WHO Report on BCG Vaccine Use for Protection Against Mycobacterial

Total Page:16

File Type:pdf, Size:1020Kb

WHO Report on BCG Vaccine Use for Protection Against Mycobacterial BCG vaccines Report on BCG vaccine use for protection against mycobacterial infections including tuberculosis, leprosy, and other nontuberculous mycobacteria (NTM) infections Prepared by the SAGE Working Group on BCG Vaccines and WHO Secretariat 22. September 2017 List of abbreviations AFR. african region MDR-TB. multidrug-resistant TB AMR. antimicrobial resistances MDT. multi-drug therapy, multidrug therapy BCG. bacillus calmette-guérin MICs. middle income countries BUD. buruli ulcera disease MICS. multiple indicator cluster surveys CFU. colony forming units MOTT. mycobacteria other than tuberculosis DHS. demographic health surveys NRA. national regulatory authority DRDR. drug resistance determining regions NS. needle and syringe DSJI. disposable-syringe jet injectors NTM. non-tuberculous mycobacterial DST. drug susceptibility testing OPV. oral polio vaccine EID. early infant HIV diagnosis PB. pauci-bacillary EMR. eastern mediterranean region PEP. post-exposure prophylaxis EUR. european region PMTCT. prevention of mother to child transmission G2D. grade-2 disabilities POC. point-of-care GLP. global leprosy programm PQ’d. prequalified GTB. global TB programme PTB. pulmonary tuberculosis HBsAg. hepatitis B surface antigen R&D. research and development HCWs. health care workers SAGE. strategic advisory group of experts on immunization HICs. high income countries SDGs. sustainable development goals IRIS. immune reconstitution inflammatory syndrome SEAR. south east asian region IUATLD. international union against TB and lung disease TB. tuberculosis JRF. WHO/UNICEF Joint Reporting UHC. universal health coverage LBW. low birth weight VENICE. vaccine european new integrated collaboration effort LICs. low income countries WPR. western pacific region LMICs. lower-middle income countries WUENIC. WHO/UNICEF estimates of national immunization MB. multi-bacillary Coverage MDGs. millennium development goals XDR-TB. extensively drug-resistant TB 1 BCG vaccines – Table of contents Table of Contents 1. Executive summary ........................................................................................................................................................................ 3 2. BCG Working Group Recommendations ......................................................................................................................................... 5 3. Background ................................................................................................................................................................................. 10 4. Tuberculosis ................................................................................................................................................................................ 11 4.2. Epidemiology of TB ................................................................................................................................. 11 4.3. TB control in the era of the UN Sustainable Development Goals ........................................................... 12 4.4. Trends in antibiotic resistance of TB ....................................................................................................... 14 5. Leprosy ................................................................................................................................................................................................. 16 5.2. Epidemiology of Leprosy ......................................................................................................................... 16 5.3. Global Leprosy Strategy 2016-2020 ........................................................................................................ 19 5.4. Antimicrobial resistance in Leprosy ........................................................................................................ 21 6. Non-tuberculous mycobacterial (NTM) infections .............................................................................................................................. 21 6.2. Buruli ulcer disease ................................................................................................................................. 22 7. Current WHO recommendations (2004 and addition of 2007) ...................................................................................................... 24 8. Country policies and implementation .......................................................................................................................................... 25 8.2. Country policies on the use of BCG against leprosy ................................................................................ 25 8.3. Review of BCG vaccine policies in countries with low TB burden ........................................................... 26 8.4. Switching vaccination policy – from universal to selective vaccination .................................................. 27 8.5. BCG vaccine coverage estimate .............................................................................................................. 28 8.6. Timeliness of BCG vaccination ................................................................................................................ 30 9. Vaccine strains and other factors that are influencing safety and effectiveness of BCG vaccines .................................................. 32 10. Market update BCG Vaccines ....................................................................................................................................................... 35 10.2. Impact of BCG vaccine shortages ............................................................................................................ 