Iaea Tecdoc Series Tecdoc Iaea @

Total Page:16

File Type:pdf, Size:1020Kb

Iaea Tecdoc Series Tecdoc Iaea @ IAEA-TECDOC-1790 IAEA-TECDOC-1790 IAEA TECDOC SERIES Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal Waste Acceptance Criteria for Processing of Irradiated Graphite to Meet IAEA-TECDOC-1790 Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal Results of a Coordinated Research Project @ PROCESSING OF IRRADIATED GRAPHITE TO MEET ACCEPTANCE CRITERIA FOR WASTE DISPOSAL The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GEORGIA OMAN ALBANIA GERMANY PAKISTAN ALGERIA GHANA PALAU ANGOLA GREECE PANAMA ANTIGUA AND BARBUDA GUATEMALA PAPUA NEW GUINEA ARGENTINA GUYANA PARAGUAY ARMENIA HAITI PERU AUSTRALIA HOLY SEE PHILIPPINES AUSTRIA HONDURAS POLAND AZERBAIJAN HUNGARY PORTUGAL BAHAMAS ICELAND QATAR BAHRAIN INDIA REPUBLIC OF MOLDOVA BANGLADESH INDONESIA ROMANIA BARBADOS IRAN, ISLAMIC REPUBLIC OF RUSSIAN FEDERATION BELARUS IRAQ RWANDA BELGIUM IRELAND SAN MARINO BELIZE ISRAEL SAUDI ARABIA BENIN ITALY SENEGAL BOLIVIA, PLURINATIONAL JAMAICA SERBIA STATE OF JAPAN SEYCHELLES BOSNIA AND HERZEGOVINA JORDAN SIERRA LEONE BOTSWANA KAZAKHSTAN SINGAPORE BRAZIL KENYA SLOVAKIA BRUNEI DARUSSALAM KOREA, REPUBLIC OF SLOVENIA BULGARIA KUWAIT SOUTH AFRICA BURKINA FASO KYRGYZSTAN SPAIN BURUNDI LAO PEOPLE’S DEMOCRATIC SRI LANKA CAMBODIA REPUBLIC SUDAN CAMEROON LATVIA SWAZILAND CANADA LEBANON SWEDEN CENTRAL AFRICAN LESOTHO SWITZERLAND REPUBLIC LIBERIA SYRIAN ARAB REPUBLIC CHAD LIBYA TAJIKISTAN CHILE LIECHTENSTEIN THAILAND CHINA LITHUANIA THE FORMER YUGOSLAV COLOMBIA LUXEMBOURG REPUBLIC OF MACEDONIA CONGO MADAGASCAR TOGO COSTA RICA MALAWI TRINIDAD AND TOBAGO CÔTE D’IVOIRE MALAYSIA TUNISIA CROATIA MALI TURKEY CUBA MALTA TURKMENISTAN CYPRUS MARSHALL ISLANDS UGANDA CZECH REPUBLIC MAURITANIA UKRAINE DEMOCRATIC REPUBLIC MAURITIUS UNITED ARAB EMIRATES OF THE CONGO MEXICO UNITED KINGDOM OF DENMARK MONACO GREAT BRITAIN AND DJIBOUTI MONGOLIA NORTHERN IRELAND DOMINICA MONTENEGRO UNITED REPUBLIC DOMINICAN REPUBLIC MOROCCO OF TANZANIA ECUADOR MOZAMBIQUE UNITED STATES OF AMERICA EGYPT MYANMAR URUGUAY EL SALVADOR NAMIBIA UZBEKISTAN ERITREA NEPAL VANUATU ESTONIA NETHERLANDS VENEZUELA, BOLIVARIAN ETHIOPIA NEW ZEALAND REPUBLIC OF FIJI NICARAGUA VIET NAM FINLAND NIGER YEMEN FRANCE NIGERIA ZAMBIA GABON NORWAY ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA-TECDOC-1790 PROCESSING OF IRRADIATED GRAPHITE TO MEET ACCEPTANCE CRITERIA FOR WASTE DISPOSAL RESULTS OF A COORDINATED RESEARCH PROJECT INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2016 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books For further information on this publication, please contact: Waste Technology Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Email: [email protected] © IAEA, 2016 Printed by the IAEA in Austria May 2016 IAEA Library Cataloguing in Publication Data Names: International Atomic Energy Agency. Title: Processing of irradiated graphite to meet acceptance criteria for waste disposal : results of a coordinated research project / International Atomic Energy Agency. Description: Vienna : International Atomic Energy Agency, 2016. | Series: IAEA TECDOC series, ISSN 1011–4289 ; no. 1790 | Includes bibliographical references. Identifiers: IAEAL 16-01038 | ISBN 978–92–0–104016–9 (paperback : alk. paper) Subjects: LCSH: Radioactive waste disposal. | Hazardous wastes — Management. | Graphite. FOREWORD Radioactive waste, with a wide range of characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. These wastes need to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. A specific waste stream that arises from the generation of nuclear power and its associated activities is graphite. Graphite has been used as a moderator and reflector of neutrons in more than 100 nuclear power plants and