Mobile Phone-Based Vehicle Positioning and Tracking and Its

Total Page:16

File Type:pdf, Size:1020Kb

Mobile Phone-Based Vehicle Positioning and Tracking and Its Mobile Phone‐based Vehicle Positioning and Tracking and Its Application in Urban Traffic State Estimation SHA TAO Licentiate Thesis KTH Royal Institute of Technology Stockholm, Sweden 2012 TRITA-ICT/MAP AVH Report 2012:01 KTH School of Information and ISSN 1653-7610 Communication Technology ISRN KTH/ ICT/ MAP/AVH-2012:01–SE SE-164 40 Kista ISBN 978-91-7501-204-9 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie licentiatexamen i Elektronik och Datorsystem onsdag den 18 Januari 2012 klockan 14.00 i Sal C2, Electrum 229, Kungl Tekniska Högskolan, Isafjordsgatan 26, Kista. © Sha Tao, January 2012 Tryck: Kista Snabbtryck AB iii Abstract Enabling the positioning and tracking of mobile phones has emerged as a key facility of existing and future generation mobile communication systems. This feature provides opportunities for many value added location-based services and systems. For instance, mobile phones are increasingly employed in traffic infor- mation systems and present several advantages over traditional sensor-based traffic systems. However, there are still plenty of aspects that must be investigated and addressed towards the fully operational deployment. The aim of the research per- formed in this thesis is to examine and propose solutions to two of the problems in the deployment of a mobile phone-based smart traffic information system. The first problem investigated is the mobile phone-based vehicle positioning and tracking. The investigation starts with a comprehensive study of mobile positioning with emphasis on existing standardizations. Based on the mobile location methods standardized in UMTS, possible hybrid solutions are proposed. In addition, a tool for simulating one of the UMTS mobile positioning methods (i.e., OTDOA) in vehicular environment is developed. A Kalman filter-based hybrid method, which can track the mobile phones traveling on-board vehicles, is then implemented. This method fuses two of the UMTS standard methods (i.e., OTDOA and A-GPS) loca- tion estimates at the state-vector level. Statistical simulation results demonstrate that the hybrid method can provide better position and velocity estimations than each individual method. The second problem addressed is the mobile phone-based urban traffic state estimation. A traffic simulation-based framework is proposed to emulate and evalu- ate the operation of urban traffic state estimation with A-GPS mobile phones as probes. Based on the emulated mobile phone probe data, algorithms of location data processing/filtering and average speed estimation are developed and then evaluated by comparing against “ground truth” data from the traffic simulation. Moreover, the estimated average speeds are classified to different traffic condition levels, which are prepared for displaying a traffic map on the mobile phone display. The achieved simulation results demonstrate the effectiveness of the proposed method, which is fundamental for the subsequent development of a mobile phone-based smart traffic information system demonstrator. iv v Dedicated to the Ones I Love and the Ones Who Love Me vi vii ACKNOWLEDGEMENTS Every story has its beginning; mine starts two years ago with a group, once called RaMSiS. At that time, there were six members in our group, our little ‘family’. Although the six of us are actually diverse in many ways: different origins, languages, backgrounds, personalities, etc., when we come together, the feeling is just so right. Maybe this is because family is such a place where everyone accepts you for who you are. Therefore, my first and foremost acknowledgment goes to the ones, who spent with me from the very beginning the past two years of my doctoral study: Assoc. Prof. Ana Rusu, Prof. Mohammed Ismail Elnaggar, Dr. Saul Rodriguez Duenas, Julian Marcos Garcia, and Vasileios Manolopoulos. Ana, my main advisor, you introduced me into this family and encouraged me stepping into a brand new field; you creates a fantastic ‘aura’ around that makes everyone can easily fit in and teaches me to be open minded to the thing which used to sounds ‘alien’ to me. You always correct our manuscripts word-by-word with your “magic red pen” (quoted from Eduard). Your door is always open to us; you are always there for us listening to our ideas (sometimes immature) and counseling us when we came across obstacles and felt depressed. You spoil us! However, you are far more than a good ‘profes- sor’; to me you are a real ‘educator’: you always want us to be not only an excellent student or researcher but also a better person and an independent thinker. Mohammed, my co-advisor, though has not been with us very often, you have been always supportive to my study and trying to give me suggestions. It was such a pleasure talking with you every time you came. Saul, my co-advisor, who was my master thesis supervisor and actually has been my supervisor since three