Identifying Nutrient Deficiencies of Bedding Plants James L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Micronutrient Management
MICRONUTRIENT PRINCIPLES MGGA Convention Great Falls December 1, 2015 Clain Jones [email protected] 994-6076 MSU Soil Fertility Extension Clickers are better than cell phones because: A. You don’t listen to Siri 25% 25% 25% 25% giving you wrong directions B. They don’t need to be turned off during a presentation C. They screen calls from telemarketers D. They make your dog obey Response A. B. C. D. Counter Goals Today • Define micronutrients and their role in plants • Illustrate micronutrient deficiency symptoms • Discuss soil testing for micronutrients • Explain which micronutrients may be deficient in MT soils and why Your experience with micro deficiencies (select all that apply) A. I don’t think I’ve seen any 20% B. I’ve suspected micro deficiencies 20% based on symptoms, but didn’t verify with tissue testing C. I’ve verified micro deficiencies 20% through tissue testing D. I’ve verified micro deficiencies 20% through fertilizer trials E. Other 20% Response Counter Of which micronutrients do you think you’ve seen deficiencies? Select all that apply A. Boron (B) 14% 14% 14% 14% 14% 14% 14% B. Chloride (Cl) C. Copper (Cu) D. Iron (Fe) E. Manganese (Mn) F. Zinc (Zn) G. Don’t know Iron (Fe) Boron (B) Zinc (Zn) Response Chloride (Cl)Copper (Cu) Don’t know Counter Manganese (Mn) For which micronutrients have you applied fertilizer? Select all that apply. A. Boron (B) 14% 14% 14% 14% 14% 14% 14% B. Chloride (Cl) C. Copper (Cu) D. Iron (Fe) E. Manganese (Mn) F. Zinc (Zn) G. Ask my crop adviser Boron (B) Iron (Fe) Zinc (Zn) Chloride (Cl)Copper (Cu) Manganese (Mn) Response Ask my crop adviser Counter Nutrient amounts in dried plant material 5% Macro N, P, K, S 1% Micro Ca, Mg .05 to 250 ppm B, Cu, Fe, 94% C, H, O each Mn, Mo, Ni, Zn H2O Cl 0.05 to 0.5% CO2 1 ppm ≈ 1 tsp of water in an Olympic sized swimming pool The micronutrients are simply needed in smaller amounts by the plant than the macronutrients. -
Micronutrients and the Nutrient Status of Soils: a Global Study
FAO SOILS BULLETIN 48 micron utrients and the nutrient status of SOUS: a global study by mikko sillanpAl FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS FAO SOILS BULLETIN 48 micronutrients and the nutrient status of soils: a global study by mikko sillanpäd sponsored by the government of finland executed at the institute of soil science agricultural research centre jokioinen, finland and soil resources, management and conservation service land and water development division FAO FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIO-NS Rome 1982 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization oftheUnitedNations concerningthelegal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-52 ISBN 92-5-101193-1 Allrights reserved. No part ofthispublication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,mechanical, photocopyingor otherwise, without theprior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme diCaracalla, 00100 Rome, Italy. C) FAO 1982 Printed in Finland by Werner Söderström Osakeyhtiö. Foreword During the last two decades, the increasing use of mineral fertilizers and organic manures of different types has led to impressive yield incrcases in developing countries. Major emphasis was given to the supply of the main macronutrients, nitrogen, phosphate and potash. -
Micronutrient Management in Nebraska Bijesh Maharjan, Tim M
NebGuide Nebraska Extension Research-Based Information That You Can Use G1830MR · Index: Crops, Soil Management Revised February 2018 Micronutrient Management in Nebraska Bijesh Maharjan, Tim M. Shaver, Charles S. Wortmann, Charles A. Shapiro, Richard B. Ferguson, Brian T. Krienke, and Zachary P. Stewart Extension Soils Specialists This NebGuide addresses issues of micronutrient fertilizer use Table 1. Estimates of micronutrient uptake (whole plant) by with a focus on zinc and iron. crops. Of the 17 elements known to be essential for plant Micronutrient 200 Bu Corn 60 Bu Soybean 6 Ton Alfalfa growth, eight are used in very small amounts and, with the lb/acre lb/acre lb/acre exception of iron, have an uptake of less than 1 pound per Iron 2.4 1.7 1.8 acre per year (Table 1). These elements are classified as mi- Manganese 0.4 0.6 0.6 cronutrients and include zinc (Zn), iron (Fe), manganese Zinc 0.4 0.2 0.2 (Mn), copper (Cu), boron (B), molybdenum (Mo), chlo- Boron 0.2 0.1 0.3 rine (Cl), and nickel (Ni). Interest in micronutrients has Copper 0.1 0.1 0.06 Molybdenum 0.01 0.01 0.02 increased because of accelerated rates of nutrient removal Nickel 0.01 0.01 0.01 due to greater yields and the availability of alternative mi- Adapted from: Role of Micronutrients in Efficient Crop Production, D.B. Mengel, Purdue cronutrient products. University AY- 239. https:// www .extension .purdue .edu /extmedia /AY /AY - 239 .html Micronutrient Availability Some micronutrients are supplied to plants when 1). -
