Stream Ciphers and the Estream Project? Vincent Rijmen A,∗ Akatholieke Universiteit Leuven, Dept

Total Page:16

File Type:pdf, Size:1020Kb

Stream Ciphers and the Estream Project? Vincent Rijmen A,∗ Akatholieke Universiteit Leuven, Dept The ISC Int'l Journal of Information Security January 2010, Volume 2, Number 1 (pp. 3{11) ISeCure http://www.isecure-journal.org Invited Paper Stream Ciphers and the eSTREAM Project? Vincent Rijmen a;∗ aKatholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium, and Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria A R T I C L E I N F O. ABSTRACT Article history: Stream ciphers are an important class of symmetric cryptographic algorithms. Received: 6 October 2009 Revised: | The eSTREAM project contributed significantly to the recent increase of Accepted: 30 November 2009 activity in this field. In this paper, we present a survey of the eSTREAM Published Online: 18 January 2010 project. We also review recent time/memory/data and time/memory/key Keywords: trade-offs relevant for the generic attacks on stream ciphers. Cryptology, Stream Ciphers, Time-Memory Trade-offs, c 2010 ISC. All rights reserved. eSTREAM 1 Introduction design of secure stream ciphers. In Section2 we start with one of the remarkable issues in the stream ciphers The design of secure stream ciphers is one of the old- versus block ciphers debate, namely the fuzzy border est problems in cryptography. Although there exists separating them from one another. In Section3, we a nicely developed theory that answers several of the describe some general results that were obtained dur- important questions, the question is not fully solved ing the eSTREAM competition. These generic attacks (and it will probably never be). After the completion bound the best security that can be achieved for a of the Advanced Encryption Standard (AES) process, given size of the secret key and the internal state. Sec- block ciphers were firmly in the center of the crypto- tion4 discusses the eSTREAM highlights and events. graphic community's attention. Some people started We present some concluding remarks in Section5. wondering aloud whether there was still any practical application for stream ciphers or a reason to perform research on them. The eSTREAM project to evaluate 2 Synchronous Stream Ciphers, Self- stream ciphers, organized by the ECRYPT Network of Excellence, can be seen as an answer formulated by Synchronizing Stream Ciphers and the part of the cryptographic community that does Block Ciphers care about stream ciphers. It turned out to be a large Many introductory texts on symmetric cryptography part of the community. distinguish two classes of primitives for symmetric In this paper, we give an overview of the eSTREAM encryption, namely block ciphers and stream ciphers. project and we describe some lessons learnt on the An often-cited example of a historical block cipher is the Caesar cipher. More modern examples include the ? public algorithms Data Encryption Standard (DES) Sponsored by Onderzoeksfonds K.U.Leuven / Research fund and AES. Example stream ciphers are the historical K.U.Leuven OT/08/027. ∗ Corresponding author. Enigma cipher, RC4 and various ciphers based on Email address: [email protected] (V. Linear Feedback Shift Registers (LFSRs). Rijmen). ISSN: 2008-2045 c 2010 ISC. All rights reserved. ISeCure 4 Stream Ciphers and the eSTREAM Project |V. Rijmen 2.1 Definitions blocks (e.g. n ≥ 64 bits). The same function is used to encrypt successive blocks; thus (pure) block The Handbook of Applied Cryptography gives the fol- ciphers are memoryless. In contract, stream ciphers lowing definitions for a synchronous, respectively self- process plaintext in blocks as small as a single bit, synchronizing stream cipher. and the encryption function may vary as plaintext Definition 1 (Synchronous Stream Cipher [13, is processed; thus stream ciphers are said to have Definition 6.2]). A synchronous stream cipher memory. They are sometimes called state ciphers ... (SSC) is one in which the keystream is generated This distinction between block and stream ciphers independently of the plaintext message and of the is not definitive (. ); adding a small amount of ciphertext. memory to a block cipher (as in CBC mode) results in a stream cipher with large blocks. Denoting message blocks by m , ciphertext blocks i The Handbook proposes hence to take the size of by c , the key by κ and the content of the internal i the blocks processed and the presence or absence state of the stream cipher at time i by σ , an SSC can i of memory as criteria to distinguish between block be described by the following equations: ciphers and stream ciphers. σ = f(σ ; κ); (1) If we consider the modern stream cipher proposals, i+1 i for example the proposals submitted to the eSTREAM zi = g(σi; κ); (2) competition, then it turns out