Determining Nitrogen-Source Preference in Blueberry Using a Split-Root System

Total Page:16

File Type:pdf, Size:1020Kb

Determining Nitrogen-Source Preference in Blueberry Using a Split-Root System Progress Report Title: Determining nitrogen-source preference in blueberry using a split-root system Name, Mailing and Email Address of Principal Investigator(s): Principal Investigator: Anish Malladi 1121 Miller Plant Sciences, Department of Horticulture, University of Georgia, Athens, GA 30602 Email: [email protected]; Phone: 706-542-0783 Co-Principal Investigator: Miguel Cabrera Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602 Email: [email protected]; Phone: 706-542-1242 Public Abstract Blueberry is a major fruit crop in Georgia and the southeastern US. Improved precision in its nutrient management is essential to ensure its sustained profitability in production. Blueberry plants are thought to display a preference for the ammonium form of nitrogen (N) in comparison to the nitrate form. The physiological basis for this preference remains unclear. In this study we used a split-root system to investigate N-source preference in southern highbush blueberry (Suziblue) at low and high levels of N-supply. Further, we compared N-source preference when the same plant was provided with both forms of N, one each to each half of the root system. At lower rates of N-supply, blueberry plants displayed a 3.6-fold higher preference for the ammonium form of N in terms of the N- uptake rate. At a higher N-supply rate, N-source preference for ammonium was still present but at a lower magnitude (< 2-fold). When compared within the same plant, a similar (4.6-fold) higher preference for N-uptake as ammonium was observed at lower N- supply levels. However, N-uptake rates were similar at higher N-supply. These data suggest that when N-availability is low, blueberry plants demonstrate N-source preference consistently for the ammonium form. This preference is substantially reduced or lost at higher N-availability. These differences may be due to the different transport systems operational at the different N-supply rates. The above information needs to be repeated and confirmed using other cultivars and rabbiteye blueberry genotypes to determine if these patterns are consistent across different types of blueberry. 1 Introduction Blueberry (Vaccinium species) is a major fruit crop in the southeastern United States. In Georgia, current cultivation of blueberry exceeds 30,000 acres with a farm gate value of over $283 million, making it the most valuable fleshy fruit in the state (2016 Georgia Farm Gate Value Report). Rabbiteye blueberry and southern highbush blueberry are the two main types of Vaccinium species grown in the state. Advances in increasing the efficiency of blueberry production of both these types are essential to sustain the profitability of blueberry production. An aspect of improved production efficiency is the ability to more precisely provide nutrients to the plant. This involves provision of the right nutrients, in a form that is most accessible, in the right amount based on developmental requirements, and in a site-specific manner. To achieve this, a clear understanding of the nutritional requirements of the plant is required. Blueberries have specific nutritional requirements. One such important nutritional requirement is their + - potential preference for the ammonium (NH4 ) form of inorganic N over the nitrate (NO3 ) form (Claussen and Lenz, 1999; Poonnachit and Darnell, 2004; Alt et al., 2017). The mechanisms behind this nutritional preference remain unclear. Also, it is not well understood whether all types of blueberry exhibit such preference, especially since the southeast has witnessed the emergence of newer rabbiteye and southern highbush blueberry genotypes over the last decade. Thorough knowledge of such nutritional preferences especially in emerging cultivars is essential to precisely provide nutrients in the most efficient way in blueberry production. The goal of the proposed work is to characterize the N-source preference in several emerging rabbiteye and southern highbush blueberry genotypes using a split-root system. Nitrogen is a macronutrient that constitutes around 2% of the leaf dry weight in blueberries (Korcak, 1988). It is typically present in multiple forms in the soil but the + - major inorganic forms available for plant acquisition are NH4 and NO3 . Acquisition of - NO3 from the soil into root cells is an energy-consuming process mediated by specific - transporter proteins. Once acquired, NO3 can be stored, assimilated or translocated to - other parts (shoots) of the plant. Assimilation of NO3 involves its reduction to nitrite and + further to NH4 , catalyzed by nitrate reductase (NR) and nitrite reductase (NiR), - respectively. Reduction of NO3 is an energy-intensive process requiring the availability + of multiple reducing equivalents. Acquisition of NH4 from the soil into root cells is also + mediated by transporter