Millets: a Solution to Agrarian and Nutritional Challenges Ashwani Kumar1,2* , Vidisha Tomer2, Amarjeet Kaur1, Vikas Kumar2 and Kritika Gupta2
Kumar et al. Agric & Food Secur (2018) 7:31 https://doi.org/10.1186/s40066-018-0183-3 Agriculture & Food Security REVIEW Open Access Millets: a solution to agrarian and nutritional challenges Ashwani Kumar1,2* , Vidisha Tomer2, Amarjeet Kaur1, Vikas Kumar2 and Kritika Gupta2 Abstract World is facing agrarian as well as nutritional challenges. Agricultural lands with irrigation facilities have been exploited to maximum, and hence we need to focus on dry lands to further increase grain production. Owing to low fertility, utilization of dry lands to produce sufcient quality grains is a big challenge. Millets as climate change compli- ant crops score highly over other grains like wheat and rice in terms of marginal growing conditions and high nutri- tional value. These nutri-cereals abode vitamins, minerals, essential fatty acids, phyto-chemicals and antioxidants that can help to eradicate the plethora of nutritional defciency diseases. Millets cultivation can keep dry lands productive and ensure future food and nutritional security. Keywords: Millets, Dry lands, Nutrition, Nutri-cereals, Micronutrient defciency Background up to 50–56% in 2100 AD, and 78% of dry land expan- Progress in scientifc knowledge and technological inno- sion is expected to occur in developing countries [2–4]. vations have led mankind into yet another stage of mod- According to the report of World Bank, hunger is a chal- ern civilization. Application of novel research strategies lenge for 815 million people worldwide [5]. Te spate of into fundamental and translational research has brought farmer’s suicides in an agriculture-based country like an all-round development. In agriculture, strategized India has reached to an average of 52 deaths/day, and technological innovations, viz. -
Visual Deficiency and Multi-Deficiency Symptoms of Macro and Micro Nutrients Element in Pistachio Seedling (Pistacia Vera)
Visual deficiency and multi-deficiency symptoms of macro and micro nutrients element in pistachio seedling (Pistacia vera) Afrousheh M., Ardalan M., Hokmabadi H. in Zakynthinos G. (ed.). XIV GREMPA Meeting on Pistachios and Almonds Zaragoza : CIHEAM / FAO / AUA / TEI Kalamatas / NAGREF Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 94 2010 pages 37-52 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=801283 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Afrousheh M., Ardalan M., Hokmabadi H. Visual deficiency and multi-deficiency symptoms of macro and micro nutrients element in pistachio seedling (Pistacia vera). In : Zakynthinos G. (ed.). XIV GREMPA Meeting on Pistachios and Almonds. Zaragoza : CIHEAM / FAO / AUA / TEI Kalamatas / NAGREF, 2010. p. 37-52 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 94) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -
Phosphoenolpyruvate Carboxylase Intrinsically Located in the Chloroplast of Rice Plays a Crucial Role in Ammonium Assimilation
Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation Chisato Masumotoa,1, Shin-Ichi Miyazawaa,1, Hiroshi Ohkawaa,2, Takuya Fukudaa, Yojiro Taniguchia,3, Seiji Murayamaa,4, Miyako Kusanob, Kazuki Saitob, Hiroshi Fukayamaa,5, and Mitsue Miyaoa,6 aPhotobiology and Photosynthesis Research Unit, National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan; and bRIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan Edited by Elisabeth Gantt, University of Maryland, College Park, MD, and approved February 4, 2010 (received for review November 12, 2009) Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of primary encoded by a small gene family (5). Treatments that lead to ele- metabolism in bacteria, algae, and vascular plants, and is believed to vation of the PEPC activity, such as enhanced nitrogen assimilation Oryza sativa be cytosolic. Here we show that rice ( L.) has a plant-type and Pi starvation in C3 plant leaves (6, 7), induce expression of PEPC, Osppc4, that is targeted to the chloroplast. Osppc4 was ex- PEPC kinase gene(s) and phosphorylation of PEPC (8, 9). These pressed in all organs tested and showed high expression in the leaves. mechanisms strictly regulate PEPC activity, which is essential for Its expression in the leaves was confined to mesophyll cells, and plants because of the irreversible nature of the reaction. Osppc4 accounted for approximately one-third of total PEPC protein In addition to the plant-type PEPC, vascular plants have in theleaf blade.RecombinantOsppc4 wasactivein thePEPCreaction, another isozyme, a bacterial-type PEPC that lacks the conserved V showing max comparable to cytosolic isozymes. -
Nitrogen Assimilation in the Highly Salt- and Boron-Tolerant Ecotype Zea Mays L
