Effect of Water Resource Development and Management on Lymphatic Filariasis, and Estimates of Populations at Risk

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Water Resource Development and Management on Lymphatic Filariasis, and Estimates of Populations at Risk Am. J. Trop. Med. Hyg., 73(3), 2005, pp. 523–533 Copyright © 2005 by The American Society of Tropical Medicine and Hygiene EFFECT OF WATER RESOURCE DEVELOPMENT AND MANAGEMENT ON LYMPHATIC FILARIASIS, AND ESTIMATES OF POPULATIONS AT RISK TOBIAS E. ERLANGER, JENNIFER KEISER, MARCIA CALDAS DE CASTRO, ROBERT BOS, BURTON H. SINGER, MARCEL TANNER, AND JÜRG UTZINGER* Swiss Tropical Institute, Basel, Switzerland; Department of Geography, University of South Carolina, Columbia, South Carolina; Water, Sanitation and Health, World Health Organization, Geneva, Switzerland; Office of Population Research, Princeton University, Princeton, New Jersey Abstract. Lymphatic filariasis (LF) is a debilitating disease overwhelmingly caused by Wuchereria bancrofti, which is transmitted by various mosquito species. Here, we present a systematic literature review with the following objectives: (i) to establish global and regional estimates of populations at risk of LF with particular consideration of water resource development projects, and (ii) to assess the effects of water resource development and management on the frequency and transmission dynamics of the disease. We estimate that globally, 2 billion people are at risk of LF. Among them, there are 394.5 million urban dwellers without access to improved sanitation and 213 million rural dwellers living in close proximity to irrigation. Environmental changes due to water resource development and management consistently led to a shift in vector species composition and generally to a strong proliferation of vector populations. For example, in World Health Organization (WHO) subregions 1 and 2, mosquito densities of the Anopheles gambiae complex and Anopheles funestus were up to 25-fold higher in irrigated areas when compared with irrigation-free sites. Although the infection prevalence of LF often increased after the implementation of a water project, there was no clear association with clinical symptoms. Concluding, there is a need to assess and quantify changes of LF transmission parameters and clinical manifestations over the entire course of water resource developments. Where resources allow, integrated vector man- agement should complement mass drug administration, and broad-based monitoring and surveillance of the disease should become an integral part of large-scale waste management and sanitation programs, whose basic rationale lies in a systemic approach to city, district, and regional level health services and disease prevention. INTRODUCTION scale operations were launched in 2000, alongside the forging of a worldwide coalition, the Global Alliance to Eliminate People living in tropical and subtropical countries have Lymphatic Filariasis (GAELF), which is a free and nonre- long suffered under the yoke of lymphatic filariasis (LF). This strictive partnership forum. WHO serves as its secretariat and chronic parasitic disease is of great public health and socio- is being reinforced by an expert technical advisory group.12–14 economic significance and is currently endemic in 80 coun- GPELF’s goal is to eliminate the disease as a public health tries/territories of the world.1–3 LF accounts for serious dis- problem by 2020. It mainly relies on mass drug administration figuration and incapacitation of the extremities and the geni- using albendazole plus either ivermectin or diethylcarba- tals and causes hidden internal damage to lymphatic and renal mazine (DEC). At the end of 2003, approximately 70 million systems.4–6 Disease, disability, and disfiguration are respon- people were treated and 36 countries had an active control sible for a loss of worker productivity, significant treatment program in place.14 costs, and social stigma.7,8 At present, the global burden of LF Sustained political and financial commitment and rigorous is estimated at 5.78 million disability adjusted life years monitoring and surveillance are essential elements of the (DALYs) lost annually.9 Hence, its estimated burden is al- global program, as otherwise LF could reemerge because a most 3.5-fold higher than that of schistosomiasis and approxi- small fraction of the population will continue to carry microfi- mately one seventh of that of malaria.9 LF is caused by laria. Furthermore, the vector population is unlikely to be Wuchereria bancrofti, Brugia malayi, and Brugia timori, with significantly