proteins. Typically, NH4 is assimilated at the site of acquisition through its addition to amino acids and subsequent transfer of amino groups among organic molecules. Ammonium generally does not accumulate in large quantities due to its potential toxicity (Britto et al., 2001). Some plants display a preference for acquisition and utilization of one form of inorganic N over the other, a phenomenon termed as N-source preference (Britto and Kronzucker, 2013). Plants of the Ericaceae family, including blueberry, are thought to + display a preference for the NH4 form of inorganic N. In blueberry, some reports 2 - suggested a decline in plant growth when only NO3 was provided as the N source (Townsend, 1969; Claussen and Lenz, 1999). N-source preference may be associated with differences in the acquisition, translocation, or assimilation capacities for the form - of interest. In blueberry, an overall lower capacity for NO3 reduction, especially within the shoots was suggested to result in lower uptake of this form of N (Poonnachit and Darnell, 2004). Previous research by the PI’s group indicated that the shoot capacity for - - NO3 assimilation was inducible when NO3 was directly supplied to this tissue (Alt et al., + - 2017). Further, the rate of the N uptake as NH4 and NO3 was similar in one each of the rabbiteye and southern highbush blueberries tested. These observations suggested - potential limitations in NO3 loading and its translocation as potential reasons for the - limited use for NO3 in blueberry (Alt et al., 2107). Characteristics of N-source preference have been tested primarily in northern highbush blueberry and to a lesser extent in rabbiteye and southern highbush blueberry which are better adapted to the southeast. Further, the relative abilities of the newer and emerging genotypes for N-source preference are not well known. This information is essential to better manage nutrient application in blueberry production. Here, we present data from a study to determine N-source preference of some emerging blueberry cultivars using a split-root system. Materials and Methods Plant Material One-year old ‘SuziBlue’ southern highbush blueberry cuttings were used for this study. The cuttings were obtained in February 2019 from Alma Nursery and Blueberry Farms in Alma, GA. The cuttings were transplanted into 1.6 L pots containing Fafard 3B growing mix and were grown out for 1-month after transplanting to ensure proper root formation and to maintain steady nutrition prior to the study. Plants received 100 ppm-N from a 20-20-20 All Purpose Peter’s Professional Water-Soluble fertilizer via a Dosatron with a dilution rate at 1%. Hydroponics System A split-root hydroponic system was constructed using 4-inch PVC tubing. The PVC tubing was cut into 15 cm cylinders that were10 cm wide, allowing for a solution holding capacity of approximately 1.2 L per container. PVC end caps (10 cm) were then glued (pipe glue) to one end of the cylinder to form a ‘cup’. On the open end of the cylinder, another 10 cm PVC end cap was loosely placed onto the cylinder. This end cap had a ‘V’ cutout to allow for roots of the plant to pass through the lid into the cylinder. A hole was drilled into the ‘V’ cut PVC end cap to allow for airline tubing and an airstone to be passed through. Forty-eight ‘cups’ were prepared and arranged on the greenhouse bench to allow for 24 research plants. Four air pumps were placed in the middle of the 3 greenhouse bench. Each pump was connected to an air manifold containing 12 ports. Airline tubing and an airstone was connected to each manifold port and run to each ‘cup’ in the experiment. One pump supplied air to one block of the experiment and there were 4 blocks with 4 pumps. The system was setup as a randomized complete block design with 4 blocks. Plant Positioning into Split-Root System Twenty-four uniform ‘SuziBlue’ cuttings were selected for this study. The plants were removed from the 1.6 L pot and the roots were washed extensively by hand to remove residual soil particles. Once the soil was removed from the roots, the plants were placed into the split-root hydroponics system. The roots of each cutting were evenly split between each ‘cup’. Half of the root zone was placed into one ‘cup’ and the other half of the root zone was placed into a second ‘cup’. Once the plants were placed in the system, the two ‘cups’ were covered with aluminum foil to reduce any evaporation from the containers. N Supply Treatments Once the plants were placed into the split-root hydroponics system, nutrient solution was added. A modified Hoaglands Solution was used for this study (Poonnachit and Darnell, 2004). The 24 plants were first subjected to an acclimation period of 7 d in this solution. The acclimation Hoagland Solution contained 0.5 mM potassium phosphate, 1.0 mM magnesium sulfate, 0.5 mM calcium chloride, 0.08 mM Fe-EDTA, 0.045 mM boric acid, 0.01 mM manganese sulfate, 0.01 mM zinc sulfate, 0.02 µM sodium molybdate, and 0.05 mM ammonium sulfate.