plants Article Nitrogen Assimilation in the Highly Salt- and Boron-Tolerant Ecotype Zea mays L. Amylacea Teresa Fuertes-Mendizábal 1 , Elizabeth Irica Bastías 2, Carmen González-Murua 1 and a 1, M¯ Begoña González-Moro * 1 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain; [email protected] (T.F.-M.); [email protected] (C.G.-M.) 2 Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica 1000000, Chile; [email protected] * Correspondence: [email protected]; Tel.: +34-4-946-01-53-19 Received: 13 January 2020; Accepted: 27 February 2020; Published: 4 March 2020 Abstract: The Lluta Valley in Northern Chile is an important agricultural area affected by both salinity and boron (B) toxicity. Zea mays L. amylacea, an ecotype arisen because of the seed selection practiced in this valley, shows a high tolerance to salt and B levels. In the present study the interaction between B and salt was studied after 20 days of treatment at low (100 mM) and high salinity (430 mM NaCl), assessing changes in nitrogen metabolites and in the activity of key nitrogen-assimilating enzymes. Under non-saline conditions, the presence of excessive B favored higher nitrate and ammonium mobilization to leaves, increasing nitrate reductase (NR) activity but not glutamine synthetase (GS). Thus, the increment of nitrogen use efficiency by B application would contribute partially to maintain the biomass production in this ecotype. Positive relationships between NR activity, nitrate, and stomatal conductance were observed in leaves. -
In Nitrogen Assimilation (Plant Mutant/Biochemical Genetics/Ammonia Assimilation/Gene Expression) ROSANA MELO-OLIVEIRA, IGOR CUNHA OLIVEIRA, and GLORIA M
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 4718-4723, May 1996 Plant Biology Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation (plant mutant/biochemical genetics/ammonia assimilation/gene expression) ROSANA MELO-OLIVEIRA, IGOR CUNHA OLIVEIRA, AND GLORIA M. CORUZZI Department of Biology, New York University, New York, NY 10003 Communicated by William L. Ogren, Champaign, IL, December 18, 1995 (received for review June 2, 1995) ABSTRACT Glutamate dehydrogenase (GDH) is ubiqui- similating photorespiratory ammonia (6). However, several tous to all organisms, yet its role in higher plants remains pieces of data argue against this proposed role. Inhibitors of enigmatic. To better understand the role of GDH in plant GS, such as phosphinothricin, specifically kill plants grown nitrogen metabolism, we have characterized an Arabidopsis under photorespiratory growth conditions (4, 10, 11). Second, mutant (gdhl-1) defective in one of two GDH gene products the characterization of photorespiratory mutants has sup- and have studied GDHI gene expression. GDHI mRNA accu- ported a major role for GS/GOGAT in this process. Plant mulates to highest levels in dark-adapted or sucrose-starved mutants deficient in chloroplast GS2 or ferredoxin-dependent plants, and light or sucrose treatment each repress GDHI GOGAT are chlorotic when grown under photorespiratory mRNA accumulation. These results suggest that the GDHI conditions (in air), yet they display a normal phenotype when gene product functions in the direction of glutamate catabo- grown under conditions that suppress photorespiration (high lism under carbon-limiting conditions. Low levels of GDHI CO2) (12-15). Together these data suggest that GDH plays a mRNA present in leaves of light-grown plants can be induced minor role, if any, in the reassimilation of photorespiratory by exogenously supplied ammonia. -
Soil Test Handbook for Georgia
SOIL TEST HANDBOOK FOR GEORGIA Georgia Cooperative Extension College of Agricultural & Environmental Sciences The University of Georgia Athens, Georgia 30602-9105 EDITORS: David E. Kissel Director, Agricultural and Environmental Services Laboratories & Leticia Sonon Program Coordinator, Soil, Plant, & Water Laboratory TABLE OF CONTENTS INTRODUCTION .......................................................................................................................................................2 SOIL TESTING...........................................................................................................................................................4 SOIL SAMPLING .......................................................................................................................................................4 SAMPLING TOOLS ......................................................................................................................................................5 SIZE OF AREA TO SAMPLE..........................................................................................................................................5 Traditional Methods.............................................................................................................................................5 Precision Agriculture Methods.............................................................................................................................5 AREAS NOT TO SAMPLE ............................................................................................................................................5 -