37 10.3. How to mitigate the impact of BCG shortages........................................................................................ 38 11. BCG efficacy and effectiveness against TB .................................................................................................................................... 38 12. BCG efficacy and effectiveness against leprosy ............................................................................................................................ 41 13. Non-specific (‘heterologous’ or ’non-targeted') effects of BCG ..................................................................................................... 43 14. Duration of Protection ................................................................................................................................................................. 45 15. Need for revaccination, vaccination in adolescent and adults ...................................................................................................... 46 16. Safety of BCG vaccination ............................................................................................................................................................ 53 17. Route of administration ............................................................................................................................................................... 55 18. Co-administration with other vaccines......................................................................................................................................... 57 19. Update on the status of the pediatric HIV epidemic and implications for BCG administration policies in countries with high burden of HIV ....................................................................................................................................................................................... 59 20. Vaccination of low birth weight and premature infants ............................................................................................................... 62 21. Vaccination of travelers from non TB endemic countries to TB endemic countries ....................................................................... 63 22. Cost-effectiveness of BCG vaccination ......................................................................................................................................... 63 23. Innovations and new vaccines under development ...................................................................................................................... 65 23.2. Innovations and research are critical to break the trajectory of the TB epidemic .................................. 65 23.3. Diagnostic and treatment tools on the horizon ...................................................................................... 65 23.4. What research is required to end the TB epidemic and eliminate TB?................................................... 66 23.5. New vaccines under development.......................................................................................................... 66 23.5.1. Status of TB Vaccine Development - highlights ...................................................................................... 66 23.5.2. Status of Leprosy Vaccine Development................................................................................................. 68 24. Additional research needs on BCG ............................................................................................................................................... 68 25. Working Group members, other experts and WHO secretariat .................................................................................................... 68 26. Appendix ....................................................................................................................................................................................
Recommended publications
  • Intracranial Actinomycosis of Odontogenic Origin Masquerading As Auto-Immune Orbital Myositis: a Fatal Case and Review of the Literature G
    Hötte et al. BMC Infectious Diseases (2019) 19:763 https://doi.org/10.1186/s12879-019-4408-2 CASE REPORT Open Access Intracranial actinomycosis of odontogenic origin masquerading as auto-immune orbital myositis: a fatal case and review of the literature G. J. Hötte1,2*, M. J. Koudstaal3, R. M. Verdijk4, M. J. Titulaer5, J. F. H. M. Claes6, E. M. Strabbing3, A. van der Lugt7 and D. Paridaens1,2 Abstract Background: Actinomycetes can rarely cause intracranial infection and may cause a variety of complications. We describe a fatal case of intracranial and intra-orbital actinomycosis of odontogenic origin with a unique presentation and route of dissemination. Also, we provide a review of the current literature. Case presentation: A 58-year-old man presented with diplopia and progressive pain behind his left eye. Six weeks earlier he had undergone a dental extraction, followed by clindamycin treatment for a presumed maxillary infection. The diplopia responded to steroids but recurred after cessation. The diplopia was thought to result from myositis of the left medial rectus muscle, possibly related to a defect in the lamina papyracea. During exploration there was no abnormal tissue for biopsy. The medial wall was reconstructed and the myositis responded again to steroids. Within weeks a myositis on the right side occurred, with CT evidence of muscle swelling. Several months later he presented with right hemiparesis and dysarthria. Despite treatment the patient deteriorated, developed extensive intracranial hemorrhage, and died. Autopsy showed bacterial aggregates suggestive of actinomycotic meningoencephalitis with septic thromboembolism. Retrospectively, imaging studies showed abnormalities in the left infratemporal fossa and skull base and bilateral cavernous sinus.