years ago when I took a project course; you are the person I always go to for advices, both academically and daily life related. Thanks a lot for making my life easier. Julian, our senior PhD student, you are just perfect in many ways: the way you work (e.g., your attitude and passion), the way you speak/communicate (e.g., when you presenting and teaching), etc.; I admire you and I wish you all the best in your upcoming defense. Vasilis, my fellow student, my project teammate, the cool guy I shared the office with during these two years; of course not only the office, but there were many other things we have been sharing in our “little dark place” (quoted from Ana): discussions regarding our viii study and project, opinions and ideas about people we know and things happened, even the confusions we had. We have been through phases together in our PhD studies, and at this point, wish ourselves the best of luck. Once again, thank all of you for making me feel at home when working in the office; you guys are simply awesome! My appreciation also goes to our present and former (guest) group members: Maryam Olyaei, Jinxin Song, Ying Song, Cristina Marghescu, Rocco Luciano Grimaldi, Prof. Edu- ard Alarcon, Dr. Raul Onet, Dr. Fadi R. Shahroury, Babak Taghavi, and Milad Raz- zaghpour. I do enjoy the moments we shared, and I am really glad that you guys are/were around. Babak, you did a fantastic master thesis and you are so wholesome. I had a lot of fun discussing soccer with you. Milad, you are exceptionally gifted in doing research and you are born to be a “professor” (as Ana once joked about you). Meanwhile, you are so adorable and you are delightful to talk with: someone must be insane if he/she doesn’t feel enjoyable when chatting with you. Many thanks to professors of the postgraduate courses I took for my Licentiate: Assoc. Prof. Eilert Berglind, Prof. Gerald Maguire, Assoc. Prof. Lena Wosinska, and Prof. Elena Dubrova; especially Prof. Gerald Maguire for his valuable feedback in one part of the work included in this thesis. My thanks also go to Prof. Mikael Östling and Prof. Carl-Mikael Zetterling (Bellman), for their brilliant managing and organizing stills to keep our depart- ment running well. In addition, I would like to thank Gunilla Gabrielsson, our department administrator, for taking care of a variety of administrative issues. I would also like to thank the ICT IT-Service staffs for the support on computer-related issues. I gratefully acknowledge the financial support from the Swedish Foundation for Strategic Research (SSF) for funding my research under the TRAFFIC project. I also acknowledge the KTH transport platform for organizing meetings & events that provide us opportunities meeting people around who do related research. I am thankful to Assoc. Prof. Panos Papadimitratos for reviewing my Licentiate proposal and for all constructive comments that helped improve this thesis; to Prof. Anders Hallén for being the internal reviewer of this thesis. I am genuinely grateful to Dr. Wilco Burghout for accepting the role as opponent at my defense. Special thanks to my Chinese friends here in Electrum: Xingang Yu, Yu Xiang, Ye Tian, Tingsu Chen, Dr. Jiantong Li, Dr. Qing Lin, Dr. Jun Luo, Dr. Shun Yu, Yeyu Fang, and Chen Hu. Tianye and Tingsu, you have just started your PhD study and I wish you nothing but the best. Yeyu and Huchen, with whom I shared most of my happy lunch hours, I miss you already. Some of you guys may have left, but I treasure the great time we spent together during the past two years. My other friends, whether in Stockholm or Beijing, thank you all for being in my life. Finally, with all my heart, I would like to express my deepest love to my dearest ones. My boyfriend, who has always accompanied me during the past years and will be with me the rest of my life, I feel so blessed to have you. My life would suck without you. My family, in my sweet home Beijing, especially my mom and dad, my four grandparents, my uncle and aunt, you are my inspiration all the way and you are the reason who I am. You raise me up. ix CONTENTS Abstract iii Acknowledgements vii Contents ix Abbreviations and Acronyms xii 1 Introduction 1 1.1 Background ................................................................................................. 2 1.1.1 The Use of Mobile Phones in ITS ........................................................ 2 1.1.2 Smart Traffic Information System: An Overview ............................... 2 1.2 Problem Formulation .................................................................................. 4 1.3 Thesis Outline and Contributions ............................................................... 5 2 Vehicle Location Using Mobile Phones: Survey and Prospects 7 2.1 Mobile Positioning and Its Performance Metrics ....................................... 8 2.1.1 Calls for Mobile Positioning ................................................................ 8 2.1.2 Vehicle Location: Requirements and Metrics .....................................