affected by GPELF. Employing a mathematical > 90% of cases attributable to W. bancrofti.1 Transmission modeling approach, it was shown that vector control pro- occurs through various mosquito species, primarily Culex grams, in addition to mass drug administration, would sub- (57%), followed by Anopheles (39%), Aedes, Mansonia, and stantially increase the chances of meeting GPELF’s ambitious Ochlerotatus. Detailed information on the geographical dis- target.15 Indeed, some of the most successful control pro- tribution of the most important LF vectors can be found else- grams in the past demonstrate that an integrated approach, where.2 More than 60% of all LF infections are concentrated readily adapted to specific eco-epidemiologic settings, was a in Asia and the Pacific region, where Culex is the predomi- key factor for controlling and even eliminating LF.16–19 nant vector. In Africa, where an estimated 37% of all infec- In rural areas undergoing ecological transformations, par- tions occur, Anopheles is the key vector.2 ticularly due to the construction of irrigation schemes and In 1993, the World Health Organization (WHO) declared dams, new breeding sites suitable for filaria vectors are cre- LF to be one of six eliminable infectious diseases.10 After ated.16,20 As a consequence, the transmission dynamics of LF several years of preparation and endorsement by the World is expected to change. In Africa, where Anopheles transmit Health Assembly in 1997, the Global Program to Eliminate malaria and filaria, the estimated surface area of 12 million ha Lymphatic Filariasis (GPELF) was initiated in 1998.11 Large- under irrigation in 1990 is estimated to increase by one third until 2020.21 Rapid and uncoordinated urbanization often leads to new habitats for filaria vectors.22,23 Especially poor * Address correspondence to Jürg Utzinger, Department of Public design and lack of maintenance of infrastructures for drainage Health and Epidemiology, Swiss Tropical Institute, CH-4002 Basel, of sewage and storm water, waste-water management, water Switzerland. E-mail: [email protected] storage, and urban subsistence agriculture can facilitate the 523 524 ERLANGER AND OTHERS proliferation of mosquitoes, including those transmitting fi- that chronic parasitic diseases, including LF, could be used as laria. Although the proportion of urban dwellers in the least viable health indicators for monitoring poverty alleviation, as developed countries was only 27% in 1975, it rose to 40% in the root ecological causes of these health conditions depend 2000 and is predicted to further increase. Nearly 50% of the on poor sanitation, inadequate water supply and lack of vec- world’s urban population is concentrated in Asia. Currently, tor control measures.27 the annual growth rate in Asian cities is 2.7%.24 This implies Search strategies and selection criteria. With the aim of that in the future, an increasing number of habitats with or- identifying all published studies that examined the effect of ganically polluted water will be available for Culex vectors. water resource development and management on the fre- The objectives of the systematic literature review presented quency and transmission dynamics of LF, we carried out a in this paper were (i) to assess the current size of the popu- systematic literature review. Particular consideration was lation at risk of LF with particular consideration of water given to publications that contained specifications on (i) en- resource development and management, both in rural and tomological transmission parameters, abundance of vector urban settings, and (ii) to assess the effect of these ecological populations, microfilaria infection prevalence and rates of transformations on the frequency and transmission dynamics clinical manifestations as a result of water resource develop- of LF. Our working hypothesis was that environmental ment, and (ii) studies that compared sites where environmen- changes resulting from water resource development and man- tal changes occurred with ecologically similar settings where agement adversely affect vector frequencies, filaria transmis- no water resource developments were implemented. sion, prevalence of infection, and clinical occurrence of LF. As a first step, we performed computer-aided searches us- These issues are of direct relevance for GPELF and evidence- ing the National Library of Medicine’s PubMed database, as based policy-making, and for integrated vector management well as BIOSIS Previews, Cambridge Scientific Abstracts In- programs and optimal resource allocation for disease control ternet Database Service, and ISI Web of Science. We were more generally. interested in citations published as far back as 1945. The fol- lowing keywords (medical subject headings and technical terms) were used: “lymphatic filariasis” in combination with MATERIALS AND METHODS “water,”“water management,”“reservoir(s),”“irrigation,” “dam(s),”“pool(s),”“sanitation,”“ecological transforma- tion,” and “urbanization.” No restrictions were placed on lan- Contextual determinants and estimation of population at guage of publication. risk in endemic countries. As a first step, we outlined the
