Novel Dithiolethione-Modified Nonsteroidal Anti-Inflammatory Drugs in Human Hepatoma Hepg2 and Colon LS180 Cells Sara E

Total Page:16

File Type:pdf, Size:1020Kb

Novel Dithiolethione-Modified Nonsteroidal Anti-Inflammatory Drugs in Human Hepatoma Hepg2 and Colon LS180 Cells Sara E Cancer Therapy: Preclinical Novel Dithiolethione-Modified Nonsteroidal Anti-Inflammatory Drugs in Human Hepatoma HepG2 and Colon LS180 Cells Sara E. Bass,1Pawel Sienkiewicz,2 ChristopherJ. MacDonald,2 RobertY.S. Cheng,2 Anna Sparatore,3 Piero Del Soldato,4 David D. Roberts,5 Terry W. Moody,6 David A. Wink,7 and Grace ChaoYeh2 Abstract Purpose: Nonsteroidal anti-inflammatory drugs (NSAID) are promising chemopreventive agents against colon and other cancers. However, the molecular basis mediated by NSAIDs for chemo- prevention has not been fully elucidated. Environmental carcinogens induce DNA mutation and cellular transformation; therefore, we examined the effect of NSAIDs on carcinogenesis mediated by the aryl hydrocarbon receptor signaling pathway. In this study, we investigated the activities of a new class of NSAIDs containingdithiolethione moieties (S-NSAID) on both arms of carcinogenesis. Experimental Design: We investigated the effects of the S-NSAIDs, S-diclofenac and S-sulin- dac, on carcinogen activation and detoxification mechanisms in human hepatoma HepG2 and human colonic adenocarcinoma LS180 cells. Results: We found that S-diclofenac and S-sulindac inhibited the activity and expression of the carcinogen activating enzymes, cytochromes P-450 (CYP) CYP1A1, CYP1B1, and CYP1A2. Inhi- bition was mediated by transcriptional regulation of the aryl hydrocarbon receptor (AhR) path- way. The S-NSAIDs down-regulated carcinogen-induced expression of CYP1A1 heterogeneous nuclear RNA, a measure of transcription rate. Both compounds blocked carcinogen-activated AhR from bindingto the xenobiotic responsive element as shown by chromatin immunoprecipi- tation. S-diclofenac and S-sulindac inhibited carcinogen-induced CYP enzyme activity through direct inhibition as well as through decreased transcriptional activation of the AhR. S-sulindac induced expression of several carcinogen detoxification enzymes of the glutathione cycle includ- ingglutathione S-transferase A2, glutamate cysteine ligase catalytic subunit, glutamate cysteine ligase modifier subunit, and glutathione reductase. Conclusions: These results indicate that S-diclofenac and S-sulindac may serve as effective chemoprevention agents by favorably balancing the equation of carcinogen activation and detoxification mechanisms. The use of nonsteroidal anti-inflammatory drugs (NSAID) has tive NSAIDs, such as aspirin, diclofenac, ibuprofen, and been associated with a reduced incidence of colorectal, breast, naproxen, is frequently associated with gastrointestinal toxicity esophageal, stomach, prostate, bladder, ovary, and lung cancers due to the chronic suppression of cyclooxygenase-1and (1). However, chronic treatment with conventional nonselec- subsequent inhibition of mucin secretion in the gut (2). The new generation of NSAIDs that target cyclooxygenase-2, such as rofecoxib and celecoxib, although effective as chemopreventive Authors’Affiliations: 1Basic Research Program, ScienceApplications International 2 agents, have been recently shown to cause an increased Corporation-Frederick, Inc., and Laboratory of Metabolism, National