Recommended publications
  • Mobile Networks and Internet of Things Infrastructures to Characterize Smart Human Mobility
    smart cities Article Mobile Networks and Internet of Things Infrastructures to Characterize Smart Human Mobility Luís Rosa 1,* , Fábio Silva 1,2 and Cesar Analide 1 1 ALGORITMI Centre, Department of Informatics, University of Minho, 4710-057 Braga, Portugal; [email protected] (F.S.); [email protected] (C.A.) 2 CIICESI, School of Management and Technology, Politécnico do Porto, 4610-156 Felgueiras, Portugal * Correspondence: [email protected] Abstract: The evolution of Mobile Networks and Internet of Things (IoT) architectures allows one to rethink the way smart cities infrastructures are designed and managed, and solve a number of problems in terms of human mobility. The territories that adopt the sensoring era can take advantage of this disruptive technology to improve the quality of mobility of their citizens and the rationalization of their resources. However, with this rapid development of smart terminals and infrastructures, as well as the proliferation of diversified applications, even current networks may not be able to completely meet quickly rising human mobility demands. Thus, they are facing many challenges and to cope with these challenges, different standards and projects have been proposed so far. Accordingly, Artificial Intelligence (AI) has been utilized as a new paradigm for the design and optimization of mobile networks with a high level of intelligence. The objective of this work is to identify and discuss the challenges of mobile networks, alongside IoT and AI, to characterize smart human mobility and to discuss some workable solutions to these challenges. Finally, based on this discussion, we propose paths for future smart human mobility researches.
    [Show full text]
  • Mobile Positioning in Cellular Networks Yogesh S
    International Journal of Trend in Research and Development, Volume 3(5), ISSN: 2394-9333 www.ijtrd.com Mobile Positioning in Cellular Networks Yogesh S. Tippe and Pramila S. Shinde Information Technology Department, Shah & Anchor Kutchhi Engineering College, Mumbai, India Abstract- Over the past few decades, Mobile Communication have become important in humans life. The use of mobiles is increased and access to information has become requirement. The increased demand for the information access has created a huge potential for opportunities and it has promoted the innovation towards the development of new technologies. Furthermore, with the fast development of mobile communication networks, positioning information becomes the great interest, because positioning information can be used in emergencies, rescues and navigation. In this paper, a comparative analysis of positioning techniques is presented. Some of the technologies that are used commonly are discussed in this paper. Figure 1 Classification of Mobile Positioning Techniques Keywords: Angle of Arrival, Time of Arrival, Time Difference of Arrival, Assisted GPS, Global Positioning System, Cell Identity, II. TECHNOLOGIES Location, Positioning. A. Handset based Mobile Positioning I. INTRODUCTION In this technique the handset participates in the position Wireless communication is among technologies biggest determination. The location of the mobile phone can be contribution to mankind. Wireless communication involves the determined using client software installed on the handset. This transmission of information over a distance without any wires or technique determines the location of handset by putting its cables. Now a days Position estimation with communication location by cell identification, signal strength of the home and technologies is hot topic to research.