    [Show full text]
  • Energy Efficiency And
    Progress with The Energy Policy Review: A Perspective OIES Seminars 7 October 2003 John Bower Overview What the White Paper Said Reality Dawns An alternative 20:20 Vision John Bower Progress on UK Energy White Paper 2 What the White Paper Said UKEWP refocused energy policy away from a UK driven liberalisation agenda… GOALS AND POLICIES 1. Reduce CO2 emissions by 60% by 2050 Reduce amount of energy we consume Central to future market and policy will be emissions trading Raise efficiency standards in home appliances and housing Encourage low carbon fuels and renewables through grants and subsidy 2. Maintain reliability of energy supplies Right infrastructure / regulatory systems in UK and liberalisation of Europe Pursue regional stability and economic reform in producing areas Promote understanding of markets and conditions for FDI in producing areas Forward prices will signal the need for investment Improve contingency planning in dealing with major incidents John Bower Progress on UK Energy White Paper 3 What the White Paper Said …. towards an EU driven multifaceted agenda GOALS AND POLICIES 3. Promote competitive markets in UK and beyond Raise rate of sustainable economic growth Support business and competitiveness through reliable / affordable energy Encourage firms to innovate, reduce cost, deliver better goods and services Use market based instruments to deliver policy goals Work with business to prepare them for the low carbon economy of the future 4. Ensure that every home is adequately and affordably heated Reduce poverty by lowering prices and raising social security payments Improve quality of housing stock via insulation and energy efficiency grants John Bower Progress on UK Energy White Paper 4 What the White Paper Said UKEWP relied on carbon trading and uneconomic/unproven technology… ENERGY SYSTEM IN 2020 1.
    [Show full text]
  • Chapter 3 Bacterial and Viral Infections
    GBB03 10/4/06 12:20 PM Page 19 Chapter 3 Bacterial and viral infections A mighty creature is the germ gain entry into the skin via minor abrasions, or fis- Though smaller than the pachyderm sures between the toes associated with tinea pedis, His customary dwelling place and leg ulcers provide a portal of entry in many Is deep within the human race cases. A frequent predisposing factor is oedema of His childish pride he often pleases the legs, and cellulitis is a common condition in By giving people strange diseases elderly people, who often suffer from leg oedema Do you, my poppet, feel infirm? of cardiac, venous or lymphatic origin. You probably contain a germ The affected area becomes red, hot and swollen (Ogden Nash, The Germ) (Fig. 3.1), and blister formation and areas of skin necrosis may occur. The patient is pyrexial and feels unwell. Rigors may occur and, in elderly Bacterial infections people, a toxic confusional state. In presumed streptococcal cellulitis, penicillin is Streptococcal infection the treatment of choice, initially given as ben- zylpenicillin intravenously. If the leg is affected, Cellulitis bed rest is an important aspect of treatment. Where Cellulitis is a bacterial infection of subcutaneous there is extensive tissue necrosis, surgical debride- tissues that, in immunologically normal individu- ment may be necessary. als, is usually caused by Streptococcus pyogenes. A particularly severe, deep form of cellulitis, in- ‘Erysipelas’ is a term applied to superficial volving fascia and muscles, is known as ‘necrotiz- streptococcal cellulitis that has a well-demarcated ing fasciitis’. This disorder achieved notoriety a few edge.
    [Show full text]
  • ID 2 | Issue No: 4.1 | Issue Date: 29.10.14 | Page: 1 of 24 © Crown Copyright 2014 Identification of Corynebacterium Species
    UK Standards for Microbiology Investigations Identification of Corynebacterium species Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 2 | Issue no: 4.1 | Issue date: 29.10.14 | Page: 1 of 24 © Crown copyright 2014 Identification of Corynebacterium species Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Identification | ID 2 | Issue no: 4.1 | Issue date: 29.10.14 | Page: 2 of 24 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Corynebacterium species Contents ACKNOWLEDGMENTS .........................................................................................................