Cancer incidence of stroke and myocardial infarctions (3). Institute-Frederick, Frederick, Maryland; 3Istituto di Chimica Farmaceutica, University of Milan and 4Sulfidris, Milan, Italy; 5Laboratory of Pathology, 6Office of A new series of novel redox-modified NSAIDs has been the Director, and 7Radiation Biology Branch, Center for Cancer Research, National synthesized that may reduce these side effects. These compounds Cancer Institute, NIH, Bethesda, Maryland are conventional NSAIDs linked to a gaseous transmitter. The Received 7/17/08; revised 11/13/08; accepted 12/2/08; published OnlineFirst most extensively studied of these compounds are the nitric 3/10/09. Grant support: This Research was supported (in part) by the Intramural Research oxide–releasing NSAIDs, which were first described in 1994 (4) Program of the NIH, National Cancer Institute, Center for Cancer Research and and have because been evaluated in several clinical trials in National Cancer Institute, NIH, under contract N01-CO-12400. which their gastric sparing properties have been well-established The costs of publication of this article were defrayed in part by the payment of page (5, 6). Additional studies have shown nitric oxide–NSAIDs to be advertisement charges. This article must therefore be hereby marked in accordance promising chemopreventive agents (7). Although nitric oxide with 18 U.S.C. Section 1734 solely to indicate this fact. Note:The contentof thispublicationdoes notnecessarily reflect the views orpolicies is the best characterized of the gaseous transmitters, carbon of the Department of Health and Human Services, nor does mention of trade names, monoxide and hydrogen sulfide (H2S) have also been recog- commercialproducts, ororganizations imply endorsement by the U.S. Government. nized for their ability to affect key physiologic functions (8). Requests for reprints: Grace C. Yeh, Building31, Room 3A11, 31 Center Drive, In particular, H2S has been shown to exhibit complex but poorly Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892- 2440. Phone: 301-451-8296; Fax: 301-496-0775; E-mail: [email protected]. understood roles in inflammation with evidence for proinflam- F 2009 American Association for Cancer Research. matory as well as anti-inflammatory activities. H2S has also been doi:10.1158/1078-0432.CCR-08-1870 reported to reduce NSAID-induced gastric mucosal injury Clin Cancer Res 2009;15(6) March 15, 2009 1964 www.aacrjournals.org Downloaded from clincancerres.aacrjournals.org on October 2, 2021. © 2009 American Association for Cancer Research. Modulation of Phase I and II Enzymes by S-NSAIDs There is additional evidence that S-NSAIDs may also show a Translational Relevance potential usefulness in cancer treatment. Parent compounds, diclofenac and sulindac, have been investigated for their Occupational and environmental exposure to polycyclic potential chemopreventive properties and have been found aromatic hydrocarbons (PAH) has been suggested to pro- particularly useful for prevention and treatment in in vitro and voke inflammatory disorders and cancer. The molecular in vivo models of colon cancer in addition to other cancer types pathway/mechanisms invoked by PAH-mediated inflam- (16, 17). Recent work on ACS 15 and 18 has also shown mation remain to be clarified. Our article contributed to the antiangiogenic activities of the compounds in models of tumor- identification