Recommended publications
  • Phosphoenolpyruvate Carboxylase Intrinsically Located in the Chloroplast of Rice Plays a Crucial Role in Ammonium Assimilation
    Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation Chisato Masumotoa,1, Shin-Ichi Miyazawaa,1, Hiroshi Ohkawaa,2, Takuya Fukudaa, Yojiro Taniguchia,3, Seiji Murayamaa,4, Miyako Kusanob, Kazuki Saitob, Hiroshi Fukayamaa,5, and Mitsue Miyaoa,6 aPhotobiology and Photosynthesis Research Unit, National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan; and bRIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan Edited by Elisabeth Gantt, University of Maryland, College Park, MD, and approved February 4, 2010 (received for review November 12, 2009) Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of primary encoded by a small gene family (5). Treatments that lead to ele- metabolism in bacteria, algae, and vascular plants, and is believed to vation of the PEPC activity, such as enhanced nitrogen assimilation Oryza sativa be cytosolic. Here we show that rice ( L.) has a plant-type and Pi starvation in C3 plant leaves (6, 7), induce expression of PEPC, Osppc4, that is targeted to the chloroplast. Osppc4 was ex- PEPC kinase gene(s) and phosphorylation of PEPC (8, 9). These pressed in all organs tested and showed high expression in the leaves. mechanisms strictly regulate PEPC activity, which is essential for Its expression in the leaves was confined to mesophyll cells, and plants because of the irreversible nature of the reaction. Osppc4 accounted for approximately one-third of total PEPC protein In addition to the plant-type PEPC, vascular plants have in theleaf blade.RecombinantOsppc4 wasactivein thePEPCreaction, another isozyme, a bacterial-type PEPC that lacks the conserved V showing max comparable to cytosolic isozymes.
    [Show full text]
  • Nitrogen Assimilation in the Highly Salt- and Boron-Tolerant Ecotype Zea Mays L
    plants Article Nitrogen Assimilation in the Highly Salt- and Boron-Tolerant Ecotype Zea mays L. Amylacea Teresa Fuertes-Mendizábal 1 , Elizabeth Irica Bastías 2, Carmen González-Murua 1 and a 1, M¯ Begoña González-Moro * 1 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain; [email protected] (T.F.-M.); [email protected] (C.G.-M.) 2 Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica 1000000, Chile; [email protected] * Correspondence: [email protected]; Tel.: +34-4-946-01-53-19 Received: 13 January 2020; Accepted: 27 February 2020; Published: 4 March 2020 Abstract: The Lluta Valley in Northern Chile is an important agricultural area affected by both salinity and boron (B) toxicity. Zea mays L. amylacea, an ecotype arisen because of the seed selection practiced in this valley, shows a high tolerance to salt and B levels. In the present study the interaction between B and salt was studied after 20 days of treatment at low (100 mM) and high salinity (430 mM NaCl), assessing changes in nitrogen metabolites and in the activity of key nitrogen-assimilating enzymes. Under non-saline conditions, the presence of excessive B favored higher nitrate and ammonium mobilization to leaves, increasing nitrate reductase (NR) activity but not glutamine synthetase (GS). Thus, the increment of nitrogen use efficiency by B application would contribute partially to maintain the biomass production in this ecotype. Positive relationships between NR activity, nitrate, and stomatal conductance were observed in leaves.