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Spatial Distribution and Seasonal Fluctuation of Mosquitoes in Dhaka
    International Journal of Fauna and Biological Studies 2013; 1 (1): 42-46 ISSN 2347-2677 IJFBS 2013; 1 (1): 42-46 Spatial Distribution and Seasonal Fluctuation of Mosquitoes in © 2013 AkiNik Publications Dhaka City Received: 17-9-2013 Accepted: 27-9-2013 Md. Rezaul Karim, Md. Muzahidul Islam, Md. Sheik Farid, Md. Abdur Rashid*, Tangin Akter, Humayun Reza Khan Md. Rezaul Karim Department of Zoology, University of Dhaka, Dhaka- ABSTRACT In an entomological study conducted from March 2011 to February 2012), mosquito larvae and adults 1000, Bangladesh were collected from different breeding sites viz. drains, coconut barks, tree holes, lakes, artificial water Md. Muzahidul Islam containers and tubs in Dhaka city utilizing long aquatic nets and sweeping nets. Altogether, 3487 Department of Zoology, mosquitoes belonging to 13 species of 4 genera namely Culex (7), Mansonia (3), Aedes (2) and Armigeres (1) were sampled, all of which were under the family Culicidae. Among the collected University of Dhaka, Dhaka- mosquitoes Cx. quinquefasciatus (29%) showed the highest abundance followed by Cx. vishnui (23%), 1000, Bangladesh Cx. tritaeniorhynchus (14%), Cx. gelidus (6%), Cx. fatigans (5%), Cx. fuscocephala (5%) , Cx. hutchinsoni (5%), Mn. annulifera (3%), Mn. uniformis (2%), Mn. indiana (2%), Ae. aegypti (2%), Ae. Md. Sheik Farid albopictus (2%) and Ar. subalbatus (1%). Maximum number of species were found in Osmani Uddan Department of Zoology, (12, n = 750) followed by Old Dhaka (11, n = 1648), Sohrawardi Uddan (9, n = 516) and Fullbaria Bus University of Dhaka, Dhaka- Station (7, n = 573). Irrespective of species specific distribution, mosquitoes were found abundantly in 1000, Bangladesh August when the rainy water creates numerous temporary breeding grounds.
    [Show full text]
  • PROGRESS Against Neglected Tropical Diseases
    PROGRESS SHEET Significant progress towards the elimination and eradication of neglected tropical diseases has been made in the last decade. Development of public-private partnerships, drug donations from major pharmaceutical companies, increased country and international agency commitment, and effective intervention strategies have led to dramatic declines in rates of infection from these debilitating diseases. Over the last five years, neglected tropical diseases (NTDs)— Elimination Program for the Americas (Merck & Co.), a group of debilitating infectious diseases that contribute to Global Programme to Eliminate Lymphatic Filariasis extreme poverty—have been the focus of increased attention. (GlaxoSmithKline, Merck & Co.), International Trachoma Countries, supported by a variety of global initiatives, have Initiative (Pfizer), Children Without Worms (Johnson & made remarkable headway in combating NTDs—including Johnson), and the WHO Program to Eliminate Sleeping diseases such as leprosy, lymphatic filariasis (elephantiasis), Sickness (Bayer, sanofi-aventis) to provide treatment for those onchocerciasis (river blindness), schistosomiasis (snail fever), NTDs. For schistosomiasis control, praziquantel has been and trachoma—and guinea worm may be the next disease provided via WHO by Merck KGaA and by MedPharm to the eradicated from the planet. Schistosomiasis Control Initiative. Drugs for leprosy control are provided free by Novartis. Global Progress This collection of programs and alliances has been successful in bringing together partners to address NTDs, but there The prospects for reducing the enormous burden caused are others who also provide support to national programs by NTDs have changed dramatically in just the past few fighting these diseases. years, in part due to the growing recognition of the linkages between the fight against these debilitating diseases and The Carter Center spearheads efforts with theCenters for progress towards the United Nations Millennium Disease Control (CDC), WHO, and UNICEF to eradicate guinea Development Goals (MDGs).