of both the molecular pathway and regulation driven angiogenesis (14). Our laboratory has shown the ability of PAH metabolism in both human hepatoma cells, which is of sulindac as well as the dithiolethione 5-(p-methoxyphenyl)- the active site for carcinogenesis, and colon adenocarcino- 1,2-dithiole-3-thione (ADT)8, to regulate the aryl hydrocarbon ma cells, which is the first exposure site for environmental receptor (AhR) pathway and phase I enzymes (18). The AhR is xenobiotics. the key transcriptional controller of carcinogen metabolizing The dithiolethione-NSAIDs in our study are newly syn- pathways involving the genes that encode phase I and phase II thesized drugs, which conjugate the dithiolethione moiety enzymes. Inhibiting the activation of procarcinogens by phase I with NSAIDs. We found the novel compounds not only enzymes through suppression of the AhR signaling pathway inhibited the PAH activation of phase 1enzymes induced has been suggested as an important mechanism for cancer by PAHs but also increased the detoxification of phase 2 prevention (19, 20). Based on the above data, we hypothesized enzymes.We are the first to identify the dual function prop- that the novel compounds, ACS 15 and ACS 18, could have erty of S-NSAIDs, which modulated carcinogen toxicity potential usefulness as chemoprotective compounds through mediated by the aryl hydrocarbon receptor as a molecular regulation of the AhR pathway and associated enzymes. We mechanism/pathway toward chemoprotection against en- show that both ACS 15 and 18 blocked carcinogen-induced vironmental xenobiotics. phase I enzyme activity in vitro, and that this activity was regulated through inhibition of AhR-mediated transcription. In addition, ACS 18 increased the expression of several phase II without affecting the functional suppression of prostaglandins genes. This dual action of reduced carcinogen activation (9). Additionally, an H2S-releasing derivative of mesalamine simultaneous with increased carcinogen detoxification supports reduced visceral sensitivity and pain perception in a rat model of the view that the S-NSAID model may be a valuable tool for irritable bowel syndrome (10). Finally, H2S may also play a role chemoprotection against environmental carcinogens. in cardio protection (11). These observations, as well as the fact that many NSAIDs reduce endogenous H2S formation (9), which may contribute to their tendency to cause gastric damage, led to the hypothesis that dithiolethione-modified NSAIDs Materials and Methods (S-NSAID) may serve as valuable chemoprotective drugs. The newly synthesized, novel compounds, S-diclofenac Materials. HepG2 human hepatocellular carcinoma and LS180 and S-sulindac, are composed of an H2S-releasing dithiole- human colorectal adenocarcinoma cell lines were from American Type thione moiety, ADT-OH covalently conjugated with the parent Culture Collection. RPMI 1640, Eagle’s MEM with Earle’s balanced salt NSAID by an ester linkage (Fig. 1). The chemical synthesis of solution,
Recommended publications
  • Table S1: Sensitivity, Specificity, PPV, NPV, and F1 Score of NLP Vs. ICD for Identification of Symptoms for (A) Biome Developm