Micronutrient Malnutrition – Detection, Measurement and Intervention: a Training Package for Field Staff Handouts for Group Tr
Micronutrient Malnutrition – Detection, Measurement and Intervention: A Training Package for Field Staff Compiled by the Institute of Child Health Handouts for Group Training For UNHCR Version 1 2003 ICH/UNHCR Handout Contents Section 1: Section 2: Section 3: Important Micronutrient Detection Nutrition Concepts Deficiency Diseases and Prevention 1. Food and Nutrition 1. Anaemia 1. Detection of Deficiencies 2. Nutritional Requirements 2. Vitamin A Deficiency 2. Intervention 3. Nutritional Deficiencies 3. Iodine Deficiency Disorders 4. Micronutrient Deficiency Disease 4. Beriberi 5. Nutritional Assessments 5. Ariboflavinosis 6. Causes of Malnutrition 6. Pellagra 7. Scurvy 8. Rickets ICH/UNHCR Handout 2 Section 1 Food and Nutrition • All people and animals need food to live, grow and be healthy. • Food contains different types of nutrients. • Food contains certain nutrients called macronutrients: – Fat – Carbohydrate – Protein • Food also contains nutrients called micronutrients: – Vitamins – Minerals • A good diet is made up of foods that contain all these types of nutrients – macronutrients and micronutrients. ICH/UNHCR Handout 3 Section 1 Nutritional Requirements For people to be healthy and productive they need a certain amount of nutrients. This is called their nutritional requirement. • The amount of energy that people get from their food is measured in kilo calories (kcal). • The average person needs about 2100 kcal each day • 17-20 % of this energy should come from fat • At least 10 % of this energy should come from protein • People also need certain amounts of vitamins and minerals • For example the average person should have at least 12 mg of the B vitamin niacin, 28 mg of vitamin C, and 22 mg of iron each day. -
Nitrogen Fertilizer Induced Alterations in the Root Proteome of Two Rice Cultivars
Article Nitrogen Fertilizer Induced Alterations in The Root Proteome of Two Rice Cultivars Jichao Tang 1, Zhigui Sun 1, Qinghua Chen 1, Rebecca Njeri Damaris 2 and Bilin Lu 1,* and Zhengrong Hu 2,* 1 Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China 2 State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China * Correspondence: [email protected] (B.L.); [email protected] (Z.H.) Received: 4 June 2019; Accepted: 24 July 2019; Published: 26 July 2019 Abstract: Nitrogen (N) is an essential nutrient for plants and a key limiting factor of crop production. However, excessive application of N fertilizers and the low nitrogen use efficiency (NUE) have brought in severe damage to the environment. Therefore, improving NUE is urgent and critical for the reductions of N fertilizer pollution and production cost. In the present study, we investigated the effects of N nutrition on the growth and yield of the two rice (Oryza sativa L.) cultivars, conventional rice Huanghuazhan and indica hybrid rice Quanliangyou 681, which were grown at three levels of N fertilizer (including 135, 180 and 225 kg/hm2, labeled as N9, N12, N15, respectively). Then, a proteomic approach was employed in the roots of the two rice cultivars treated with N fertilizer at the level of N15. A total of 6728 proteins were identified, among which 6093 proteins were quantified, and 511 differentially expressed proteins were found in the two rice cultivars after N fertilizer treatment. These differentially expressed proteins were mainly involved in ammonium assimilation, amino acid metabolism, carbohydrate metabolism, lipid metabolism, signal transduction, energy production/regulation, material transport, and stress/defense response. -
A Robust Nitrifying Community in a Bioreactor at 50&Thinsp;&Deg;C Opens up the Path for Thermophilic Nitrogen Removal
The ISME Journal (2016) 10, 2293–2303 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE A robust nitrifying community in a bioreactor at 50°C opens up the path for thermophilic nitrogen removal Emilie NP Courtens1, Eva Spieck2, Ramiro Vilchez-Vargas1, Samuel Bodé3, Pascal Boeckx3, Stefan Schouten4, Ruy Jauregui5, Dietmar H Pieper5, Siegfried E Vlaeminck1,6,7 and Nico Boon1,7 1Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Gent, Belgium; 2Biocenter Klein Flottbek and Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany; 3Isotope Bioscience Laboratory, Ghent University, Gent, Belgium; 4Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands; 5Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany and 6Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, Antwerpen, Belgium The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to ‘Candidatus Nitrososphaera gargensis’, and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida.