Secretory Sphingomyelinase in Health and Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mrna Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases Upon Antidepressant Treatment
International Journal of Molecular Sciences Article mRNA Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases upon Antidepressant Treatment Cosima Rhein 1,2,* , Iulia Zoicas 1 , Lena M. Marx 1, Stefanie Zeitler 1, Tobias Hepp 2,3, Claudia von Zimmermann 1, Christiane Mühle 1 , Tanja Richter-Schmidinger 1, Bernd Lenz 1,4 , Yesim Erim 2, Martin Reichel 1,† , Erich Gulbins 5 and Johannes Kornhuber 1 1 Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; [email protected] (I.Z.); [email protected] (L.M.M.); [email protected] (S.Z.); [email protected] (C.v.Z.); [email protected] (C.M.); [email protected] (T.R.-S.); [email protected] (B.L.); [email protected] (M.R.); [email protected] (J.K.) 2 Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; [email protected] (T.H.); [email protected] (Y.E.) 3 Institute of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany 4 Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, D-68159 Mannheim, Germany 5 Department of Molecular Biology, University Hospital, University of Duisburg-Essen, D-45147 Essen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-9131-85-44542 Citation: Rhein, C.; Zoicas, I.; Marx, † Current address: Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin L.M.; Zeitler, S.; Hepp, T.; von Berlin, Berlin, Germany. -
K+ Channel Modulators Product ID Product Name Description D3209 Diclofenac Sodium Salt NSAID; COX-1/2 Inhibitor, Potential K+ Channel Modulator
K+ Channel Modulators Product ID Product Name Description D3209 Diclofenac Sodium Salt NSAID; COX-1/2 inhibitor, potential K+ channel modulator. G4597 18β-Glycyrrhetinic Acid Triterpene glycoside found in Glycyrrhiza; 15-HPGDH inhibitor, hERG and KCNA3/Kv1.3 K+ channel blocker. A4440 Allicin Organosulfur found in garlic, binds DNA; inwardly rectifying K+ channel activator, L-type Ca2+ channel blocker. P6852 Propafenone Hydrochloride β-adrenergic antagonist, Kv1.4 and K2P2 K+ channel blocker. P2817 Phentolamine Hydrochloride ATP-sensitive K+ channel activator, α-adrenergic antagonist. P2818 Phentolamine Methanesulfonate ATP-sensitive K+ channel activator, α-adrenergic antagonist. T7056 Troglitazone Thiazolidinedione; PPARγ agonist, ATP-sensitive K+ channel blocker. G3556 Ginsenoside Rg3 Triterpene saponin found in species of Panax; γ2 GABA-A agonist, Kv7.1 K+ channel activator, α10 nAChR antagonist. P6958 Protopanaxatriol Triterpene sapogenin found in species of Panax; GABA-A/C antagonist, slow-activating delayed rectifier K+ channel blocker. V3355 Vindoline Semi-synthetic vinca alkaloid found in Catharanthus; Kv2.1 K+ channel blocker and H+/K+ ATPase inhibitor. A5037 Amiodarone Hydrochloride Voltage-gated Na+, Ca2+, K+ channel blocker, α/β-adrenergic antagonist, FIASMA. B8262 Bupivacaine Hydrochloride Monohydrate Amino amide; voltage-gated Na+, BK/SK, Kv1, Kv3, TASK-2 K+ channel inhibitor. C0270 Carbamazepine GABA potentiator, voltage-gated Na+ and ATP-sensitive K+ channel blocker. C9711 Cyclovirobuxine D Found in Buxus; hERG K+ channel inhibitor. D5649 Domperidone D2/3 antagonist, hERG K+ channel blocker. G4535 Glimepiride Sulfonylurea; ATP-sensitive K+ channel blocker. G4634 Glipizide Sulfonylurea; ATP-sensitive K+ channel blocker. I5034 Imiquimod Imidazoquinoline nucleoside analog; TLR-7/8 agonist, KCNA1/Kv1.1 and KCNA2/Kv1.2 K+ channel partial agonist, TREK-1/ K2P2 and TRAAK/K2P4 K+ channel blocker. -
Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1. -
Rediscovery of Fexinidazole
New Drugs against Trypanosomatid Parasites: Rediscovery of Fexinidazole INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Marcel Kaiser aus Obermumpf, Aargau Basel, 2014 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz“ (CC BY-NC-ND 3.0 CH) lizenziert. Die vollständige Lizenz kann unter creativecommons.org/licenses/by-nc-nd/3.0/ch/ eingesehen werden. 1 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel auf Antrag von Prof. Reto Brun, Prof. Simon Croft Basel, den 10. Dezember 2013 Prof. Dr. Jörg Schibler, Dekan 2 3 Table of Contents Acknowledgement .............................................................................................. 5 Summary ............................................................................................................ 6 Zusammenfassung .............................................................................................. 8 CHAPTER 1: General introduction ................................................................. 10 CHAPTER 2: Fexinidazole - A New Oral Nitroimidazole Drug Candidate Entering Clinical Development for the Treatment of Sleeping Sickness ........ 26 CHAPTER 3: Anti-trypanosomal activity of Fexinidazole – A New Oral Nitroimidazole Drug Candidate for the Treatment -
Structural Evidence for Adaptive Ligand Binding of Glycolipid Transfer Protein
doi:10.1016/j.jmb.2005.10.031 J. Mol. Biol. (2006) 355, 224–236 Structural Evidence for Adaptive Ligand Binding of Glycolipid Transfer Protein Tomi T. Airenne†, Heidi Kidron†, Yvonne Nymalm, Matts Nylund Gun West, Peter Mattjus and Tiina A. Salminen* Department of Biochemistry Glycolipids participate in many important cellular processes and they are and Pharmacy, A˚ bo Akademi bound and transferred with high specificity by glycolipid transfer protein University, Tykisto¨katu 6A (GLTP). We have solved three different X-ray structures of bovine GLTP at FIN-20520 Turku, Finland 1.4 A˚ , 1.6 A˚ and 1.8 A˚ resolution, all with a bound fatty acid or glycolipid. The 1.4 A˚ structure resembles the recently characterized apo-form of the human GLTP but the other two structures represent an intermediate conformation of the apo-GLTPs and the human lactosylceramide-bound GLTP structure. These novel structures give insight into the mechanism of lipid binding and how GLTP may conformationally adapt to different lipids. Furthermore, based on the structural comparison of the GLTP structures and the three-dimensional models of the related Podospora anserina HET-C2 and Arabidopsis thaliana accelerated cell death protein, ACD11, we give structural explanations for their specific lipid binding properties. q 2005 Elsevier Ltd. All rights reserved. Keywords: crystal structure; homology modeling; conformational change; *Corresponding author cavity; fluorescence Introduction to the diverse roles of glycolipids in the cell, GLTP could potentially function as a modulator -
Avicin G Is a Potent Sphingomyelinase Inhibitor and Blocks Oncogenic K- and H-Ras Signaling Christian M
www.nature.com/scientificreports OPEN Avicin G is a potent sphingomyelinase inhibitor and blocks oncogenic K- and H-Ras signaling Christian M. Garrido1, Karen M. Henkels1, Kristen M. Rehl1, Hong Liang2, Yong Zhou2, Jordan U. Gutterman3 & Kwang-jin Cho1 ✉ K-Ras must interact primarily with the plasma membrane (PM) for its biological activity. Therefore, disrupting K-Ras PM interaction is a tractable approach to block oncogenic K-Ras activity. Here, we found that avicin G, a family of natural plant-derived triterpenoid saponins from Acacia victoriae, mislocalizes K-Ras from the PM and disrupts PM spatial organization of oncogenic K-Ras and H-Ras by depleting phosphatidylserine (PtdSer) and cholesterol contents, respectively, at the inner PM leafet. Avicin G also inhibits oncogenic K- and H-Ras signal output and the growth of K-Ras-addicted pancreatic and non-small cell lung cancer cells. We further identifed that avicin G perturbs lysosomal activity, and disrupts cellular localization and activity of neutral and acid sphingomyelinases (SMases), resulting in elevated cellular sphingomyelin (SM) levels and altered SM distribution. Moreover, we show that neutral SMase inhibitors disrupt the PM localization of K-Ras and PtdSer and oncogenic K-Ras signaling. In sum, this study identifes avicin G as a new potent anti-Ras inhibitor, and suggests that neutral SMase can be a tractable target for developing anti-K-Ras therapeutics. Ras proteins are small GTPases that primarily localize to the inner-leafet of the plasma membrane (PM), switch- ing between an active GTP-bound state and inactive GDP-bound state1. In response to epidermal growth factor stimulation or receptor tyrosine kinase activation, guanine nucleotide exchange factors activate Ras by inducing the release of the guanine nucleotides and binding of GTP1. -
Sphingolipids and Cell Signaling: Relationship Between Health and Disease in the Central Nervous System
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2021 doi:10.20944/preprints202104.0161.v1 Review Sphingolipids and cell signaling: Relationship between health and disease in the central nervous system Andrés Felipe Leal1, Diego A. Suarez1,2, Olga Yaneth Echeverri-Peña1, Sonia Luz Albarracín3, Carlos Javier Alméciga-Díaz1*, Angela Johana Espejo-Mojica1* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia; [email protected] (A.F.L.), [email protected] (D.A.S.), [email protected] (O.Y.E.P.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia; [email protected] (D.A.S.) 3 Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; [email protected] (S.L.A.) * Correspondence: [email protected]; Tel.: +57-1-3208320 (Ext 4140) (C.J.A-D.). [email protected]; Tel.: +57-1-3208320 (Ext 4099) (A.J.E.M.) Abstract Sphingolipids are lipids derived from an 18-carbons unsaturated amino alcohol, the sphingosine. Ceramide, sphingomyelins, sphingosine-1-phosphates, gangliosides and globosides, are part of this group of lipids that participate in important cellular roles such as structural part of plasmatic and organelle membranes maintaining their function and integrity, cell signaling response, cell growth, cell cycle, cell death, inflammation, cell migration and differentiation, autophagy, angiogenesis, immune system. The metabolism of these lipids involves a broad and complex network of reactions that convert one lipid into others through different specialized enzymes. Impairment of sphingolipids metabolism has been associated with several disorders, from several lysosomal storage diseases, known as sphingolipidoses, to polygenic diseases such as diabetes and Parkinson and Alzheimer diseases. -
Ceramide and Related Molecules in Viral Infections
International Journal of Molecular Sciences Review Ceramide and Related Molecules in Viral Infections Nadine Beckmann * and Katrin Anne Becker Department of Molecular Biology, University of Duisburg-Essen, 45141 Essen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-201-723-1981 Abstract: Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit. Keywords: ceramide; acid sphingomyelinase; sphingolipids; lipid-rafts; α-galactosylceramide; viral Citation: Beckmann, N.; Becker, K.A. -
No Involvement of Acid Sphingomyelinase in the Secretion of IL-6 From
1 No Involvement of Acid Sphingomyelinase in the Secretion of IL-6 from Alveolar Macrophages in Rat Tomoo Ito, Chikako Oyama, Hirokazu Arai, Tsutomu Takahashi Department of Pediatrics, Akita University Graduate School of Medicine, Akita-shi, Akita, 010-8543, Japan Correspondence: Tsutomu Takahashi, M.D. Department of Pediatrics, Akita University Graduate School of Medicine, 1-1-1 hondo, Akita 010-8543, Japan Tel: 018-884-6159 FAX: 018-836-2620 E-mail: [email protected] 1 2 Key words: chronic lung disease of the newborn, alveolar macrophage, acid sphingomyelinase, Running title: Acid Sphingomyelinase in CLD of the Newborn 2 3 Abstract Chronic lung disease (CLD) of the newborn is a major problem in neonatology. Activation of alveolar macrophages has been implicated in the pathogenesis of CLD. Acid sphingomyelinase (ASM) responds to diverse cellular stressors, including lipopolysaccharide (LPS) stimulation. Recently, functional inhibitors of acid sphingomyelinase (FIASMAs) have been described as a large group of compounds that inhibit ASM. Here, we used maternal intra-peritoneal LPS injection to model CLD in the infant rat lung. Using this model, we studied ASM activity in the infant rat lung and the effects of FIASMAs on release of interleukin-6 (IL-6) from LPS-stimulated alveolar macrophages. Maternal exposure to LPS non-significantly increased ASM activities in the infant rat lung. FIASMAs significantly decreased ASM activity of LPS-stimulated alveolar macrophages. In addition, some FIASMAs suppressed the release of IL-6 from LPS-stimulated alveolar macrophages during the early response phase. However, FIASMAs did not suppress the release of IL-6 from LPS-stimulated alveolar macrophages. -
Regulation of Microvesicle Particle Release in Keratinocytes
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2018 Regulation of Microvesicle Particle Release in Keratinocytes Azeezat Afolake Awoyemi Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Pharmacology, Toxicology and Environmental Health Commons Repository Citation Awoyemi, Azeezat Afolake, "Regulation of Microvesicle Particle Release in Keratinocytes" (2018). Browse all Theses and Dissertations. 1999. https://corescholar.libraries.wright.edu/etd_all/1999 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. REGULATION OF MICROVESICLE PARTICLE RELEASE IN KERATINOCYTES A thesis submitted in partial fulfilment of the Requirements for the degree of Master of Science By AZEEZAT AFOLAKE AWOYEMI B.S., University of Lagos, 2015 2018 Wright State University i All rights reserved. This work may not be reproduced in whole or in part by photocopy or other means, without permission of the author. COPYRIGHT BY AZEEZAT AFOLAKE AWOYEMI 2018 ii WRIGHT STATE UNIVERSITY GRADUATE SCHOOL JULY 23, 2018 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Azeezat Afolake Awoyemi ENTITLED Regulation of Microvesicle Particle release in keratinocytes. BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. Jeffrey B. Travers, M.D., Ph.D. Thesis Director Jeffrey B. Travers, M.D., Ph.D. Chair, Department of Pharmacology and Toxicology Committee on Final Examination Jeffrey B Travers, M.D., Ph.D. -
Role of Acid Sphingomyelinase and IL-6 As Mediators Of
Thorax Online First, published on July 27, 2016 as 10.1136/thoraxjnl-2015-208067 Respiratory research ORIGINAL ARTICLE Thorax: first published as 10.1136/thoraxjnl-2015-208067 on 27 July 2016. Downloaded from Role of acid sphingomyelinase and IL-6 as mediators of endotoxin-induced pulmonary vascular dysfunction Rachele Pandolfi,1,2,3 Bianca Barreira,1,2,3 Enrique Moreno,1,2,3 Victor Lara-Acedo,2 Daniel Morales-Cano,1,2,3 Andrea Martínez-Ramas,1,2,3 Beatriz de Olaiz Navarro,4 Raquel Herrero,1,5 José Ángel Lorente,1,5,6 Ángel Cogolludo,1,2,3 Francisco Pérez-Vizcaíno,1,2,3 Laura Moreno1,2,3 ▸ Additional material is ABSTRACT published online only. To view Background Pulmonary hypertension (PH) is frequently Key messages please visit the journal online (http://dx.doi.org/10.1136/ observed in patients with acute respiratory distress thoraxjnl-2015-208067). syndrome (ARDS) and it is associated with an increased risk of mortality. Both acid sphingomyelinase (aSMase) 1Ciber Enfermedades What is the key question? Respiratorias (CIBERES), activity and interleukin 6 (IL-6) levels are increased in ▸ Pulmonary hypertension and right ventricular Madrid, Spain patients with sepsis and correlate with worst outcomes, dysfunction are prominent prognostic features 2 Department of Pharmacology, but their role in pulmonary vascular dysfunction of acute respiratory distress syndrome (ARDS) School of Medicine, pathogenesis has not yet been elucidated. Therefore, the which, given the unclear pathophysiology and Universidad Complutense de Madrid, Madrid, Spain aim of this study was to determine the potential the lack of approved pharmacological therapies, 3Gregorio Marañón Biomedical contribution of aSMase and IL-6 in the pulmonary demand the identification of new therapeutic Research Institution (IiSGM), vascular dysfunction induced by lipopolysaccharide (LPS). -
Abcam Enzymatic Activity Assay Kits
Less haste, more speed 用更快的速度,從容的完成實驗 我們擁有品項齊全的抗體、相關免疫實驗試劑,以及數百種偵測酵素活性的試劑 Signal transduction Metabolism 套組,協助研究者進行訊號傳遞 ( )、代謝 ( )、神經 Neuroscience Gene regulation Epigenetics 科學 ( )、基因調控 ( )、表觀遺傳 ( )、 Cancer Cardiovascular Oxidative stress 癌症 ( )、心血管 ( )、氧化壓力 ( ) 等相關研 瀏覽相關產品目錄 Cell culture Tissue lysate 究。 涵蓋樣本來源諸如:細胞培養 ( )、組織裂解物 ( ) 或體 Body fluid 液 ( ) 等 。 我們總是追求卓越,完整呈現給您最佳的抗體與分析試劑盒, 以協助您快速取得所需的實驗結果。 Abcam 各項特惠活動進行中,詳情請洽 台灣代理 ― 伯森生技。 酵素測定成功秘訣 Activity assay kits 活性測定試劑套組 ( ) Target/ Protein Detection method Cat. no. Target/ Protein Detection method Cat. no. Acetylcholinesterase Colorimetric ab138871 Aldo-Keto Reductase Colorimetric ab211112 Acetylcholinesterase Fluorescent ab138872 Aldolase Colorimetric ab196994 Acetylcholinesterase Colorimetric/ ab138873 Alkaline Phosphatase Colorimetric ab83369 Fluorometric Alkaline Phosphatase Fluorescent ab83371 Acetyltransferase Fluorescent ab204536 Alkaline Phosphatase Fluorescent ab138887 Acid Phosphatase Colorimetric ab83367 Alkaline Phosphatase Luminescent ab233466 Acid Phosphatase Fluorescent ab83370 Alkaline Sphingomyelinase Colorimetric ab241039 Acid Sphingomyelinase Colorimetric ab252889 Alpha Galactosidase Fluorescent ab239716 Acidic Sphingomyelinase Fluorescent ab190554 Alpha-Glucosidase Colorimetric ab174093 Aconitase Colorimetric ab83459 Alpha-Ketoglutarate Dehydrogenase Colorimetric ab185440 Aconitase Colorimetric ab109712 Amylase Colorimetric ab102523 Adenosine Deaminase Fluorescent ab204695 Arginase Colorimetric ab180877 Adenosine Deaminase Colorimetric ab211093 Asparaginase Colorimetric/