in many research and plutonium producing reactors or piles, in quantities ranging from a few kilograms to more than 3000 tonnes per reactor, depending upon the design. In a number of reactor designs, it is also used as a fuel sleeving material, leading to the generation of large amounts of less irradiated but still significantly radioactive material. The current resurgence of interest in the high temperature reactor in certain Member States provides a need to demonstrate that the totality of the carbon materials present in their reflectors and in the fuel itself can be appropriately managed throughout the graphite life cycle. Many of the older reactors are now shut down, with more approaching the end of their lives, and approximately 250 000 tonnes of irradiated graphite (i-graphite) have now accumulated worldwide. At the same time, progress towards ultimate disposal solutions remains slow, with increasing amounts of i-graphite residing in temporary storage facilities pending disposal. The pressure to resolve these issues differs widely among Member States, depending upon the dismantling strategies envisaged by their waste authorities. However, there is now an increasing sense of urgency to make substantial progress in Member States where it is government policy to commence reactor dismantling in the near future, and this is driving international efforts to further explore the characterization, potential processing options and disposal alternatives for this material. This report is the result of a coordinated research project (CRP) entitled Treatment of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal, which involved organizations from ten Member States. The most recent comprehensive IAEA publication on this topic dates from 2006, followed by the collected proceedings of a conference on i-graphite published in 2010. This publication seeks both to update the position generally and to report the findings of work conducted in the CRP. This work took place alongside the EU CARBOWASTE programme. The termination of the CARBOWASTE programme was marked by a joint meeting with members of the CRP. This publication aims to serve as a review of the current state of the art, a bibliography and as part of the ‘toolbox’ available to Member State authorities seeking to determine their local strategy for dealing with radioactive graphite. The IAEA wishes to express its appreciation to all those who participated in the production and preparation of this publication, in particular to A.J. Wickham (United Kingdom), who served as Chief Scientific Investigator and as Chairman of the research coordination meetings and who was also responsible for the drafting of this publication. The IAEA officers responsible for this publication were Z. Drace and M. Ojovan of the Division of Nuclear Fuel Cycle and Waste Technology. EDITORIAL NOTE This publication has been prepared from the original material as submitted by the contributors and has not been edited by the editorial staff of the IAEA. The views expressed remain the responsibility of the contributors and do not necessarily represent the views of the IAEA or its Member States. Neither the IAEA nor its Member States assume any responsibility for consequences which may arise from the use of this publication. This publication does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The IAEA has no responsibility for the persistence or accuracy of URLs for external or third party Internet web sites referred to in this publication and does not guarantee that any content on such web sites is, or will remain, accurate or appropriate. CONTENTS 1. INTRODUCTION....................................................................................... 1 1.1 BACKGROUND............................................................................