    [Show full text]
  • The Resting and House Frequenting Behavior of Mansonia Annulifera, Ma
    THE RESTING AND HOUSE FREQUENTING BEHAVIOR OF MANSONIA ANNULIFERA, MA. UNIFORMIS AND MA. INDIANA, THE VECTORS OF MALAYAN FILARIASIS IN KERALA STATE, INDIA N Pradeep Kumar, S Sabesan and KN Panicker Vector Control Research Centre, Indian Council of Medical Research, Field Station, Shertallai, Kerala 688 524, India. Abstract. Mansonia annulifera, was recorded to be an endophilic species. preferring to rest indoors, while Ma. uniformis was exophilic, having a predilection for outdoor resting habitats, eg bushes and shrubs. Ma. indiana did not show a clear preference to either of these biotopes. In indoor resting collec­ tions, the unfed proportion of Ma. uniformis was significantly higher during post-dusk compared to day hours (p < 0.05), indicating that this exophilic species enters houses during dusk hours for feeding. The full fed proportion was higher during day hours compared to dusk/night hours. The semigravid propor­ tion showed a significant reduction during post-dusk hours (p < 0.05). These findings suggest that after having a blood-meal this species rest indoors and leave the houses for outdoor resting sites during the dusk hours on the subsequent night. INTRODUCTION eight fixed catching stations (Aroor, Kadakkara­ palli, Kurupankulangara, Areeparambu, Shertal­ Understanding of the resting and house fre­ lai town, Pallipuram, Muhamma, Mararikulam), quenting bahavior of vector mosquito is crucial in spread over the entire study area. Collections were organizing an adulticidal control measure against made during morning hours (0800 to 0900), them. The vectors of Brugia malayi, in the Shertal­ spending a total of six man hours at each station, lai region of Kerala, India are Mansonia annulife­at monthly intervals for a period of four years ra, Ma.
    [Show full text]
  • High Diversity of Mosquito Vectors in Cambodian Primary Schools And
    High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission Sebastien Boyer, Sebastien Marcombe, Sony Yean, Didier Fontenille To cite this version: Sebastien Boyer, Sebastien Marcombe, Sony Yean, Didier Fontenille. High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission. PLoS ONE, Public Library of Science, 2020, 15 (6), pp.e0233669. 10.1371/journal.pone.0233669. hal-03053997 HAL Id: hal-03053997 https://hal.archives-ouvertes.fr/hal-03053997 Submitted on 11 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PLOS ONE RESEARCH ARTICLE High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission 1 2 1 1 Sebastien BoyerID *, Sebastien Marcombe , Sony Yean , Didier Fontenille 1 Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Boulevard Monivong, Phnom Penh, Cambodia, 2 Medical Entomology Unit, Ministry of Health, Institut Pasteur du Laos, Vientiane, Lao PDR * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Only few data exist in Cambodia on mosquito diversity and their potential role as vectors. Many arboviruses, such as dengue and Japanese encephalitis, are endemic and mostly affect children in the country.