    Table S1: Sensitivity, specificity, PPV, NPV, and F1 score of NLP vs. ICD for identification of symptoms for (A) BioMe development cohort; (B) BioMe validation cohort; (C) MIMIC-III; (D) 1 year of notes from patients in BioMe calculated using manual chart review. A) Fatigue Nausea and/or vomiting Anxiety Depression NLP (95% ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P CI) 0.99 (0.93- 0.59 (0.43- <0.00 0.25 (0.12- <0.00 <0.00 0.54 (0.33- Sensitivity 0.99 (0.9 – 1) 0.98 (0.88 -1) 0.3 (0.15-0.5) 0.85 (0.65-96) 0.02 1) 0.73) 1 0.42) 1 1 0.73) 0.57 (0.29- 0.9 (0.68- Specificity 0.89 (0.4-1) 0.75 (0.19-1) 0.68 0.97 (0.77-1) 0.03 0.98 (0.83-1) 0.22 0.81 (0.53-0.9) 0.96 (0.79-1) 0.06 0.82) 0.99) 0.99 (0.92- 0.86 (0.71- 0.94 (0.79- 0.79 (0.59- PPV 0.96 (0.82-1) 0.3 0.95 (0.66-1) 0.02 0.95 (0.66-1) 0.16 0.93 (0.68-1) 0.12 1) 0.95) 0.99) 0.92) 0.13 (0.03- <0.00 0.49 (0.33- <0.00 0.66 (0.48- NPV 0.89 (0.4-1) 0.007 0.94 (0.63-1) 0.34 (0.2-0.51) 0.97 (0.81-1) 0.86 (0.6-0.95) 0.04 0.35) 1 0.65) 1 0.81) <0.00 <0.00 <0.00 F1 Score 0.99 0.83 0.88 0.57 0.95 0.63 0.82 0.79 0.002 1 1 1 Itching Cramp Pain NLP (95% ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P CI) 0.98 (0.86- 0.24 (0.09- <0.00 0.09 (0.01- <0.00 0.52 (0.37- <0.00 Sensitivity 0.98 (0.85-1) 0.99 (0.93-1) 1) 0.45) 1 0.29) 1 0.66) 1 0.89 (0.72- 0.5 (0.37- Specificity 0.96 (0.8-1) 0.98 (0.86-1) 0.68 0.98 (0.88-1) 0.18 0.5 (0-1) 1 0.98) 0.66) 0.88 (0.69- PPV 0.96 (0.8-1) 0.8 (0.54-1) 0.32 0.8 (0.16-1) 0.22 0.99 (0.93-1) 0.98 (0.87-1) NA* 0.97) 0.98 (0.85- 0.57 (0.41- <0.00 0.58 (0.43- <0.00 NPV 0.98 (0.86-1) 0.5 (0-1) 0.02 (0-0.08) NA* 1) 0.72) 1 0.72) 1 <0.00 <0.00 <0.00 F1 Score 0.97 0.56 0.91 0.28 0.99 0.68 1 1 1 *Denotes 95% confidence intervals and P values that could not be calculated due to insufficient cells in 2x2 tables.
    [Show full text]
  • The Role of Organic Small Molecules in Pain Management
    molecules Review The Role of Organic Small Molecules in Pain Management Sebastián A. Cuesta and Lorena Meneses * Laboratorio de Química Computacional, Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 Apartado, Quito 17-01-2184, Ecuador; [email protected] * Correspondence: [email protected]; Tel.: +593-2-2991700 (ext. 1854) Abstract: In this review, a timeline starting at the willow bark and ending in the latest discoveries of analgesic and anti-inflammatory drugs will be discussed. Furthermore, the chemical features of the different small organic molecules that have been used in pain management will be studied. Then, the mechanism of different types of pain will be assessed, including neuropathic pain, inflammatory pain, and the relationship found between oxidative stress and pain. This will include obtaining insights into the cyclooxygenase action mechanism of nonsteroidal anti-inflammatory drugs (NSAID) such as ibuprofen and etoricoxib and the structural difference between the two cyclooxygenase isoforms leading to a selective inhibition, the action mechanism of pregabalin and its use in chronic neuropathic pain, new theories and studies on the analgesic action mechanism of paracetamol and how changes in its structure can lead to better characteristics of this drug, and cannabinoid action mechanism in managing pain through a cannabinoid receptor mechanism. Finally, an overview of the different approaches science is taking to develop more efficient molecules for pain treatment will be presented. Keywords: anti-inflammatory drugs; QSAR; pain management; cyclooxygenase; multitarget drug; Citation: Cuesta, S.A.; Meneses, L. cannabinoid; neuropathic pain The Role of Organic Small Molecules in Pain Management.