Recommended publications
  • Edf Group Presentation
    EDF GROUP PRESENTATION Decommissioning & Waste Treatment Lokala säkerhetsnämnden 9/12/2016 AGENDA 1. EDF GROUP, THE WORLD’S LEADING ELECTRICITY COMPANY 2. OUR AMBITION IN THE NUCLEAR DECOMMISSIONING & WASTE TREATMENT MARKet EDF 2016 I P.2 EDF GROUP, THE WORLD’S LEADING ELECTRICITY COMPANY All electricity-related activities 38.5 MILLION CUSTOMERS — Generation — Transmission & Distribution 158,200 EMPLOYEES — Trading and Sales & Marketing — Energy services €75.0 BILLION SALES EDF ranks: €17.6 BILLION EBITDA among the top 100 largest companies in the world (Fortune Global 500 2014) €12.7 BILLION NET INVESTMENTS EDF is a leader in low-carbon generation: ELECTRICITY GENERATION 102 g/kWh, of which 87% 623.5 TWH carbon-free generation — World’s No. 1 nuclear operator — European No. 1 in generation from renewables — European No. 3 in energy services EDF 2016 I P.3 EDF GROUP IS THE WORLD’S LEADING NUCLEAR FLEET OWNER AND OPERATOR WITH 73 OPERATING UNITS . 72.9 GW installed capacity, 54% of the Group’s net generation capacity . 477.7 TWh generated, 77% of the Group’s output . 58 reactors operated in France, 15 in the UK 5 NEW NUCLEAR PROJECTS . 3 EPR under construction: - 1 in Flamanville (France) - 2 in Taishan (China) . 2 EPR in project phase EDF has a long track record of safe reliable nuclear generation and has a bright future ahead EDF 2016 I P.4 AGENDA 1. EDF GROUP, THE WORLD’S LEADING ELECTRICITY COMPANY 2. OUR AMBITION IN THE NUCLEAR DECOMMISSIONING & WASTE TREATMENT MARKET EDF 2016 I P.5 DECOMMISSIONNING AND WASTE MANAGEMENT ARE KEY
    [Show full text]
  • Study of Acoustic Cavitation Near Metal Surfaces Contaminated by Uranium Ran Ji
    Study of acoustic cavitation near metal surfaces contaminated by uranium Ran Ji To cite this version: Ran Ji. Study of acoustic cavitation near metal surfaces contaminated by uranium. Other. Université Montpellier, 2018. English. NNT : 2018MONTS131. tel-02282007 HAL Id: tel-02282007 https://tel.archives-ouvertes.fr/tel-02282007 Submitted on 9 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈ SE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE MONTPELLIER En Chimie Sé parative - Maté riaux et Procé dé s É cole doctorale Sciences Chimiques Balard (ED 459) Unité de recherche Institut de Chimie Sé parative de Marcoule (UMR 5257) Study of Acoustic Cavitation near Metal Surfaces Contaminated by Uranium Pré senté e par Ran JI Le 13 novembre 2018 Sous la direction de Sergueï NIKITENKO Rapport de gestion Devant le jury composé de [Jean-Franç ois DUFÊ CHE, Prof, Université Montpellier] [Pré sident] [Jean-Yves HIHN, Prof, Université de Franche-Comté ] [Rapporteur] 2015 [Laurie BARTHE, MCF, INP Toulouse] [Rapporteur] [Sergueï NIKITENKO, DR, CNRS Montpellier] [Directeur de Thè se] [Claire LE NAOUR, CR, Université Paris Saclay] [Examinateur] [Micheline DRAYE, Prof, Université Savoie Mont Blanc] [Examinateur] [Rachel PFLIEGER, CR, CEA Marcoule] [Encadrant] [Matthieu VIROT, CR, CEA Marcoule] [Encadrant] [Pascal PILUSO, CR, CEA Cadarache] [Invité ] “The unity of inner knowledge and action” [Wang Yangming] Acknowledgements Acknowledgements The doctoral study of the past three years has greatly enriched my experience in academic and personal life.