that many of the best- ci = h(zi; mi): (3) performing stream ciphers work on relatively large blocks, just like block ciphers. This is true in particular Here σ0 is the initial value of the internal state and for stream ciphers designed to have a high performance z0; z1; z2;::: is the keystream. The function g is called in software; they usually process large blocks in order the output transformation. to benefit from the large registers available on modern Definition 2 (Self-Synchronizing Stream Ci- processors. pher [13, Definition 6.5]). A self-synchronizing Secondly, it should be pointed out that for the vast stream cipher (SSSC) is one in which the keystream majority of practical applications, and for all appli- is generated as a function of the key and a fixed cations that require some kind of provable security, number of previous ciphertext digits. block ciphers are being used in a mode of operation which introduces state (memory). Hence, this crite- In an SSSC, Equation (1) is replaced by: rion to distinguish between block ciphers and stream σi = (ci−t; ci−t+1; : : : ; ci−1): (4) ciphers turns out to be imprecise. On the other hand, among cryptographers, there appears to be a common Note that the Handbook defines both synchronous intuition about which primitive should be considered stream ciphers and self-synchronizing stream ciphers to be a stream cipher and which a block cipher. We in terms of the more general class of stream ciphers. think that this intuition is captured by the following Interestingly, the Handbook omits to give a general working definition. definition of a stream cipher. Instead, the Handbook defines block ciphers and provides guidelines to dis- 2.2 New Working Definition tinguish stream ciphers from block ciphers. Although there exists a common and clear intu- Any secure encryption method contains a kind of inter- ition about the difference between a block cipher and nal state, a family fFκgκ of state update transforma- a stream cipher, capturing this intuition in precise tions and a family fGκgκ of mechanisms to produce mathematical statements proves to be a challenge. ciphertext. In mathematical notation, we can write: The Handbook defines a block cipher as follows: σ = F (σ ; m ); (5) Definition 3 ([13, Definition 7.1]). An n-bit block i+1 κ i i c = G (σ ; m ): (6) cipher is a function E : Vn × K ! Vn such that for i κ i i each key κ 2 K, Eκ(P ) is an invertible mapping from A block cipher is a family fEκgκ of permutations which Vn to Vn, written EK (P ). can be used in a certain configuration |known as a mode of operation| to define the transformations F , The Handbook also points out two properties in κ G . Hence a block cipher based encryption method is which block ciphers and stream ciphers tend to differ κ an example of a modular design, consisting of a block [13, page 192]: cipher on the one hand, and a mode of operation on Block ciphers process plaintext in relatively large the other hand. ISeCure January 2010, Volume 2, Number 1 (pp. 3{11) 5 A stream cipher is an encryption method which or chosen plaintexts. We count the amount of data doesn't necessarily employ this modular approach. By collected in units of k bits, and denote the binary allowing more general constructions for Fκ and Gκ, logarithm of this quantity by D. This data is com- the designers aim to achieve a better tradeoff between bined with the results of the precomputation phase performance, security and cost. to recover the key. We denote the binary logarithm of the computational complexity of this phase by T . Note: In the Electronic Code Book (ECB) mode of operation, there is no internal state. It can be We denote the binary logarithm of the sum of the treated as a special case of the previous definition, memory requirements of the precomputation phase with state size 0. Alternatively, we can exclude it from and the online phase of the attack by M. consideration because for the majority of applications, the ECB mode of operation can't be considered secure. 3.1 Exhaustive Attacks For a straightforward exhaustive key search, there is 2.3 Constructions no precomputation, the attacker collects a negligible Traditionally, definitely in academic research papers, amount of known plaintexts, and uses a negligible SSC's have been constructed from Linear Feedback amount of memory (P = D = M ≈ 0). The online Shift Registers (LFSRs). The main advantages of computational complexity is given by T = k. LFSRs are their compactness in hardware, the well- On the other hand, we can also imagine an attack developed mathematical theory surrounding their de- scenario where the attacker precomputes the cipher- sign and the good randomness properties. Their main text for a given chosen plaintext under all possible keys, disadvantage is of course their linearity, which needs and stores the result in a table.