    [Show full text]
  • Blood Feeding Behaviour of Mosquitoes in Japanese Encephalitis Endemic and Non-Endemic Areas
    J Vector Borne Dis 52, March 2015, pp. 108–109 Letter to the Editor Blood feeding behaviour of mosquitoes in Japanese encephalitis endemic and non-endemic areas Dear Editor, tritaeniorhynchus and 5 (56%) Ae. vexans vexans had fed on cow, while 1 (0.75%) Cx. tritaeniorhynchus had Host selection by adult mosquitoes, particularly those fed on goat. mosquito species showing a higher degree of anthropoph- The comparative analysis of feeding preference of agy play an important role in the transmission of patho- the mosquito vectors of JE virus in Cuddalore (endemic) gens to human1–2. In contrast, the prevalence of more and Thanjavur districts (non-endemic) showed that 94 zoophagic vector mosquitoes in an area leads to lower vs 81% of Cx. tritaeniorhynchus had fed on cow in the pathogen transmission to humans, as cattle and other do- two districts, followed by 0 vs 0.75% on goat; no feeding mestic animals may act as a barrier for virus transmis- was noticed on human, dog, pig and fowl. From these sion3. Some mosquito species exhibit marked temporal two districts, 9 (14.52%) and 28 (19.18%) of the samples changes in their host selection pattern4. Although, the were found negative for the tested anti-sera (cow, hu- host availability and socio-demography was similar in man, pig, dog, goat and fowl). Analysing the host selec- Cuddalore and Thanjavur districts, Tamil Nadu, India, tion pattern, it showed that 90 vs 100% of Cx. gelidus JE cases regularly occurred in Cuddalore district, while had predominantly fed on cow. In both the areas, all Cx.
    [Show full text]
  • WP PDV ICP PDP 003 Eng.Pdf
    (WP)PDV/ICP/PDP/003 .ENGLISH ONLY REPORT .. sEMINAR ON CONTROL OF BRUGIAN FILARIASIS / Spnsored by the WORLD HEALTH ORGANIZATION REGIONAL OFFICE FOR THE WESTERN PACIFIC Kuala Lumpur, Malaysia 1-5 July 1985 Not for Sale Printed and Distributed by the Regional Office for the Western Pacific of the World Health Organization Manila, Philippines July 1986 NOTE The views expressed in this report are those of the participants in the seminar and do not necessarilv reflect the policies of the Organization. This report has been prepared by the Regional Office for the Western Pacific of the World Health Organization for governments of Member States in the Region, for those who participated in the Seminar on Control of Brugian Filariasis, which was held in Kuala Lumpur, Malaysia from 1 to 5 July 1985, and for the members of the WHO Western Pacific Advisory Committee on Medical Research. CONTENTS page 1. OPENING CEREMONIES ....................................... 2. OBJECTIVES ............................................... 3. PRESENT STATUS OF THE FILARIASIS PROBLEM IN THE SOUTH PACIFIC ................................................... 2 3.1 Filariasis in China.................................. 2 3.2 Filariasis in Fiji................................... 3 3.3 Brugian filariasis in the Republic of Korea .......... 4 3.4 Filariasis 1n Malaysia............................... 5 3.5 Filariasis 1n the Philippines ........................ 5 3.6 Filariasis 1n Samoa.................................. 6 3.7 Fi larias is 1n Viet Nam ............................... 6 4. UPDATE ON LABORATORY AND FIELD TECHNIQUES IN FILARIASIS ... 6 5. FILARIASIS MANUAL FOR FIELD WORKERS ....................... 7 6. CONCLUSIONS AND RECOMHENDATrONS ........................... 7 ANNEX 9 ANNEX 2 13 1. OPENING CEREMONY The Regional Seminar on Control of Brugian Filariasis was held at the Institute for Medical Research in Ku~la Lumpur, Malaysia, from 1 to 5 July 1985.
    [Show full text]
  • DNA of Brugia Malayi Detected in Several Mosquito Species Collected from Balangan District, South Borneo Province, Indonesia
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.13/May-2020/24.pdf Open Access DNA of Brugia malayi detected in several mosquito species collected from Balangan District, South Borneo Province, Indonesia Supriyono Supriyono1 and Suriyani Tan2 1. Division of Parasitology and Medical Entomology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, West Java, Indonesia; 2. Department of Parasitology, Faculty of Medicine, Trisakti University, Jakarta, Indonesia. Corresponding author: Suriyani Tan, e-mail: [email protected] Co-author: SS: [email protected] Received: 17-01-2020, Accepted: 21-04-2020, Published online: 30-05-2020 doi: www.doi.org/10.14202/vetworld.2020.996-1000 How to cite this article: Supriyono S, Tan S (2020) DNA of Brugia malayi detected in several mosquito species collected from Balangan District, South Borneo Province, Indonesia, Veterinary World, 13(5): 996-1000. Abstract Background and Aim: Lymphatic filariasis (LF) is a lesser-known parasitic disease, which contributes to significant decreases in overall health. This study investigated the presence of Brugia malayi in mosquitoes collected in the South Borneo Province, Indonesia. Materials and Methods: Mosquitoes were collected through bare leg collection methods after sunset in several areas of the Hukai and Gulinggang villages in the Balangan District. The collected mosquitoes were identified based on morphological features and dissected to find microfilaria and then pooled through species for polymerase chain reaction (PCR) microfilaria detection. Results: A total of 837 female mosquitoes consisting of at least 14 species were selected; they were dissected, and no microfilariae were found. Mosquitoes were divided into 69 pools for PCR analysis.