    [Show full text]
  • Learning from Fukushima: Nuclear Power in East Asia
    LEARNING FROM FUKUSHIMA NUCLEAR POWER IN EAST ASIA LEARNING FROM FUKUSHIMA NUCLEAR POWER IN EAST ASIA EDITED BY PETER VAN NESS AND MEL GURTOV WITH CONTRIBUTIONS FROM ANDREW BLAKERS, MELY CABALLERO-ANTHONY, GLORIA KUANG-JUNG HSU, AMY KING, DOUG KOPLOW, ANDERS P. MØLLER, TIMOTHY A. MOUSSEAU, M. V. RAMANA, LAUREN RICHARDSON, KALMAN A. ROBERTSON, TILMAN A. RUFF, CHRISTINA STUART, TATSUJIRO SUZUKI, AND JULIUS CESAR I. TRAJANO Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Learning from Fukushima : nuclear power in East Asia / Peter Van Ness, Mel Gurtov, editors. ISBN: 9781760461393 (paperback) 9781760461409 (ebook) Subjects: Nuclear power plants--East Asia. Nuclear power plants--Risk assessment--East Asia. Nuclear power plants--Health aspects--East Asia. Nuclear power plants--East Asia--Evaluation. Other Creators/Contributors: Van Ness, Peter, editor. Gurtov, Melvin, editor. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press. Cover image: ‘Fukushima apple tree’ by Kristian Laemmle-Ruff. Near Fukushima City, 60 km from the Fukushima Daiichi Nuclear Power Plant, February 2014. The number in the artwork is the radioactivity level measured in the orchard—2.166 microsieverts per hour, around 20 times normal background radiation. This edition © 2017 ANU Press Contents Figures . vii Tables . ix Acronyms and abbreviations .
    [Show full text]
  • Gestior Mr FRO302015 Doc
    Gestior Mr FRO302015 Doc. Enreg. 1 F4 If N'TRN INSTITUT D'ECONOMIE ET DE POLITIQUE DE LENERGIE The performing interaction between institutions and technology in the French electronuclear industry Dorninique Finon Carine Staropoli Working Paper (for submission to Industry& Innovation) Grenoble, October 2000 Institut 66conomie et de politique de 16nergie Unit6 mixte de recherche du Centre National de la Recherche Scientifique et de Mniversit6 Pierre Mends France (UFR DGES) IEPE, BP 47, 38040 Grenoble Cedex 09, Tel 04 76 51 42 40 Fax: 04 76 51 45 27 e mail iepeupmf-grenoble.fr ; http:Hwww.upmf-grenob1e.fr/iepe 2 The performing interaction between institutions and technology in the French electronuclear industry. Dominique Finon Carine Staropoli* Among the various traditional "grands programmes" typical of the French public intervention in high-tech industries, the nuclear programme is often considered as one of the major successes. About 60 nuclear reactors have been built between 1970 and 1998. Altogether they generate 80% of the electricity produced by the state-owned monopoly at a competitive cost. Moreover, the French nuclear industry ranks first on the world market of nuclear equipment and services. Such performances are all the more contrasting with those in the other OECD countries, where costs have dramatically increased while many projects never went ahead: since the 1980s a number of electricity companies decided to stop their riskyinvestments in nuclear equipment in many countries. Such a performance is attributable to an appropriate institutional set-up, which has been able to enforce all the technological leaming needed to the implementation of this kind of radical complex and large-sized innovation.
    [Show full text]
  • Gas-Cooled Reactors and Their Applications
    IAEA-TECDOC-436 GAS-COOLED REACTORS AND THEIR APPLICATIONS PROCEEDINGS OF A TECHNICAL COMMITTEE MEETING GAS-COOLEN O D REACTOR THEID SAN R APPLICATIONS ORGANIZED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY AND HELD IN JÜLICH, 20-23 OCTOBER 1986 A TECHNICAL DOCUMENT ISSUED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1987 GAS-COOLED REACTOR THEID SAN R APPLICATIONS IAEA, VIENNA, 1987 IAEA-TECDOC-436 Printe IAEe th Austri An i y d b a October 1987 FOREWORD Technological development r gas-coolefo s d reactor present a e ar st bein C(>2-cooler gfo larga carrieK n U o e e t scaldth ou d Advancen i e d Gas-Cooled Reactors Higr (AGRsfo h d Temperatur)an e Gas-Cooled Reactors (HTGRs) in the Federal Republic of Germany, United States of America, Japan and USSR. l programmeAl directee sar d towards constructio plantsf o n e Th . mose th t r advancefa y b s i d programmK efforU e th t n witi e h several commercial Hagnox Reactor and Advanced Gas-Cooled Reactor units in operatio d furthean n re constructio th AGR n i s r commissionino n g phase. HTGRs are in operation in the USA and in the Federal Republic of Germany. Othe R specifirHT c wor beins ki g carrieAustrian i t ou d , China and Switzerland. At the IAEA the International Working Group on Gas-Cooled Reactors (IWGGCR bees )ha n establishe 197n i d 8 in order to promote an exchange of information on gas-cooled reactor developmen stimulato t d tan e international cooperation framewore th n I .