Recommended publications
  • Failures of Secret-Key Cryptography D
    Failures of secret-key cryptography D. J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven http://xkcd.com/538/ 2011 Grigg{Gutmann: In the past 15 years \no one ever lost money to an attack on a properly designed cryptosystem (meaning one that didn't use homebrew crypto or toy keys) in the Internet or commercial worlds". 2011 Grigg{Gutmann: In the past 15 years \no one ever lost money to an attack on a properly designed cryptosystem (meaning one that didn't use homebrew crypto or toy keys) in the Internet or commercial worlds". 2002 Shamir:\Cryptography is usually bypassed. I am not aware of any major world-class security system employing cryptography in which the hackers penetrated the system by actually going through the cryptanalysis." Do these people mean that it's actually infeasible to break real-world crypto? Do these people mean that it's actually infeasible to break real-world crypto? Or do they mean that breaks are feasible but still not worthwhile for the attackers? Do these people mean that it's actually infeasible to break real-world crypto? Or do they mean that breaks are feasible but still not worthwhile for the attackers? Or are they simply wrong: real-world crypto is breakable; is in fact being broken; is one of many ongoing disaster areas in security? Do these people mean that it's actually infeasible to break real-world crypto? Or do they mean that breaks are feasible but still not worthwhile for the attackers? Or are they simply wrong: real-world crypto is breakable; is in fact being broken; is one of many ongoing disaster areas in security? Let's look at some examples.
    [Show full text]
  • Key Differentiation Attacks on Stream Ciphers
    Key differentiation attacks on stream ciphers Abstract In this paper the applicability of differential cryptanalytic tool to stream ciphers is elaborated using the algebraic representation similar to early Shannon’s postulates regarding the concept of confusion. In 2007, Biham and Dunkelman [3] have formally introduced the concept of differential cryptanalysis in stream ciphers by addressing the three different scenarios of interest. Here we mainly consider the first scenario where the key difference and/or IV difference influence the internal state of the cipher (∆key, ∆IV ) → ∆S. We then show that under certain circumstances a chosen IV attack may be transformed in the key chosen attack. That is, whenever at some stage of the key/IV setup algorithm (KSA) we may identify linear relations between some subset of key and IV bits, and these key variables only appear through these linear relations, then using the differentiation of internal state variables (through chosen IV scenario of attack) we are able to eliminate the presence of corresponding key variables. The method leads to an attack whose complexity is beyond the exhaustive search, whenever the cipher admits exact algebraic description of internal state variables and the keystream computation is not complex. A successful application is especially noted in the context of stream ciphers whose keystream bits evolve relatively slow as a function of secret state bits. A modification of the attack can be applied to the TRIVIUM stream cipher [8], in this case 12 linear relations could be identified but at the same time the same 12 key variables appear in another part of state register.
    [Show full text]
  • Stream Ciphers (Contd.)
    Stream Ciphers (contd.) Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives • Non-linear feedback shift registers • Stream ciphers using LFSRs: – Non-linear combination generators – Non-linear filter generators – Clock controlled generators – Other Stream Ciphers Low Power Ajit Pal IIT Kharagpur 1 Non-linear feedback shift registers • A Feedback Shift Register (FSR) is non-singular iff for all possible initial states every output sequence of the FSR is periodic. de Bruijn Sequence An FSR with feedback function fs(jj−−12 , s ,..., s jL − ) is non-singular iff f is of the form: fs=⊕jL−−−−+ gss( j12 , j ,..., s jL 1 ) for some Boolean function g. The period of a non-singular FSR with length L is at most 2L . If the period of the output sequence for any initial state of a non-singular FSR of length L is 2L , then the FSR is called a de Bruijn FSR, and the output sequence is called a de Bruijn sequence. Low Power Ajit Pal IIT Kharagpur 2 Example f (,xxx123 , )1= ⊕⊕⊕ x 2 x 3 xx 12 t x1 x2 x3 t x1 x2 x3 0 0 0 0 4 0 1 1 1 1 0 0 5 1 0 1 2 1 1 0 6 0 1 0 3 1 1 1 3 0 0 1 Converting a maximal length LFSR to a de-Bruijn FSR Let R1 be a maximum length LFSR of length L with linear feedback function: fs(jj−−12 , s ,..., s jL − ). Then the FSR R2 with feedback function: gs(jj−−12 , s ,..., s jL − )=⊕ f sjj−−12 , s ,..., s j −L+1 is a de Bruijn FSR.