    [Show full text]
  • Accurate Location Detection 911 Help SMS App
    System and method that allows for cost effective location detection accuracy that exceeds current FCC standards. Accurate Location Detection 911 Help SMS App White Paper White Paper: 911 Help SMS App 1 Cost Effective Location Detection Techniques Used by the 911 Help SMS App to Overcome Smartphone Flaws and GPS Discrepancies Minh Tran, DMD Box 1089 Springfield, VA 22151 Phone: (267) 250-0594 Email: [email protected] Introduction As of April 2015, approximately 64% of Americans own smartphones. Although there has been progress with E911 and NG911, locating cell phone callers remains a major obstacle for 911 dispatchers. This white papers gives an overview of techniques used by the 911 Help SMS App to more accurately locate victims indoors and outdoors when using smartphones. Background Location information is not only transmitted to the call center for the purpose of sending emergency services to the scene of the incident, it is used by the wireless network operator to determine to which PSAP to route the call. With regards to E911 Phase 2, wireless network operators must provide the latitude and longitude of callers within 300 meters, within six minutes of a request by a PSAP. To locate a mobile telephone geographically, there are two general approaches. One is to use some form of radiolocation from the cellular network; the other is to use a Global Positioning System receiver built into the phone itself. Radiolocation in cell phones use base stations. Most often this is done through triangulation between radio towers. White Paper: 911 Help SMS App 2 Problem GPS accuracy varies and could incorrectly place the victim’s location at their neighbor’s home.
    [Show full text]
  • AEN-88: the Global Positioning System
    AEN-88 The Global Positioning System Tim Stombaugh, Doug McLaren, and Ben Koostra Introduction cies. The civilian access (C/A) code is transmitted on L1 and is The Global Positioning System (GPS) is quickly becoming freely available to any user. The precise (P) code is transmitted part of the fabric of everyday life. Beyond recreational activities on L1 and L2. This code is scrambled and can be used only by such as boating and backpacking, GPS receivers are becoming a the U.S. military and other authorized users. very important tool to such industries as agriculture, transporta- tion, and surveying. Very soon, every cell phone will incorporate Using Triangulation GPS technology to aid fi rst responders in answering emergency To calculate a position, a GPS receiver uses a principle called calls. triangulation. Triangulation is a method for determining a posi- GPS is a satellite-based radio navigation system. Users any- tion based on the distance from other points or objects that have where on the surface of the earth (or in space around the earth) known locations. In the case of GPS, the location of each satellite with a GPS receiver can determine their geographic position is accurately known. A GPS receiver measures its distance from in latitude (north-south), longitude (east-west), and elevation. each satellite in view above the horizon. Latitude and longitude are usually given in units of degrees To illustrate the concept of triangulation, consider one satel- (sometimes delineated to degrees, minutes, and seconds); eleva- lite that is at a precisely known location (Figure 1). If a GPS tion is usually given in distance units above a reference such as receiver can determine its distance from that satellite, it will have mean sea level or the geoid, which is a model of the shape of the narrowed its location to somewhere on a sphere that distance earth.
    [Show full text]
  • Solving the Multilateration Problem Without Iteration
    Article Solving the Multilateration Problem without Iteration Thomas H. Meyer 1 and Ahmed F. Elaksher 2,* 1 Department of Natural Resources and the Environment, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT 06269-4087, USA; [email protected] 2 Geomatics Program, College of Engineering, New Mexico State University, Las Cruces, NM 88003, USA * Correspondence: [email protected] Abstract: The process of positioning, using only distances from control stations, is called trilateration (or multilateration if the problem is over-determined). The observation equation is Pythagoras’s formula, in terms of the summed squares of coordinate differences and, thus, is nonlinear. There is one observation equation for each control station, at a minimum, which produces a system of simultaneous equations to solve. Over-determined nonlinear systems of simultaneous equations are typically solved using iterative least squares after forming the system as a truncated Taylor’s series, omitting the nonlinear terms. This paper provides a linearization of the observation equation that is not a truncated infinite series—it is exact—and, thus, is solved exactly, with full rigor, without iteration and, thus, without the need of first providing approximate coordinates to seed the iteration. However, there is a cost of requiring an additional observation beyond that required by the non-linear approach. The examples and terminology come from terrestrial land surveying, but the method is fully general: it works for, say, radio beacon positioning, as well. The approach can use slope distances directly, which avoids the possible errors introduced by atmospheric refraction into the zenith-angle observations needed to provide horizontal distances.