    [Show full text]
  • Carbon-14 Source Term CAST
    CArbon-14 Source Term CAST WP5 Review of Current Understanding of Inventory and Release of C14 from Irradiated Graphite (D5.5) Author(s): Nelly Toulhout, Ernestas Narkunas, Borys Zlobenko, Daniela Diaconu, Laurent Petit, Stephan Schumacher, Stephane Catherin, Mauro Capone, Werner von Lensa, Gabriel Piña, Steve Williams, Johannes Fachinger, Simon Norris Editor: Simon Norris Date of issue of this report: 15/07/2015 The project has received funding from the European Union’s European Atomic Energy Community’s (Euratom) Seventh Framework Programme FP7/2007-2013 under grant agreement no. 604779, the CAST project. Dissemination Level PU Public X RE Restricted to the partners of the CAST project CO Confidential, only for specific distribution list defined on this document CAST WP5 Review of Current Understanding of Inventory and Release of C14 from Irradiated Graphite (D5.5) CAST – Project Overview The CAST project (CArbon-14 Source Term) aims to develop understanding of the potential release mechanisms of carbon-14 from radioactive waste materials under conditions relevant to waste packaging and disposal to underground geological disposal facilities. The project focuses on the release of carbon-14 as dissolved and gaseous species from irradiated metals (steels, Zircaloys), irradiated graphite and from ion-exchange materials. The CAST consortium brings together 33 partners with a range of skills and competencies in the management of radioactive wastes containing carbon-14, geological disposal research, safety case development and experimental work on gas generation. The consortium consists of national waste management organisations, research institutes, universities and commercial organisations. The objectives of the CAST project are to gain new scientific understanding of the rate of release of carbon-14 from the corrosion of irradiated steels and Zircaloys and from the leaching of ion-exchange resins and irradiated graphites under geological disposal conditions, its speciation and how these relate to carbon-14 inventory and aqueous conditions.
    [Show full text]
  • NRC Regulatory History of Non-Light Water Reactors (1950-2019)
    BNL-211739-2019-INRE NRC Regulatory History of Non-Light Water Reactors (1950-2019) Manuscript Completed: June 10, 2019 Prepared by: Pranab Samanta, David Diamond, and William Horak Nuclear Science and Technology Department Brookhaven National Laboratory Upton, NY 11973-5000 Prepared for: Imtiaz Madni and George Tartal Office of New Reactors U.S. Nuclear Regulatory Commission ABSTRACT This report describes the U.S. Nuclear Regulatory Commission’s (NRC’s) history with the licensing of non-light water reactors (non-LWRs). The focus is on regulatory policy and licensing issues that have arisen in the past so that NRC staff will be in a better position to deal with these matters in the future. It is not an objective to discuss in any detail the technology of non-LWR designs. Documenting the historical policy issues and licensing approaches is particularly important to NRC staff unfamiliar with non- LWRs and is an important incentive for the report. Hence, the report is written as a tutorial rather than as an historical archive. The subject is approached chronologically going from the early days of the Atomic Energy Commission to the formation of the NRC, then into the era when the regulatory structure newly developed for LWRs provided guidance for other types of reactors, followed by the era when policy was made specifically for advanced reactors including non-LWRs. This background provides the transition to current planning for future non-LWR licensing and policy─also described herein. iii TABLE OF CONTENTS ACRONYMS ...................................................................................................................vi 1 INTRODUCTION ................................................................................................... 1-1 1.1 Background ............................................................................................... 1-1 1.2 Objective ..................................................................................................