    [Show full text]
  • Dentistry and Basic Non- Opioid Prescribing in Pain Dmitry M
    Dentistry and Basic Non- Opioid Prescribing in Pain Dmitry M. Arbuck, MD President, Indiana Polyclinic Clinical Associate Professor of Psychiatry and Pain Management, Marian University College of Osteopathic Medicine Clinical Assistant Professor of Psychiatry and Medicine, IU School of Medicine www.IndianaPolyclinic.com Version May 2020 1 Disclosures No disclosures currently (May 7, 2020) 2 Disclaimer ISDH Oral Health Program Disclaimer for courses or presentations: The information provided in this course or presentation does not, and is not intended to, constitute dental, medical, or legal advice; instead, all information, content, and materials available in this course or presentation are for general informational purposes only. You should contact an outside dentist, physician, or attorney to obtain dental, medical, or legal advice and prior to acting, or refraining from acting, on the basis of information contained in this course or presentation. All liability with respect to actions taken or not taken based on the contents of this course or presentation are hereby expressly disclaimed. 3 Goals of Pain Management • Decrease pain • Increase function • Utilize medications that limit unacceptable side effects, including addiction 4 Goals of This Presentation • Gain knowledge of appropriate use of NSAIDs and acetaminophen for pain management in dentistry • Improve insight into benefits and adverse effects of various NSAIDs • Learn appropriate alternatives to opioid use for pain management 5 Opioids: Use with Caution • Use of opioids for
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • SOME NEW DRUGS in the TREATMENT of RHEUMATIC FEVER by M
    Postgrad Med J: first published as 10.1136/pgmj.28.317.179 on 1 March 1952. Downloaded from I79 SOME NEW DRUGS IN THE TREATMENT OF RHEUMATIC FEVER By M. J. H. SMITH, M.PHARM., PH.D., F.R.I.C. Department of Chemical Pathology, King's College Hospital Medical School, London Introduction every 4 to 8 hours. Symptoms such as dizziness, The usefulness of salicylates in rheumatic fever drowsiness and nausea developed in a small pro- is unquestioned, though their undesirable side- portion of the subjects, but in no instance were effects on the gastro-intestinal tract and on the these side-effects serious. The substance differed special senses are a drawback in prolonged therapy. from salicylic acid in producing a depression of Attempts to find allied substances with a greater the central nervous system in laboratory animals safety margin have been made and three com- and a decrease in the prothrombin time in man. pounds, salicylamide, sodium gentisate and The favourable clinical reports have led to the y-resorcylic acid, have recently been introduced. proposal that a large well-controlled trial should The treatment of rheumatic fever with ACTH be made.6 and cortisone has been the subject of a number of general reviews1' 2 and will not be discussed in the Gentisic Acid (2: 5-dihydroxybenzoic acid) present article. The cost and scarcity of these COOH by copyright. materials have stimulated a search for simpler compounds with a similar physiological action and a cinchoninic acid derivative (HPC) for which an ACTH-like activity is claimed, has been tried \AOH clinically in acute rheumatic fever.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Comparative Anti-Inflammatory Effects of Salix Cortex Extracts And
    International Journal of Molecular Sciences Article Comparative Anti-Inflammatory Effects of Salix Cortex Extracts and Acetylsalicylic Acid in SARS-CoV-2 Peptide and LPS-Activated Human In Vitro Systems Nguyen Phan Khoi Le 1 , Corinna Herz 1, João Victor Dutra Gomes 1 , Nadja Förster 2, Kyriaki Antoniadou 3, Verena Karolin Mittermeier-Kleßinger 3, Inga Mewis 2 , Corinna Dawid 3 , Christian Ulrichs 2 and Evelyn Lamy 1,* 1 Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; [email protected] (N.P.K.L.); [email protected] (C.H.); [email protected] (J.V.D.G.) 2 Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, 14195 Berlin, Germany; [email protected] (N.F.); [email protected] (I.M.); [email protected] (C.U.) 3 Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; [email protected] (K.A.); [email protected] (V.K.M.-K.); [email protected] (C.D.) * Correspondence: [email protected]; Tel.: +49-761-270-82150 Abstract: The usefulness of anti-inflammatory drugs as an adjunct therapy to improve outcomes in COVID-19 patients is intensely discussed. Willow bark (Salix cortex) has been used for centuries Citation: Le, N.P.K.; Herz, C.; Gomes, to relieve pain, inflammation, and fever. Its main active ingredient, salicin, is metabolized in the J.V.D.; Förster, N.; Antoniadou, K.; human body into salicylic acid, the precursor of the commonly used pain drug acetylsalicylic Mittermeier-Kleßinger, V.K.; Mewis, acid (ASA).