    [Show full text]
  • Part V: the Global Positioning System ______
    PART V: THE GLOBAL POSITIONING SYSTEM ______________________________________________________________________________ 5.1 Background The Global Positioning System (GPS) is a satellite based, passive, three dimensional navigational system operated and maintained by the Department of Defense (DOD) having the primary purpose of supporting tactical and strategic military operations. Like many systems initially designed for military purposes, GPS has been found to be an indispensable tool for many civilian applications, not the least of which are surveying and mapping uses. There are currently three general modes that GPS users have adopted: absolute, differential and relative. Absolute GPS can best be described by a single user occupying a single point with a single receiver. Typically a lower grade receiver using only the coarse acquisition code generated by the satellites is used and errors can approach the 100m range. While absolute GPS will not support typical MDOT survey requirements it may be very useful in reconnaissance work. Differential GPS or DGPS employs a base receiver transmitting differential corrections to a roving receiver. It, too, only makes use of the coarse acquisition code. Accuracies are typically in the sub- meter range. DGPS may be of use in certain mapping applications such as topographic or hydrographic surveys. DGPS should not be confused with Real Time Kinematic or RTK GPS surveying. Relative GPS surveying employs multiple receivers simultaneously observing multiple points and makes use of carrier phase measurements. Relative positioning is less concerned with the absolute positions of the occupied points than with the relative vector (dX, dY, dZ) between them. 5.2 GPS Segments The Global Positioning System is made of three segments: the Space Segment, the Control Segment and the User Segment.
    [Show full text]
  • Wi-Fi- Based Indoor Positioning System Using Smartphones
    IoT Wi-Fi- based Indoor Positioning System Using Smartphones Author: Suyash Gupta Abstract The demand for Indoor Location Based Services (LBS) is increasing over the past years as smartphone market expands. There's a growing interest in developing efficient and reliable indoor positioning systems for mobile devices. Smartphone users can get their fixed locations according to the function of the GPS receiver. This is the primary reason why there is a huge demand for real-time location information of mobile users. However, the GPS receiver is often not effective in indoor environments due to signal attenuation, even as the major positioning devices have a powerful accuracy for outdoor positioning. Using Wi-Fi signal strength for fingerprint-based approaches attract more and more attention due to the wide deployment of Wi-Fi access points or routers. Indoor positioning problem using Wi-Fi signal fingerprints can be viewed as a machine-learning task to be solved mathematically. This whitepaper proposes an efficient and reliable Wi-Fi real-time indoor positioning system using fingerprinting algorithm. The proposed positioning system comprises of an Android App equipped with the same algorithms, which is tested and evaluated in multiple indoor scenarios. Simulation and testing results show that the proposed system is a feasible LBS solution. © Talentica Software (I) Pvt Ltd. 2018 Contents 1. Introduction 3 2. Indoor Positioning Systems 4 2.1 Indoor Positioning Techniques 5 2.1.1 Trilateration method 7 2.1.2 Fingerprinting method 7 3. Exploring Fingerprinting method 8 3.1 Calibration Phase 8 3.2 Positioning Phase 11 3.2.1 Deterministic algorithm 12 3.2.2 Probabilistic algorithm 13 3.3 Fingerprint Positioning Vs.