    [Show full text]
  • CW Deliverable T-3.4.3
    CARBOWASTE Treatment and Disposal of Irradiated Graphite and Other Carbonaceous Waste Grant Agreement Number: FP7-211333 Technical Report T-3.4.3 Modelling of isotope release mechanism based on fission product transport codes Author(s): Ernestas Narkunas, Povilas Poskas; LEI Greg Black, Abby Jones; UoM Constantin Iorgulis, Daniela Diaconu; INR Laurent Petit, Bernard Poncet; EDF Date of issue of this report: 15/02/2013 Project co-funded by the European Commission under the Seventh Framework Programme (2007 to 2011) of the European Atomic Energy Community (EURATOM) for nuclear research and training activities Dissemination Level PU Public RE Restricted to the partners of the CARBOWASTE project X CO Confidential, only for specific distribution list defined on this document Start date of project: 01/04/2008 Duration: 60 Months CARBOWASTE Treatment and Disposal of Irradiated Graphite and Other Carbonaceous Waste Distribution list Person and organisation name Comments and/or group Werner von Lensa, FZJ Gabriel Pina, CIEMAT Abbie Jones, UoM Daniela Diaconu, INR Laurent Petit, EDF CW1302-Deliverable -T-3-4-3.doc Page 2/83 CARBOWASTE Treatment and Disposal of Irradiated Graphite and Other Carbonaceous Waste CARBOWASTE Work package: 3 CARBOWASTE document no.: Document type: Task: 3.4 CARBOWASTE-1302-T-3.4.3 T=Technical Report (e.g. May 2008 as date of issue: 0805) Issued by: LEI (LT) Document status: Internal no.: CW1302-Deliverable-T-3-4-3-final Final Document title Modelling of isotope release mechanism based on fission product transport codes Executive summary The Work Package 3 (Characterisation and Modelling) Task 3.4 (Modelling the Behaviour of Impurities and Isotopes in Graphite) focuses on modelling of the changes in graphite radiological inventory (list of present radionuclides and their activity) during reactor operation and after its final shutdown.
    [Show full text]
  • National Assessment Board
    NATIONAL ASSESSMENT BOARD FOR RESEARCH AND THE STUDIES INTO THE MANAGEMENT OF RADIOACTIVE WASTE AND MATERIALS Instituted by the law n°2006-739 of June 28, 2006 NATIONAL ASSESSMENT BOARD ASSESSMENT REPORT NO 12 Président: Jean-Claude DUPLESSY Vice-Présidents: Maurice LEROY & Gilles PIJAUDIER-CABOT General Secretary & Scientific Advisor: Stanislas POMMERET Administrative secretary: Véronique ADA-FAUCHEUX & Florence LEDOUX www.cne2.fr JUNE 2018 244 boulevard Saint-Germain • 75007 Paris • Phone: +33 (0)1 44 49 80 93 & +33 (0)1 44 49 80 94 ISSN : 2257-5758 NATIONAL ASSESSMENT BOARD Members of National Assessment Board: Jean-Claude DUPLESSY Anna CRETI Frank DECONINCK Pierre DEMEULENAERE Robert GUILLAUMONT Vincent LAGNEAU Maurice LAURENT Emmanuel LEDOUX* Mickaële LE RAVALEC Maurice LEROY José-Luis MARTINEZ Gilles PIJAUDIER-CABOT Claes THEGERSTRÖM General Secretary & Scientific Advisor: Stanislas POMMERET Honorary President: Bernard TISSOT Administrative secretary: Véronique ADA-FAUCHEUX Florence LEDOUX * Invited Expert NATIONAL ASSESSMENT BOARD FOR RESEARCH AND STUDIES INTO THE MANAGEMENT OF RADIOACTIVE MATERIALS AND WASTE Established by law No. 2006-739 of 28 June 2006 ASSESSMENT REPORT No. 12 JUNE 2018 TABLE OF CONTENTS FOREWORD: SETTING A DIRECTION .......................................................................................................... 5 SUMMARY – CONCLUSION ........................................................................................................................ 7 INTRODUCTION ......................................................................................................................................