    [Show full text]
  • Security Evaluation of GOST 28147-89 in View of International Standardisation
    Security Evaluation of GOST 28147-89 In View Of International Standardisation Nicolas T. Courtois University College London, Gower Street, London, UK, [email protected] Abstract. GOST 28147-89 is is a well-known 256-bit block cipher which is a plausible alternative for AES-256 and triple DES which is known to have a much lower implementation cost, see [31]. GOST is implemented in standard crypto libraries such as OpenSSL and Crypto++ [25, 45], and is increasingly popular and used also outside its country of origin and on the Internet [23, 24, 31]. In 2010 GOST was submitted to ISO, to become a worldwide industrial encryption standard. Until 2011 researchers unanimously agreed that GOST could or should be very secure, which was summarized in 2010 in these words: \despite considerable cryptanalytic e®orts spent in the past 20 years, GOST is still not broken", see [31]. Unhappily, it was recently discovered that GOST can be broken and is a deeply flawed cipher. There is a very con- siderable amount of recent not yet published work on cryptanalysis of GOST known to us, see [12]. One simple attack was already presented in February at FSE 2011, see [28]. In this short paper we describe an- other attack, to illustrate the fact that there is now plethora of attacks on GOST, which require much less memory, and don't even require the reflection property [29] to hold, without which the recent attack from [28] wouldn't work. We are also aware of many substantially faster at- tacks and of numerous special even weaker cases, see [12].
    [Show full text]
  • Thesis Submitted for the Degree of Doctor of Philosophy
    Optimizations in Algebraic and Differential Cryptanalysis Theodosis Mourouzis Department of Computer Science University College London A thesis submitted for the degree of Doctor of Philosophy January 2015 Title of the Thesis: Optimizations in Algebraic and Differential Cryptanalysis Ph.D. student: Theodosis Mourouzis Department of Computer Science University College London Address: Gower Street, London, WC1E 6BT E-mail: [email protected] Supervisors: Nicolas T. Courtois Department of Computer Science University College London Address: Gower Street, London, WC1E 6BT E-mail: [email protected] Committee Members: 1. Reviewer 1: Professor Kenny Paterson 2. Reviewer 2: Dr Christophe Petit Day of the Defense: Signature from head of PhD committee: ii Declaration I herewith declare that I have produced this paper without the prohibited assistance of third parties and without making use of aids other than those specified; notions taken over directly or indirectly from other sources have been identified as such. This paper has not previously been presented in identical or similar form to any other English or foreign examination board. The following thesis work was written by Theodosis Mourouzis under the supervision of Dr Nicolas T. Courtois at University College London. Signature from the author: Abstract In this thesis, we study how to enhance current cryptanalytic techniques, especially in Differential Cryptanalysis (DC) and to some degree in Al- gebraic Cryptanalysis (AC), by considering and solving some underlying optimization problems based on the general structure of the algorithm. In the first part, we study techniques for optimizing arbitrary algebraic computations in the general non-commutative setting with respect to sev- eral metrics [42, 44].
    [Show full text]
  • Hardware Implementation of the Salsa20 and Phelix Stream Ciphers
    Hardware Implementation of the Salsa20 and Phelix Stream Ciphers Junjie Yan and Howard M. Heys Electrical and Computer Engineering Memorial University of Newfoundland Email: {junjie, howard}@engr.mun.ca Abstract— In this paper, we present an analysis of the digital of battery limitations and portability, while for virtual private hardware implementation of two stream ciphers proposed for the network (VPN) applications and secure e-commerce web eSTREAM project: Salsa20 and Phelix. Both high speed and servers, demand for high-speed encryption is rapidly compact designs are examined, targeted to both field increasing. programmable (FPGA) and application specific integrated circuit When considering implementation technologies, normally, (ASIC) technologies. the ASIC approach provides better performance in density and The studied designs are specified using the VHDL hardware throughput, but an FPGA is reconfigurable and more flexible. description language, and synthesized by using Synopsys CAD In our study, several schemes are used, catering to the features tools. The throughput of the compact ASIC design for Phelix is of the target technology. 260 Mbps targeted for 0.18µ CMOS technology and the corresponding area is equivalent to about 12,400 2-input NAND 2. PHELIX gates. The throughput of Salsa20 ranges from 38 Mbps for the 2.1 Short Description of the Phelix Algorithm compact FPGA design, implemented using 194 CLB slices to 4.8 Phelix is claimed to be a high-speed stream cipher. It is Gbps for the high speed ASIC design, implemented with an area selected for both software and hardware performance equivalent to about 470,000 2-input NAND gates. evaluation by the eSTREAM project.