    [Show full text]
  • In Nitrogen Assimilation (Plant Mutant/Biochemical Genetics/Ammonia Assimilation/Gene Expression) ROSANA MELO-OLIVEIRA, IGOR CUNHA OLIVEIRA, and GLORIA M
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 4718-4723, May 1996 Plant Biology Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation (plant mutant/biochemical genetics/ammonia assimilation/gene expression) ROSANA MELO-OLIVEIRA, IGOR CUNHA OLIVEIRA, AND GLORIA M. CORUZZI Department of Biology, New York University, New York, NY 10003 Communicated by William L. Ogren, Champaign, IL, December 18, 1995 (received for review June 2, 1995) ABSTRACT Glutamate dehydrogenase (GDH) is ubiqui- similating photorespiratory ammonia (6). However, several tous to all organisms, yet its role in higher plants remains pieces of data argue against this proposed role. Inhibitors of enigmatic. To better understand the role of GDH in plant GS, such as phosphinothricin, specifically kill plants grown nitrogen metabolism, we have characterized an Arabidopsis under photorespiratory growth conditions (4, 10, 11). Second, mutant (gdhl-1) defective in one of two GDH gene products the characterization of photorespiratory mutants has sup- and have studied GDHI gene expression. GDHI mRNA accu- ported a major role for GS/GOGAT in this process. Plant mulates to highest levels in dark-adapted or sucrose-starved mutants deficient in chloroplast GS2 or ferredoxin-dependent plants, and light or sucrose treatment each repress GDHI GOGAT are chlorotic when grown under photorespiratory mRNA accumulation. These results suggest that the GDHI conditions (in air), yet they display a normal phenotype when gene product functions in the direction of glutamate catabo- grown under conditions that suppress photorespiration (high lism under carbon-limiting conditions. Low levels of GDHI CO2) (12-15). Together these data suggest that GDH plays a mRNA present in leaves of light-grown plants can be induced minor role, if any, in the reassimilation of photorespiratory by exogenously supplied ammonia.
    [Show full text]
  • Nitrogen Fertilizer Induced Alterations in the Root Proteome of Two Rice Cultivars
    Article Nitrogen Fertilizer Induced Alterations in The Root Proteome of Two Rice Cultivars Jichao Tang 1, Zhigui Sun 1, Qinghua Chen 1, Rebecca Njeri Damaris 2 and Bilin Lu 1,* and Zhengrong Hu 2,* 1 Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China 2 State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China * Correspondence: [email protected] (B.L.); [email protected] (Z.H.) Received: 4 June 2019; Accepted: 24 July 2019; Published: 26 July 2019 Abstract: Nitrogen (N) is an essential nutrient for plants and a key limiting factor of crop production. However, excessive application of N fertilizers and the low nitrogen use efficiency (NUE) have brought in severe damage to the environment. Therefore, improving NUE is urgent and critical for the reductions of N fertilizer pollution and production cost. In the present study, we investigated the effects of N nutrition on the growth and yield of the two rice (Oryza sativa L.) cultivars, conventional rice Huanghuazhan and indica hybrid rice Quanliangyou 681, which were grown at three levels of N fertilizer (including 135, 180 and 225 kg/hm2, labeled as N9, N12, N15, respectively). Then, a proteomic approach was employed in the roots of the two rice cultivars treated with N fertilizer at the level of N15. A total of 6728 proteins were identified, among which 6093 proteins were quantified, and 511 differentially expressed proteins were found in the two rice cultivars after N fertilizer treatment. These differentially expressed proteins were mainly involved in ammonium assimilation, amino acid metabolism, carbohydrate metabolism, lipid metabolism, signal transduction, energy production/regulation, material transport, and stress/defense response.
    [Show full text]
  • A Robust Nitrifying Community in a Bioreactor at 50&Thinsp;&Deg;C Opens up the Path for Thermophilic Nitrogen Removal
    The ISME Journal (2016) 10, 2293–2303 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE A robust nitrifying community in a bioreactor at 50°C opens up the path for thermophilic nitrogen removal Emilie NP Courtens1, Eva Spieck2, Ramiro Vilchez-Vargas1, Samuel Bodé3, Pascal Boeckx3, Stefan Schouten4, Ruy Jauregui5, Dietmar H Pieper5, Siegfried E Vlaeminck1,6,7 and Nico Boon1,7 1Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Gent, Belgium; 2Biocenter Klein Flottbek and Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany; 3Isotope Bioscience Laboratory, Ghent University, Gent, Belgium; 4Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands; 5Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany and 6Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, Antwerpen, Belgium The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to ‘Candidatus Nitrososphaera gargensis’, and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida.