    [Show full text]
  • Host Plant Preference of Mansonia Mosquitoes
    J. Aquat. Plant Manage. 44: 142-144 Host Plant Preference of Mansonia Mosquitoes GOUTAM CHANDRA1, A. GHOSH, D. BISWAS1 AND S. N. CHATTERJEE1 INTRODUCTION Mansonioides were obtained from a laboratory colony main- tained in the Mosquito Research Unit, Department of. Zool- Human brugian filariasis, which is caused by Brugia malayi ogy, The University of Burdwan. The colony was maintained and B. timori, affects 13 million people in the oriental region at 25 to 30°C, a pH of 6.95 to 7.03 and dissolved oxygen from (WHO 2002) and is most common in India and China (Otte- 5.5 to 6.1 mg/l in the laboratory and was kept free from ex- sen et al. 1997). The most important vectors of B. malayi, in posure to pathogens, insecticides, or repellents. Mosquito the endemic countries of South-east Asia, are different Man- larvae were fed on a fine-ground dog biscuit. The adult colo- sonia species in the subgenus Mansonioides. The vectors of the ny was provided with 10% sucrose and 10% multivitamin syr- parasite causing brugian filariasis in the Western Pacific and up, and was periodically blood-fed on restrained rats. South-east Asian regions were reviewed by Chow in 1973 and During the lab based experiment, pond water (500 ml) Ramaliangam in 1975, while Ma. annulifera was reported by was placed in each of 5 enamel bowls (bowl No. 1-5). Pond Iyengar in 1938, as an agent for transmission of B. malayi in water was sieved through a net (>500 mesh) to exclude lar- Travancore, India.
    [Show full text]
  • Review of Climate, Landscape, and Viral Genetics As Drivers of the Japanese Encephalitis Virus Ecology
    Review Review of Climate, Landscape, and Viral Genetics as Drivers of the Japanese Encephalitis Virus Ecology Guillaume Le Flohic1*, Vincent Porphyre2, Philippe Barbazan3{, Jean-Paul Gonzalez1,3,4,5 1 UR Ecologie et Sante´, Centre International de Recherches Me´dicales de Franceville, CIRMF, BP 769, Franceville, Gabon, 2 Centre de Coope´ration Internationale en Recherche Agronomique pour le De´veloppement, CIRAD, Montpellier, France, 3 Institut de Recherche pour le De´veloppement, IRD, Marseille, France, 4 Ministe`re des Affaires Etrange`res et Europe´ennes, Mission de Coope´ration, Libreville, Gabon, 5 Metabiota, Washington, District of Columbia, United States of America The incubation period ranges from 5 to 15 days; JE infections are Abstract: The Japanese encephalitis virus (JEV), an lethal in about 25–30% of cases, mostly in infants, and lead to arthropod-born Flavivirus, is the major cause of viral permanent sequelae in about 50% of cases. encephalitis, responsible for 10,000–15,000 deaths each JE was first described in 1871 in Japan, and first characterized year, yet is a neglected tropical disease. Since the JEV in 1935 [6]. Despite an effective vaccine developed in 1941, and distribution area has been large and continuously the subsequent national immunization campaigns that have extending toward new Asian and Australasian regions, it is considered an emerging and reemerging pathogen. greatly reduced the incidence of JE in several countries, sporadic Despite large effective immunization campaigns, Japa- cases continue to be reported, and JEV continues to spread widely nese encephalitis remains a disease of global health in South, East, and Southeast Asia and Australasia [7].