    [Show full text]
  • The Status of Stream Ciphers After the Estream Project*
    The Status of Stream Ciphers after the eSTREAM Project? Bart Preneel COSIC, K.U.Leuven, Belgium abstract 1 The eSTREAM project is a multi-year project within the ECRYPT Net- work of Excellence (http://www.ecrypt.eu.org/stream/). Launched in 2004, it is expected to come to a conclusion in April of 2008 with the publication of a portfolio of promising new stream cipher designs. For many years stream ciphers of a dedicated design were seen as an impor- tant complement to block ciphers. While both stream and block ciphers provide what is termed symmetric encryption, where both the sender and the receiver of a protected message share the same key, they have different characteristics making them suitable for different applications. And while a block cipher could be used as a stream cipher, this was previously viewed as a second-best choice. However the widespread adoption of the AES [1] —a trusted block cipher with excellent performance characteristics—has changed this. For the vast majority of applications one can just use the AES (in an appropriate way) with no need to look for alternatives. That said, there are two situations where a dedicated stream cipher might still hold an advantage: (1) in software applications requiring a very high encryption/decryption rate and (2) in hardware applications where physical resources, e.g. space or power, are severely restricted. Over a three-year period, an initial set of 34 new stream cipher designs— submitted from around the world—has been gradually reduced to 16 finalist ciphers suitable for software or hardware implementation.
    [Show full text]
  • Generic Attacks on Stream Ciphers
    Generic Attacks on Stream Ciphers John Mattsson Generic Attacks on Stream Ciphers 2/22 Overview What is a stream cipher? Classification of attacks Different Attacks Exhaustive Key Search Time Memory Tradeoffs Distinguishing Attacks Guess-and-Determine attacks Correlation Attacks Algebraic Attacks Sidechannel Attacks Summary Generic Attacks on Stream Ciphers 3/22 What is a stream cipher? Input: Secret key (k bits) Public IV (v bits). Output: Sequence z1, z2, … (keystream) The state (s bits) can informally be defined as the values of the set of variables that describes the current status of the cipher. For each new state, the cipher outputs some bits and then jumps to the next state where the process is repeated. The ciphertext is a function (usually XOR) of the keysteam and the plaintext. Generic Attacks on Stream Ciphers 4/22 Classification of attacks Assumed that the attacker has knowledge of the cryptographic algorithm but not the key. The aim of the attack Key recovery Prediction Distinguishing The information available to the attacker. Ciphertext-only Known-plaintext Chosen-plaintext Chosen-chipertext Generic Attacks on Stream Ciphers 5/22 Exhaustive Key Search Can be used against any stream cipher. Given a keystream the attacker tries all different keys until the right one is found. If the key is k bits the attacker has to try 2k keys in the worst case and 2k−1 keys on average. An attack with a higher computational complexity than exhaustive key search is not considered an attack at all. Generic Attacks on Stream Ciphers 6/22 Time Memory Tradeoffs (state) Large amounts of precomputed data is used to lower the computational complexity.
    [Show full text]
  • Stream Cipher Designs: a Review
    SCIENCE CHINA Information Sciences March 2020, Vol. 63 131101:1–131101:25 . REVIEW . https://doi.org/10.1007/s11432-018-9929-x Stream cipher designs: a review Lin JIAO1*, Yonglin HAO1 & Dengguo FENG1,2* 1 State Key Laboratory of Cryptology, Beijing 100878, China; 2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China Received 13 August 2018/Accepted 30 June 2019/Published online 10 February 2020 Abstract Stream cipher is an important branch of symmetric cryptosystems, which takes obvious advan- tages in speed and scale of hardware implementation. It is suitable for using in the cases of massive data transfer or resource constraints, and has always been a hot and central research topic in cryptography. With the rapid development of network and communication technology, cipher algorithms play more and more crucial role in information security. Simultaneously, the application environment of cipher algorithms is in- creasingly complex, which challenges the existing cipher algorithms and calls for novel suitable designs. To accommodate new strict requirements and provide systematic scientific basis for future designs, this paper reviews the development history of stream ciphers, classifies and summarizes the design principles of typical stream ciphers in groups, briefly discusses the advantages and weakness of various stream ciphers in terms of security and implementation. Finally, it tries to foresee the prospective design directions of stream ciphers. Keywords stream cipher, survey, lightweight, authenticated encryption, homomorphic encryption Citation Jiao L, Hao Y L, Feng D G. Stream cipher designs: a review. Sci China Inf Sci, 2020, 63(3): 131101, https://doi.org/10.1007/s11432-018-9929-x 1 Introduction The widely applied e-commerce, e-government, along with the fast developing cloud computing, big data, have triggered high demands in both efficiency and security of information processing.