    [Show full text]
  • Review NH4 Toxicity in Higher Plants
    J. Plant Physiol. 159. 567–584 (2002) Urban & Fischer Verlag http://www.urbanfischer.de/journals/jpp Review + NH4 toxicity in higher plants: a critical review Dev T. Britto, Herbert J. Kronzucker* Division of Life Sciences, University of Toronto, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada Received December 14, 2001 · Accepted February 22, 2002 Abstract + Ammonium (NH4 ) toxicity is an issue of global ecological and economic importance. In this review, + + we discuss the major themes of NH4 toxicity, including the occurrence of NH4 in the biosphere, + response differences to NH4 nutrition among wild and domesticated species, symptoms and pro- posed mechanisms underlying toxicity, and means by which it can be alleviated. Where possible, – nitrate (NO3 ) nutrition is used as point of comparison. Particular emphasis is placed on issues of + cellular pH, ionic balance, relationships with carbon biochemistry, and bioenergetics of primary NH4 transport. Throughout, we attempt to identify areas that are controversial, and areas that are in need of further examination. I. Introduction universal biological phenomenon, as it has also been ob- served in many animal systems (Petit et al. 1990, Kosenko et + al. 1991, 1995, Tremblay and Bradley 1992, Gardner et al. Ammonium (NH4 ) is a paradoxical nutrient ion in that, al- though it is a major nitrogen (N) source whose oxidation state 1994), including humans, where it has been implicated in par- eliminates the need for its reduction in the plant cell (Salsac ticular in neurological disorders (Marcaida et al. 1992, Mira- et al. 1987), and although it is an intermediate in many meta- bet et al. 1997, Butterworth 1998, Haghighat et al.
    [Show full text]
  • Drought-Induced Responses of Nitrogen Metabolism in Ipomoea Batatas
    plants Article Drought-Induced Responses of Nitrogen Metabolism in Ipomoea batatas Houqiang Xia y, Tao Xu y , Jing Zhang y, Ke Shen, Zongyun Li * and Jingran Liu * Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; [email protected] (H.X.); [email protected] (T.X.); [email protected] (J.Z.); [email protected] (K.S.) * Correspondence: [email protected] (Z.L.); [email protected] (J.L.) These authors contributed equally to this paper. y Received: 20 September 2020; Accepted: 8 October 2020; Published: 11 October 2020 Abstract: This study investigated the effect of water stress, simulated by the polyethylene glycol (PEG-6000) method, on nitrogen (N) metabolism in leaves and roots of hydroponically grown sweet potato seedlings, Xushu 32 (X32) and Ningzishu 1 (N1). The concentrations of PEG-6000 treatments were 0%, 5% and 10% (m/v). The results showed that the drought-treated plants showed a decline leaf relative water content, and revealed severe growth inhibition, compared with the 0% treatment. Under drought stress, the decline in biomass of the leaf and stem was more noticeable than in root biomass for X32, leading to a higher root to shoot ratio. Drought stress increased the nitrate nitrogen (NO3−-N) and protein in leaves, but reduced all the activities of N-metabolism enzymes and the transcriptional levels of nitrate reductase (NR), glutamine synthetase (GS) and glutamate synthase + (GOGAT); in roots, NO3−-N and NR had opposite trends. The leaf ammonium nitrogen (NH4 -N), GS and amino acid had different trends between X32 and N1 under drought stress.