    [Show full text]
  • A Double-Blind Controlled Crossover Study to Investigate the Efficacy Of
    Complementary Therapies in Medicine 44 (2019) 102–109 Contents lists available at ScienceDirect Complementary Therapies in Medicine journal homepage: www.elsevier.com/locate/ctim A double-blind controlled crossover study to investigate the efficacy of salix extract on primary dysmenorrhea T ⁎ Z. Raisi Dehkordia,M.Rafieian-kopaeib, F.S. Hosseini-Baharanchic,d, a Department of Midwifery, School of Nursing and Midwifery, Shahrekord University of Medical Sciences, Shahrekord, Iran b Medical Plants Research Center, Shahrekord University of Medical Science, Shahrekord, Iran c Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran d Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran ARTICLE INFO ABSTRACT Keywords: Objectives: Primary dysmenorrhea in the absence of pelvic pathology is a common gynecologic disorder affecting Dysmenorrhea the quality of life of women of reproductive age. This study evaluates the effect of salix extract on primary Salix dysmenorrhea. Mefenamic acid Design: This study was a randomized crossover clinical trial. Complementary therapies Setting: The study population included 96 female students with level two or three of primary dysmenorrhea: 48 Cross-over studies students in the treatment group (sequence I) followed by control (sequence II) and 48 students in control group (sequence I) followed by treatment (sequence II). Interventions: The intervention was salix capsule (400 mg daily) and the active control was mefenamic acid capsule (750 mg daily) as. Main outcomes: Pain intensity, measured by the visual analog scale (VAS), amount of bleeding, and severity of dysmenorrhea symptoms were outcomes. Generalized estimating equations were used for data analysis. Results: The demographic and menstrual characteristics of the students were homogenous between the groups.
    [Show full text]
  • 2 Pharmacology 3 Toxicity and Drug Safety 4 Clinical Applications Of
    1 General Aspects 1.1 History 1.2 Chemistry 2 Pharmacology 2.1 Pharmacokinetics 2.2 Cellular Modes of Action 2.3 Actions on Organs and Tissues 3 Toxicity and Drug Safety 3.1 Systemic Side Effects 3.2 Organ Toxicity 3.3 Non-Dose-Related (Pseudo)allergic Actions of Aspirin 4 Clinical Applications of Aspirin 4.1 Thromboembolic Diseases 4.2 Pain, Fever, and Inflammatory Diseases 4.3 Further Clinical Indications 1 General Aspects 1.1 History 1.1.1 Willow Bark and Leaves as Antipyretic, Anti-Inflammatory Analgesics 1.1.2 Salicylates as the Active Ingredient of Willow Bark and Other Natural Sources 1.1.3 Synthesis of Acetylsalicylic Acid and First Clinical Studies 1.1.4 Mode of Aspirin Action 1.1.5 Anti-Inflammatory/Analgesic Actions of Aspirin 1.1.6 Aspirin in the Cardiovascular System 1.1.7 Current Research Topics 1.2 Chemistry 1.2.1 Structures and Chemical Properties of Salicylates 1.2.2 Determination of Salicylates Acetylsalicylic Acid. Karsten Schrör Copyright Ó 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32109-4 j5 1 General Aspects 1.1 The first known communication on the medi- History cal use of willow bark extracts in modern times came from Reverend Edward Stone from Chip- 1.1.1 ping Norton (Oxfordshire, England). In 1763, he Willow Bark and Leaves as Antipyretic, Anti- treated some 50 cases of aigues, fever, and inter- Inflammatory Analgesics mitting disorders with a powdered dry bark preparation of willow tree [3]. The doses were Medical Effects of Willow Bark Treatment of dis- about 20 gr(ains) [1.3 g] to a dram of water every eases by plants or extracts thereof is as old as the 4 h.