    [Show full text]
  • Habitat Characterization of Mansonia Spp As Filariasis Vector in Banyuasin, South Sumatra, Indonesia
    E3S Web of Conferences 68, 01004 (2018) https://doi.org/10.1051/e3sconf /20186801004 1st SRICOENV 2018 Habitat Characterization of Mansonia spp as Filariasis Vector in Banyuasin, South Sumatra, Indonesia Rini Pratiwi1,*,, Chairil Anwar2*, Salni3, Hermansyah4, Novrikasari5, Rachmat Hidayat6 ,and Ahmad Ghiffari7 1Ph.D student, Environmental Science, Universitas Sriwijaya, Palembang, Indonesia 2Department of Parasitology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia 3Department of Biology, Faculty of Mathematics and Natural science, Universitas Sriwijaya, Palembang, Indonesia 4Department of Chemistry, Faculty of Mathematics and Natural science, Universitas Sriwijaya, Palembang, Indonesia 5Department of Public Health, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia 6Department of Pharmacology, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia 7Department of Parasitology, Faculty of Medicine, Universitas Muhammadiyah Palembang, Palembang, Indonesia [email protected] Abstract. Filariasis is caused by microfilariae parasites transmitted through mosquitoes, one of which is Mansonia spp. Environmental characteristics are crucial component for vector control in handling filariasis because they indicate mosquitoes’ range of survival. This study aimed to determine the environmental characteristics in the abundance of Mansonia spp. This study was conducted in two lowland areas located in Sedang and Muara Sugih Village, Indonesia, April 2017-April 2018. Environmental characteristics were determined by thermometers and sling hygrometers, and sampling for physical and chemical properties of water. Sedang Village had larger quantity of Mansonia spp variances compared to Muara Sugih, with 6 species and 5 species found respectively. Muara Sugih was slightly higher in temperature and humidity. Sedang water had higher turbidity, higher temperature, higher pH, lower BOD-COD, lower TDS-TSS, with higher coliform counts. Sedang dominant land utilization was plantations, while Muara Sugih was rice field.
    [Show full text]
  • Neglected Tropical Diseases: Equity and Social Determinants
    Neglected tropical diseases: equity and social determinants 1 8 Jens Aagaard-Hansen and Claire Lise Chaignat Contents Water, sanitation and household-related factors 147 Environmental factors . 147 8.1 Summary . 136 Migration . 148 8.2 Introduction . 136 Sociocultural factors and gender . 148 Neglected tropical diseases. 136 Poverty as a root cause of NTDs. 148 Equity aspects of neglected tropical diseases . 138 8.6 Implications: measurement, evaluation Methodology . 138 and data requirements . 150 8.3 Analysis: social determinants of Risk assessment and surveillance. 150 neglected tropical diseases . 139 Monitoring the impact . 150 Water and sanitation. 139 Knowledge gaps . 151 Housing and clustering . 140 Managerial implications and challenges . 152 Environment . 141 8.7 Conclusion . 152 Migration, disasters and conflicts . 141 Sociocultural factors and gender . 142 References . 153 Poverty . 143 Table 8.4 Discussion: patterns, pathways and Table 8.1 Relationship of the 13 NTDs to entry-points . 144 the selected social determinants and the five 8.5 Interventions . 146 analytical levels. 145 1 The authors would like to acknowledge the valuable input of reviewers (especially Susan Watts and Erik Blas), and Birte Holm Sørensen for her comments regarding the potential of social determinants as indicators of multiendemic populations. Also thanks to staff members of the WHO Department of Neglected Tropical Diseases for their support and advice. Neglected tropical diseases: equity and social determinants 135 8.1 Summary Consequently, poverty should be addressed both in gen- eral poverty alleviation programmes for NTD-endemic The neglected tropical diseases (NTDs) are very het- populations and more particularly by ensuring afford- erogeneous and consequently the analysis of inequity able treatment.
    [Show full text]