    [Show full text]
  • The Amster Concept (Actinides Molten Salt Transmuter)
    1 THE AMSTER CONCEPT (ACTINIDES MOLTEN SALT TRANSMUTER) J VERGNES P. BARBRAULT,D LECARPENTIER, Ph TETART EDF Pole Industrie Division Recherche et Développement Département Physique des Réacteurs 1 Avenue du Général de Gaule 92140 CLAMART France e mail: jean.vergnes@edfgdf;fr H MOUNEY EDF Pole Industrie Division Ingéniérie et Services CAP AMPERE 93282 SAINT DENIS CEDEX France e mail: henri.mouney@edfgdf;fr ABSTRACT In the frame of the French law related to the management of long lived radioactive wastes, a reactor concept aiming both to generate electricity and to minimize existing transuranics (TRU) and long lived fission product is proposed. This concept named AMSTER is a Molten Salt Reactor, the molten fuel being a mixing of Transuranics and enriched Uranium. The salt processing is integrated and allows both to supply U-235 and to separate fission products while minimizing transuranics losses. Two options have been analyzed : · a TRU self-burning option, releasing only a few grams/Twhe of TRU in the wastes for geological storage. It needs an equilibrium inventory of 1.6 metric tons/Twhe in the reactor and a consumption of 10 metric tons/Twhe of natural uranium (compared to 21 for PWR) ; · a TRU incineration option which would permit, for example to burn the TRU present in PWR spent fuels at a rate of 28 kg/TWhe, for an inventory at equilibrium of 4.7 metric tons/Twhe of TRU. The consumption would be then of 2.2 metric ton/TWhe of PWR spent fuel and 3.7 metric ton/TWhe of natural Uranium. 2 1.
    [Show full text]
  • Thermal Treatment of Oldbury Magnox Reactor Irradiated Graphite
    THERMAL TREATMENT OF OLDBURY MAGNOX REACTOR IRRADIATED GRAPHITE A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2015 Robert Numa Worth School of Mechanical, Aerospace and Civil Engineering The University of Manchester - 2 - Table of Contents Table of Contents ..................................................................................................................... 3 List of Figures ........................................................................................................................... 7 List of Tables .......................................................................................................................... 12 Abstract .................................................................................................................................. 13 Declaration ............................................................................................................................. 14 Copyright Statement .............................................................................................................. 15 Acknowledgments .................................................................................................................. 16 Thesis Structure ..................................................................................................................... 17 1. Introduction ......................................................................................................................
    [Show full text]
  • Supplementary Data to Global Risk of Radioactive Fallout After Nuclear
    Supplementary Data to Global risk of radioactive fallout after nuclear reactor accidents Jos Lelieveld1,2 , Daniel Kunkel1, and Mark G. Lawrence1 1 Max Planck Institute for Chemistry, 55020 Mainz, Germany 2 The Cyprus Institute, 1645 Nicosia, Cyprus E-mail: [email protected] Net capacity Gross capacity Start of End of operation Energy supply Name Block Reactor type Status in MW in MW operation (planned) in GWh South Afrika Koeberg 1 PWR operational 900 944 04.04.1984 (14.08.2024) 127.092 Koeberg 2 PWR operational 900 944 25.07.1985 (15.11.2025) 122.496 Asia Armenia Mezamor (Armenia) 1 WWER‐440/270 decommissioned 376 408 22.12.1976 25.02.1989 25.266 Mezamor (Armenia) 2 WWER‐440/270 operational 376 408 05.01.1980 (2016) 46.546 China Changjiang 1 CNP‐600 under construction since 2010 610 650 – – – Changjiang 2 CNP‐600 under construction since 2010 610 650 – – – Daya Bay (Guangdong) 1 PWR operational 944 984 31.08.1993 (06.05.2034) 93.096 Daya Bay (Guangdong) 2 PWR operational 944 984 07.02.1994 (31.01.2034) 91.559 Fangchenggang 1 CPR‐1000 under construction since 2010 1 1,087 – – – Fangjiashan 1 CPR‐1000 under construction since 2008 1 1,087 – – – Fangjiashan 2 CPR‐1000 under construction since 2009 1 1,087 – – – Fuqing 1 CPR‐1000 under construction since 2008 1 1,087 (2014/15) – – Fuqing 2 CPR‐1000 under construction since 2009 1 1,087 – – – Haiyang 1 AP‐1000 under construction since 2009 1 1,25 – – – Haiyang 2 AP‐1000 under construction since 2010 1 1,25 – – – Hongyanhe 1 CPR‐1000 under construction since 2007 1 1,08 (2013/14) – – Hongyanhe
    [Show full text]