Medicine and Hygiene EFFECT OF WATER RESOURCE DEVELOPMENT AND MANAGEMENT ON LYMPHATIC FILARIASIS, AND ESTIMATES OF POPULATIONS AT RISK TOBIAS E. ERLANGER, JENNIFER KEISER, MARCIA CALDAS DE CASTRO, ROBERT BOS, BURTON H. SINGER, MARCEL TANNER, AND JÜRG UTZINGER* Swiss Tropical Institute, Basel, Switzerland; Department of Geography, University of South Carolina, Columbia, South Carolina; Water, Sanitation and Health, World Health Organization, Geneva, Switzerland; Office of Population Research, Princeton University, Princeton, New Jersey Abstract. Lymphatic filariasis (LF) is a debilitating disease overwhelmingly caused by Wuchereria bancrofti, which is transmitted by various mosquito species. Here, we present a systematic literature review with the following objectives: (i) to establish global and regional estimates of populations at risk of LF with particular consideration of water resource development projects, and (ii) to assess the effects of water resource development and management on the frequency and transmission dynamics of the disease. We estimate that globally, 2 billion people are at risk of LF. Among them, there are 394.5 million urban dwellers without access to improved sanitation and 213 million rural dwellers living in close proximity to irrigation. Environmental changes due to water resource development and management consistently led to a shift in vector species composition and generally to a strong proliferation of vector populations. For example, in World Health Organization (WHO) subregions 1 and 2, mosquito densities of the Anopheles gambiae complex and Anopheles funestus were up to 25-fold higher in irrigated areas when compared with irrigation-free sites.
    [Show full text]
  • Review of Climate, Landscape, and Viral Genetics As Drivers of the Japanese Encephalitis Virus Ecology
    Review Review of Climate, Landscape, and Viral Genetics as Drivers of the Japanese Encephalitis Virus Ecology Guillaume Le Flohic1*, Vincent Porphyre2, Philippe Barbazan3{, Jean-Paul Gonzalez1,3,4,5 1 UR Ecologie et Sante´, Centre International de Recherches Me´dicales de Franceville, CIRMF, BP 769, Franceville, Gabon, 2 Centre de Coope´ration Internationale en Recherche Agronomique pour le De´veloppement, CIRAD, Montpellier, France, 3 Institut de Recherche pour le De´veloppement, IRD, Marseille, France, 4 Ministe`re des Affaires Etrange`res et Europe´ennes, Mission de Coope´ration, Libreville, Gabon, 5 Metabiota, Washington, District of Columbia, United States of America The incubation period ranges from 5 to 15 days; JE infections are Abstract: The Japanese encephalitis virus (JEV), an lethal in about 25–30% of cases, mostly in infants, and lead to arthropod-born Flavivirus, is the major cause of viral permanent sequelae in about 50% of cases. encephalitis, responsible for 10,000–15,000 deaths each JE was first described in 1871 in Japan, and first characterized year, yet is a neglected tropical disease. Since the JEV in 1935 [6]. Despite an effective vaccine developed in 1941, and distribution area has been large and continuously the subsequent national immunization campaigns that have extending toward new Asian and Australasian regions, it is considered an emerging and reemerging pathogen. greatly reduced the incidence of JE in several countries, sporadic Despite large effective immunization campaigns, Japa- cases continue to be reported, and JEV continues to spread widely nese encephalitis remains a disease of global health in South, East, and Southeast Asia and Australasia [7].
    [Show full text]
  • Habitat Characterization of Mansonia Spp As Filariasis Vector in Banyuasin, South Sumatra, Indonesia
    E3S Web of Conferences 68, 01004 (2018) https://doi.org/10.1051/e3sconf /20186801004 1st SRICOENV 2018 Habitat Characterization of Mansonia spp as Filariasis Vector in Banyuasin, South Sumatra, Indonesia Rini Pratiwi1,*,, Chairil Anwar2*, Salni3, Hermansyah4, Novrikasari5, Rachmat Hidayat6 ,and Ahmad Ghiffari7 1Ph.D student, Environmental Science, Universitas Sriwijaya, Palembang, Indonesia 2Department of Parasitology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia 3Department of Biology, Faculty of Mathematics and Natural science, Universitas Sriwijaya, Palembang, Indonesia 4Department of Chemistry, Faculty of Mathematics and Natural science, Universitas Sriwijaya, Palembang, Indonesia 5Department of Public Health, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia 6Department of Pharmacology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia 7Department of Parasitology, Faculty of Medicine, Universitas Muhammadiyah Palembang, Palembang, Indonesia [email protected] Abstract. Filariasis is caused by microfilariae parasites transmitted through mosquitoes, one of which is Mansonia spp. Environmental characteristics are crucial component for vector control in handling filariasis because they indicate mosquitoes’ range of survival. This study aimed to determine the environmental characteristics in the abundance of Mansonia spp. This study was conducted in two lowland areas located in Sedang and Muara Sugih Village, Indonesia, April 2017-April 2018. Environmental characteristics were determined by thermometers and sling hygrometers, and sampling for physical and chemical properties of water. Sedang Village had larger quantity of Mansonia spp variances compared to Muara Sugih, with 6 species and 5 species found respectively. Muara Sugih was slightly higher in temperature and humidity. Sedang water had higher turbidity, higher temperature, higher pH, lower BOD-COD, lower TDS-TSS, with higher coliform counts. Sedang dominant land utilization was plantations, while Muara Sugih was rice field.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]