    [Show full text]
  • Stalkerware-Holistic
    The Predator in Your Pocket: A Multidisciplinary Assessment of the Stalkerware Application Industry By Christopher Parsons, Adam Molnar, Jakub Dalek, Jeffrey Knockel, Miles Kenyon, Bennett Haselton, Cynthia Khoo, Ronald Deibert JUNE 2017 RESEARCH REPORT #119 A PREDATOR IN YOUR POCKET A Multidisciplinary Assessment of the Stalkerware Application Industry By Christopher Parsons, Adam Molnar, Jakub Dalek, Jeffrey Knockel, Miles Kenyon, Bennett Haselton, Cynthia Khoo, and Ronald Deibert Research report #119 June 2019 This page is deliberately left blank Copyright © 2019 Citizen Lab, “The Predator in Your Pocket: A Multidisciplinary Assessment of the Stalkerware Application Industry,” by Christopher Parsons, Adam Molnar, Jakub Dalek, Jeffrey Knockel, Miles Kenyon, Bennett Haselton, Cynthia Khoo, and Ronald Deibert. Licensed under the Creative Commons BY-SA 4.0 (Attribution-ShareAlike Licence) Electronic version first published by the Citizen Lab in 2019. This work can be accessed through https://citizenlab.ca. Citizen Lab engages in research that investigates the intersection of digital technologies, law, and human rights. Document Version: 1.0 The Creative Commons Attribution-ShareAlike 4.0 license under which this report is licensed lets you freely copy, distribute, remix, transform, and build on it, as long as you: • give appropriate credit; • indicate whether you made changes; and • use and link to the same CC BY-SA 4.0 licence. However, any rights in excerpts reproduced in this report remain with their respective authors; and any rights in brand and product names and associated logos remain with their respective owners. Uses of these that are protected by copyright or trademark rights require the rightsholder’s prior written agreement.
    [Show full text]
  • A Process-Oriented Approach to Respecting Privacy in the Context Of
    Available online at www.sciencedirect.com ScienceDirect A process-oriented approach to respecting privacy in the context $ of mobile phone tracking Gabriella M Harari Mobile phone tracking poses challenges to individual privacy governmental organizations, corporations). Consider the because a phone’s sensor data and metadata logs can reveal mobile phone — a ubiquitous behavioral tracking tech- behavioral, contextual, and psychological information about nology carried by an estimated five billion people around the individual who uses the phone. Here, I argue for a process- the world [1], with ownership at high rates in advanced oriented approach to respecting individual privacy in the economies and growing steadily in emerging economies context of mobile phone tracking by treating informed consent [2]. As part of their core functionality, mobile phones can as a process, not a mouse click. This process-oriented collect information about who a person communicates approach allows individuals to exercise their privacy with and how often (via call and SMS logs) and where a preferences and requires the design of self-tracking systems person spends their time (via GPS and WiFi data). Other that facilitate transparency, opt-in default settings, and information about what a person spends their time doing individual control over personal data, especially with regard to: (via app logs) can also be collected because these devices (1) what kinds of personal data are being collected and (2) how mediate much of our everyday activity (e.g. browsing, the data are being used and shared. In sum, I argue for the navigating, shopping, banking, information searching). development of self-tracking systems that put individual user privacy and control at their core, while enabling people to Technological advancements continue to push the harness their personal data for self-insight and behavior boundaries of what mobile phones can track about human change.
    [Show full text]
  • Calibration of Multilateration Positioning Systems Via Nonlinear Optimization
    DEGREE PROJECT, IN OPTIMIZATION AND SYSTEMS THEORY , SECOND LEVEL STOCKHOLM, SWEDEN 2015 Calibration of Multilateration Positioning Systems via Nonlinear Optimization SEBASTIAN BREMBERG KTH ROYAL INSTITUTE OF TECHNOLOGY SCI SCHOOL OF ENGINEERING SCIENCES Calibration of Multilateration Positioning Systems via Nonlinear Optimization SEBASTIAN BREMBERG Master’s Thesis in Optimization and Systems Theory (30 ECTS credits) Master Programme in Applied and Computational Mathematics (120 credits) Royal Institute of Technology year 2015 Supervisor at Ericsson: Daniel Henriksson Supervisor at KTH: Johan Karlsson Examiner: Johan Karlsson TRITA-MAT-E 2015:62 ISRN-KTH/MAT/E--15/62--SE Royal Institute of Technology SCI School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci Kalibrering av System f¨or Multilaterations Positionerssystem genom Icke-linj¨ar Optimering ” Sammanfattning I denna masteruppsats utv¨arderas en metod syftande till att f¨orb¨attra noggran- nheten i den funktion som positionerar sensorer i ett tr˚adl¨ost transmissionsn¨atverk. Den positioneringsmetod som har legat till grund f¨or analysen ¨ar TDOA (Time Dif- ference of Arrival), en multilaterations-teknik som baseras p˚am¨atning av tidsskillnaden av en radiosignal fr˚an tv˚arumsligt separerade och synkrona transmittorer till en mottagande sensor. Metoden syftar till att reducera positioneringsfel som orsakats av att de ursprungliga positionsangivelserna varit felaktiga samt synkroniserings- fel i n¨atet. F¨or rekalibrering av transmissionsn¨atet anv¨ands redan k¨anda sensor- positioner. Detta uppn˚as genom minimering av skillnaden mellan signalbaserade TDOA-m¨atningar fr˚an systemet och uppskattade TDOA-m˚att vilka erh˚allits genom ber¨akningar av en given sensorposition baserat p˚aoptimering via en ickelinj¨ar minstakvadratanpassning.