    [Show full text]
  • Tansley Review Biological Stoichiometry of Plant Production: Metabolism, Scaling and Ecological Response to Global Change
    New Phytologist Review Tansley review Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change Author for correspondence: J. J. Elser1, W. F. Fagan2, A. J. Kerkhoff3, N. G. Swenson4 J. J. Elser 5,6,7 Tel: +1 480 965 9747 and B. J. Enquist Email: [email protected] 1School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; 2Department of Biology, 3 Received: 19 May 2009 University of Maryland, College Park, MD 20742, USA; Department of Biology and Department of Accepted: 4 January 2010 Mathematics, Kenyon College, Gambier, OH 43022, USA; 4Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; 5Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA; 6The Santa Fe Institute, Santa Fe, NM 87501, USA; 7Center for Applied Biodiversity Science, Conservation International, Arlington, VA 22202, USA Contents Summary 1 V. Applications: large-scale patterns and processes 9 associated with plant stoichiometry I. Introduction 2 VI. Global change and plants: a stoichiometric scaling 11 II. Variation in plant C : N : P ratios: how much and what are 3 perspective the sources? VII. Synthesis and summary 12 III. The growth rate hypothesis in terrestrial plants and the 5 scaling of whole-plant N : P stoichiometry Acknowledgements 13 and production References 13 IV. Scaling from tissues to whole plants 7 Summary New Phytologist (2010) Biological stoichiometry theory considers the balance of multiple chemical ele- doi: 10.1111/j.1469-8137.2010.03214.x ments in living systems, whereas metabolic scaling theory considers how size affects metabolic properties from cells to ecosystems.
    [Show full text]
  • Nitrate Assimilation in Soils
    January, 1931 Research Bulletin No. 135 Nitrate Assimilation in Soils By 1<'. B. SMITH AND P . E. BROWN AGRICUDTURAL EXPERIMENT STATION IOWA ,STATE COLLEGE OF AGRICULTURE AND MECHANIC ARTS C. F . CURTISS, Director AGRONOMY SECTION SOILS AMES, IOWA CONTENTS Page Discussion and Summary 36 Introduction 37 Historical . 38 Depressing Effect of Straw and Manure on Crop Yields 38 Nitrate Assimilation in Soils 40 Microorganisms Capable of Utilizing Nitrate Nitrogen 43 Experimental 45 Part I. The Nitrate-Assimilating Power of the Soil 45 1. Solution Studies 45 2. Soil Studies 45 3. Effect of Varying the Amount of Ni­ trates Added and the Length of Incuba- tion Period 46 4. Nitrate-Assimilating Power of Some Iowa ~ili ~ Part II. Effect of Soil Treatment on the Nitrate Assimi- lating Power of the Soil . 48 Carrington Loam 48 Marshall Silt Loam and Grundy Silt Loam 49 Effect of Artificial Manures and F'arm Manure on Nitrate Assimilating Power of Carrington Loam 51 Nitrate Assimilating Power Under Con­ tinuous Corn and a Three-Year Rotation 51 Part III. Nitrate Assimilation by Soil Microorganisms 53 Isolation of the Organisms 53 Description of the Organisms . 53 Nitrate Assimilation and Denitrification by Pure Cultures of Microorganisms 54 Literature Cited 59 DISCUSSION AND SUMMARY Preliminary work with solution cultures inoculated with soil showed that 20.83 mgm. of nitrate nitrogen disappeared in eight days, while the total nitrogen increased. The results obtained with soil cultures were very similar to those obtained with the solution cultures. Treating the soil with straw in the greenhouse brought about a complete utilization of the nitrates, while there was a small accumulation of nitrate in the soil treated with farm manure.
    [Show full text]
  • Physiology of Nitrogen and Calcium Nutrition in Blueberry (Vaccinium Sp.)
    agronomy Review Physiology of Nitrogen and Calcium Nutrition in Blueberry (Vaccinium sp.) John W. Doyle, Savithri U. Nambeesan and Anish Malladi * Department of Horticulture, University of Georgia, Athens, GA 30602, USA; [email protected] (J.W.D.); [email protected] (S.U.N.) * Correspondence: [email protected] Abstract: Sustaining the fourfold increase in blueberry (Vaccinium sp.) production witnessed during the previous two decades requires better understanding of its mineral nutrient physiology. The primary goals of this review are to evaluate our current understanding of the physiology of nitrogen (N) and calcium (Ca) nutrition in blueberry. Nitrogen concentration in blueberry ranges from 0.4% to >2% across organs. Blueberry uses N in various forms (organic and inorganic), but it appears to + − display preference for ammonium (NH4 ) over nitrate (NO3 ). The roles of N acquisition, translo- cation and assimilation in determining N-source preference in blueberry are evaluated. Calcium plays important roles in determining fruit quality owing to its function in maintaining cell wall and membrane integrity. It is unique in its translocation characteristics being transported primarily via the xylem. Fruit [Ca2+] typically declines from around 0.2% during early development to <0.05% at ripening. Modes of Ca acquisition and transport to the fruit, and various approaches to improve fruit [Ca2+] are discussed. Areas where further research is warranted to improve our understanding of N and Ca physiology in blueberry are identified. Such knowledge is essential for sustainable nutrient management, improving productivity, and enhancing fruit quality in blueberry. Citation: Doyle, J.W.; Nambeesan, S.U.; Malladi, A. Physiology of Keywords: blueberry (Vaccinium sp.); calcium transport; calcium-related disorders; N-source prefer- Nitrogen and Calcium Nutrition in ence; nitrogen assimilation; nitrogen uptake Blueberry (Vaccinium sp.).