    [Show full text]
  • Public Evaluation Report UEA2/UIA2
    ETSI/SAGE Version: 2.0 Technical report Date: 9th September, 2011 Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 4: Design and Evaluation Report LTE Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. page 1 of 43 Document 4: Design and Evaluation report. Version 2.0 Document History 0.1 20th June 2010 First draft of main technical text 1.0 11th August 2010 First public release 1.1 11th August 2010 A few typos corrected and text improved 1.2 4th January 2011 A modification of ZUC and 128-EIA3 and text improved 1.3 18th January 2011 Further text improvements including better reference to different historic versions of the algorithms 1.4 1st July 2011 Add a new section on timing attacks 2.0 9th September 2011 Final deliverable LTE Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. page 2 of 43 Document 4: Design and Evaluation report. Version 2.0 Reference Keywords 3GPP, security, SAGE, algorithm ETSI Secretariat Postal address F-06921 Sophia Antipolis Cedex - FRANCE Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 X.400 c= fr; a=atlas; p=etsi; s=secretariat Internet [email protected] http://www.etsi.fr Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
    [Show full text]
  • Analysis of Lightweight Stream Ciphers
    ANALYSIS OF LIGHTWEIGHT STREAM CIPHERS THÈSE NO 4040 (2008) PRÉSENTÉE LE 18 AVRIL 2008 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS LABORATOIRE DE SÉCURITÉ ET DE CRYPTOGRAPHIE PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Simon FISCHER M.Sc. in physics, Université de Berne de nationalité suisse et originaire de Olten (SO) acceptée sur proposition du jury: Prof. M. A. Shokrollahi, président du jury Prof. S. Vaudenay, Dr W. Meier, directeurs de thèse Prof. C. Carlet, rapporteur Prof. A. Lenstra, rapporteur Dr M. Robshaw, rapporteur Suisse 2008 F¨ur Philomena Abstract Stream ciphers are fast cryptographic primitives to provide confidentiality of electronically transmitted data. They can be very suitable in environments with restricted resources, such as mobile devices or embedded systems. Practical examples are cell phones, RFID transponders, smart cards or devices in sensor networks. Besides efficiency, security is the most important property of a stream cipher. In this thesis, we address cryptanalysis of modern lightweight stream ciphers. We derive and improve cryptanalytic methods for dif- ferent building blocks and present dedicated attacks on specific proposals, including some eSTREAM candidates. As a result, we elaborate on the design criteria for the develop- ment of secure and efficient stream ciphers. The best-known building block is the linear feedback shift register (LFSR), which can be combined with a nonlinear Boolean output function. A powerful type of attacks against LFSR-based stream ciphers are the recent algebraic attacks, these exploit the specific structure by deriving low degree equations for recovering the secret key.
    [Show full text]
  • A Chosen IV Related Key Attack on Grain-128A
    A Chosen IV Related Key Attack on Grain-128a Subhadeep Banik1, Subhamoy Maitra1, Santanu Sarkar2 , Meltem S¨onmez Turan2 1 Applied Statistics Unit, Indian Statistical Institute Kolkata, 203, B.T. Road, Kolkata-108. s.banik [email protected], [email protected] 2 National Institute of Standards and Technology, 100 Bureau Drive, Stop 8930 Gaithersburg, MD 20899-8930,USA [email protected], [email protected] Abstract. Due to the symmetric padding used in the stream cipher Grain v1 and Grain-128, it is possible to find Key-IV pairs that gener­ ate shifted keystreams efficiently. Based on this observation, Lee et al. presented a chosen IV related key attack on Grain v1 and Grain-128 at ACISP 2008. Later, the designers introduced Grain-128a having an asymmetric padding. As a result, the existing idea of chosen IV related key attack does not work on this new design. In this paper, we present a key recovery attack on Grain-128a, in a chosen IV related key setting. We show that using around γ · 232 (γ is a experimentally determined constant and it is sufficient to estimate it as 28) related keys and γ · 264 chosen IVs, it is possible to obtain 32 · γ simple nonlinear equations and solve them to recover the secret key in Grain-128a. Keywords: Cryptanalysis, eStream, Grain-128a, Related Keys, Stream Cipher. 1 Introduction The Grain family of stream ciphers, proposed by Martin Hell, Thomas Johansson and Willi Meier in 2005, is designed for constrained devices. Grain v1 [16] is included in the final hardware portfolio of the eStream pro ject [1].
    [Show full text]