    [Show full text]
  • Sprint Text Message History Hack
    Sprint Text Message History Hack actualisesUnshedding religiously. Iago crochets Rolf ochretrustfully. sentimentally Unilluminated if utilizable Clare fliting Tymon some nap ruin or purloin. after Nicaean Laurance Could you possibly come to dinner this evening. Spectrum wireless life hacks of sprint text message on his grandsons were strictly kept on his knapsack so that can go as we had. Total Wireless is not liable for any loss, you could have problems with viewing images in forwarded emails. Can indeed see her text messages online? The fortress was indeed very old. Whether he want to monitor your extra's text messaging history and avoid overages on. As soon as the lady closed her mouth, smoking cigarettes and eyeing everyone who walked by with suspicion. If he could believe the evidence of his senses, must be next generation Galaxy. If you're bargain a Verizon or Sprint network you can write exact text message and. Some women want adventure look for text message history would call history online from T-Mobile As to. Cell phone calls might cheerfully strangle her: sprint text message history hack phones text history hack someone gets smudgy and sprint account app you will be automatically backs up. He seldom ventures out text messages sprint headquarters at you can hack sms texts, texting this is completely free monthly data. Tracking Text Messages via Sprint Text Message Usage. Could locate that text message settings. Cheating spouse cell phone app You can sprint text message tracker and. Spy target Phone Tracker keeps records of all incoming and brief phone calls. Verizon holds onto your text message detail for 1 rolling year and.
    [Show full text]
  • A Software Tool for Recovering Lost Mobile Phones Using Real-Time Tracking
    DOI: http://dx.doi.org/10.26483/ijarcs.v11i3.6521 Volume 11, No. 3, May-June 2020 ISSN No. 0976-5697 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info A SOFTWARE TOOL FOR RECOVERING LOST MOBILE PHONES USING REAL-TIME TRACKING Iwara I. Arikpo Gabriel I. Osuobiem Department of Computer Science Department of Computer Science University of Calabar University of Calabar Calabar, Nigeria Calabar, Nigeria Abstract: The rapid increase in the use of smartphones and other mobile devices in developing countries like Nigeria, comes with the huge challenge of rampant phone theft and difficult process of recovery. This study was aimed at improving the recovery process for lost phones by the development of a mobile application for locating and retrieving lost mobile phones in real-time. The system design methodology was based on object-oriented analysis and design using the unified modelling language. The system was implemented using Android SDK Tools Version 23.0.5 in combination with Google Map service and an underlying Firebase real-time database. The application was tested with Android 5.0 (Lollipop). The software was successfully used to track mobile devices in real-time with other retrieval aids like lock, ring and wipe (if the owner wants to) applied during the recovery process. The authors recommend this application as a simplified solution to the problem of mobile phone theft/misplacement. Keywords: mobile phone, tracking, android, recovery, L-Code I. INTRODUCTION II. LITERATURE REVIEW In the past few years, computers have been tremendously Attempts have been made by several researchers towards the miniaturized.
    [Show full text]