    [Show full text]
  • Enhancement of Nitrogen Assimilation and Photosynthetic Efficiency by T Novel Iron Pulsing Technique in Oryza Sativa L
    Plant Physiology and Biochemistry 144 (2019) 207–221 Contents lists available at ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article Enhancement of nitrogen assimilation and photosynthetic efficiency by T novel iron pulsing technique in Oryza sativa L. var Pankaj ∗ Swarnali Deya, Rita Kundua, Geetha Gopalb, Amitava Mukherjeeb, Anish Nagc, Subhabrata Pauld, a Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata, 700019, India b Centre for NanoBiotechnology, VIT University, Vellore, 632014, Tamil Nadu, India c Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, 560029, India d Department of Life Sciences, Presidency University, Kolkata, 700073, India ARTICLE INFO ABSTRACT Keywords: Rice is a major food crop. Due to urbanization and climate change, rice production is declining, posing a threat to Iron-pulsing the increasing food demand. For this, a modified technique of priming is used to enhance plant vigor. Inthe Rice present study an endogenous rice cultivar was treated with two different iron salts for 72 h and grown for14 Growth days in nutrient solution. This increased the iron content of the samples which further escalated the photo- Photosynthesis synthetic efficiency and carbon assimilation in the treated plants. Photosynthesis being correlated tonitrogen Nitrogen assimilation assimilation, nitrogen assimilation intermediates and protein content were also elevated in treated plants. Plants showed no symptoms of stress as evident from low malondialdehyde content and increased antioxidant enzymes’ activity. From this study it can be inferred that, treatment with iron during germination, helps to trigger growth by facilitating photosynthesis and nitrogen assimilation. 1. Introduction its grip and threatening food supply.
    [Show full text]
  • Principles of Nitrogen Cycling and Management
    Principles of Nitrogen Cycling and Management se of nitrogen (N) fertilizer on major California crops has led to the SAT DARSHAN S. KHALSA, Udegradation of water quality from nitrate (NO3–) leaching to ground- TIMOTHY K. HARTZ, and water. This outcome is the result of a combination of historic management PATRICK H. BROWN, practices including uniform rates of N fertilizer applied to land of hetero- Department of Plant geneous soil types; poor timing, poor placement, or incorrect quantities Sciences, University of of seasonal N applications; and irrigation in excess of crop water demand California, Davis when abundant soil N is available. Where excess irrigation is applied when soil N concentrations exceed uptake capacity, N efficiency is reduced and leads to a greater risk of NO3– leaching. Strategies are available to make N management more protective of the groundwater while maintaining or improving productivity. The primary tool for N management is the adoption of a N budget for cropping systems that are specific to each grower and each unit of land. The N budget includes the N requirement based on an estimate of yield potential and crop growth with adjustment from credits from other N sources. Targeted placement of N fertilizer in the root zone combined with timing to match N applications with N uptake, improved irrigation scheduling and uniformity, and the adoption of irrigation designs optimized for different soil types are options to implement an efficient N budget. Principles of Nitrogen Cycling and Management | 2 In California, certified crop advisors (CCAs) are professionals from the Haber Bosch process. Hydrogen (H2) and dinitrogen (N2) responsible for the development of N budgets.
    [Show full text]