    [Show full text]
  • University of Groningen Reflections on Flurbiprofen Eyedrops Van Sorge
    University of Groningen Reflections on flurbiprofen eyedrops van Sorge, Adriaan Alastair IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2002 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van Sorge, A. A. (2002). Reflections on flurbiprofen eyedrops. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 25-09-2021 REFLECTIONS ON FLURBIPROFEN EYEDROPS REFLECTIONS ON FLURBIPROFEN EYEDROPS RIJKSUNIVERSITEIT GRONINGEN REFLECTIONS ON FLURBIPROFEN EYEDROPS REFLECTIONS ON FLURBIPROFEN EYEDROPS PROEFSCHRIFT ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen, op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op maandag 2 december 2002 om 14.15 uur door Adriaan Alastair van Sorge geboren op 28 oktober 1944 te New Rochelle, New York, USA PROMOTORES Prof.
    [Show full text]
  • HCHS/SOL Question by Question Instructions Medication Use Form (MUE/MUS), Version A
    HCHS/SOL Question by Question Instructions Medication Use Form (MUE/MUS), Version A General Instructions The purpose of the Medication Survey is to assess medication usage in the four weeks preceding the examination date. Information on both prescription and over-the-counter medications is ascertained via scanning of bar code symbols, transcription of labels, and interview. To obtain this information, the participant is asked prior to the clinic visit to bring to the field center all medications, over-the counter preparations, vitamins, minerals, and dietary supplements taken in the four-week period preceding the visit, or their containers. Notification of this request is mailed to the participant with the written instructions for the exam visit, and is re-stated during the appointment reminder call. Interviewers require certification in interviewing techniques and familiarity with the data entry procedures for electronic and paper versions of the form (references: Data Entry System [DES] manual and the “General Instructions for Completing Paper Forms”). Paper data entry and subsequent keying will only be used in the event of equipment malfunction or DES inaccessibility. Scanners / transcribers of medication information also require certification. Header information (ID Number, Contact Occasion, and Seq #) are completed in the format described in the cited document. Question by Question Instructions Part A. Reception Item 1 Read as written. If the response is “Yes, all”, go to Section B (MEDICATION RECORD) and begin the scanning/transcription. This can take place at the reception station or while the participant proceeds with the clinic visit. As the participant delivers the medications, indicate where (and by whom) they will be returned before he / she leaves.
    [Show full text]
  • (Aspirin) in Rheumatoid Arthritis
    Br. J. clin. Pharmac. (1989), 27, 607-611 Comparative analgesic and anti-inflammatory properties of sodium salicylate and acetylsalicylic acid (aspirin) in rheumatoid arthritis SALLY J. PRESTON, M. H. ARNOLD, ELAINE M. BELLER, P. M. BROOKS & W. WATSON BUCHANAN Florance and Cope Professorial Department of Rheumatology and Sutton Rheumatism Research Laboratory, Department of Rheumatology, University of Sydney, Royal North Shore Hospital, St Leonards 2065, New South Wales, Australia 1 Enteric coated sodium salicylate 4.8 g daily was compared with the same dose of enteric coated aspirin in 18 patients with rheumatoid arthritis. 2 After an initial washout period lasting 3 days, patients were randomly allocated to treatment with sodium salicylate or aspirin. After 2 weeks the two treatments were crossed over. 3 Pain relief, reduction in articular index of joint tenderness, increase in grip strength, decrease in digital joint circumference and patients' assessment showed significant im- provement with both treatments compared with the washout period. No significant differ- ences were found between the two therapies. 4 No correlation was found in the degree of improvement in any of the clinical outcomes and the salicylate concentrations at steady state. Keywords aspirin sodium salicylate non-acetylated salicylates clinical trial rheumatoid arthritis 'Sodium salicylate does not appear to be as in particular sodium salicylate (Lasagna, 1960; potent as aspirin as an antipyretic or analgesic Levy, 1965; Calabro & Paulus, 1970; Champion . but has not been compared under con- et al., 1975). Sodium salicylate, however, has trolled conditions to aspirin in the management been shown in clinical therapeutic trials in of inflammatory disorders' rheumatoid arthritis to be as equally efficacious as other nonsteroidal anti-inflammatory agents Stephen L.
    [Show full text]