    [Show full text]
  • Pattern of Cutaneous Tuberculosis Among Children and Adolescent
    Bangladesh Med Res Counc Bull 2012; 38: 94-97 Pattern of cutaneous tuberculosis among children and adolescent Sultana A1, Bhuiyan MSI1, Haque A2, Bashar A3, Islam MT4, Rahman MM5 1Dept. of Dermatology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, 2Dept. of Public health and informatics, BSMMU, Dhaka, 3SK Hospital, Mymensingh Medical College, Mymensingh, 4Dept. of Physical Medicine and Rehabilitation, BSMMU, Dhaka, 5Dept. of Dermatology, National Medical College, Dhaka. Email: [email protected] Abstract Cutaneous tuberculosis is one of the most subtle and difficult diagnoses for dermatologists practicing in developing countries. It has widely varied manifestations and it is important to know the spectrum of manifestations in children and adolescent. Sixty cases (age<19 years) of cutaneous tuberculosis were included in this one period study. The diagnosis was based on clinical examination, tuberculin reaction, histopathology, and response to antitubercular therapy. Histopahology revealed 38.3% had skin tuberculosis and 61.7% had diseases other than tuberculosis. Among 23 histopathologically proved cutaneous tuberculosis, 47.8% had scrofuloderma, 34.8% had lupus vulgaris and 17.4% had tuberculosis verrucosa cutis (TVC). Most common site for scrofuloderma lesions was neck and that for lupus vulgaris and TVC was lower limb. Cutaneous tuberculosis in children continues to be an important cause of morbidity, there is a high likelihood of internal involvement, especially in patients with scrofuloderma. A search is required for more sensitive, economic diagnostic tools. Introduction of Child Health (BICH) and Institute of Diseases of Tuberculosis (TB), an ancient disease has affected Chest and Hospital (IDCH) from January to humankind for more than 4,000 years1 and its December 2010.
    [Show full text]
  • Faqs 1. What Is a 2-Step TB Skin Test (TST)? Tuberculin Skin Test (TST
    FAQs 1. What is a 2-step TB skin test (TST)? Tuberculin Skin Test (TST) is a screening method developed to evaluate an individual’s status for active Tuberculosis (TB) or Latent TB infection. A 2-Step TST is recommended for initial skin testing of adults who will be periodically retested, such as healthcare workers. A 2 step is defined as two TST’s done within 1month of each other. 2. What is the procedure for 2-step TB skin test? Both step 1 and step 2 of the 2 step TB skin test must be completed within 28 days. See the description below. STEP 1 Visit 1, Day 1 Administer first TST following proper protocol A dose of PPD antigen is applied under the skin Visit 2, Day 3 (or 48-72 hours after placement of PPD) The TST test is read o Negative - a second TST is needed. Retest in 1 to 3 weeks after first TST result is read. o Positive - consider TB infected, no second TST needed; the following is needed: - A chest X-ray and medical evaluation by a physician is necessary. If the individual is asymptomatic and the chest X-ray indicates no active disease, the individual will be referred to the health department. STEP 2 Visit 3, Day 7-21 (TST may be repeated 7-21 days after first TB skin test is re ad) A second TST is performed: another dose of PPD antigen is applied under the skin Visit 4, 48-72 hours after the second TST placement The second test is read.
    [Show full text]
  • Disseminated Mycobacterium Tuberculosis with Ulceronecrotic Cutaneous Disease Presenting As Cellulitis Kelly L
    Lehigh Valley Health Network LVHN Scholarly Works Department of Medicine Disseminated Mycobacterium Tuberculosis with Ulceronecrotic Cutaneous Disease Presenting as Cellulitis Kelly L. Reed DO Lehigh Valley Health Network, [email protected] Nektarios I. Lountzis MD Lehigh Valley Health Network, [email protected] Follow this and additional works at: http://scholarlyworks.lvhn.org/medicine Part of the Dermatology Commons, and the Medical Sciences Commons Published In/Presented At Reed, K., Lountzis, N. (2015, April 24). Disseminated Mycobacterium Tuberculosis with Ulceronecrotic Cutaneous Disease Presenting as Cellulitis. Poster presented at: Atlantic Dermatological Conference, Philadelphia, PA. This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact [email protected]. Disseminated Mycobacterium Tuberculosis with Ulceronecrotic Cutaneous Disease Presenting as Cellulitis Kelly L. Reed, DO and Nektarios Lountzis, MD Lehigh Valley Health Network, Allentown, Pennsylvania Case Presentation: Discussion: Patient: 83 year-old Hispanic female Cutaneous tuberculosis (CTB) was first described in the literature in 1826 by Laennec and has since been History of Present Illness: The patient presented to the hospital for chest pain and shortness of breath and was treated for an NSTEMI. She was noted reported to manifest in a variety of clinical presentations. The most common cause is infection with the to have redness and swelling involving the right lower extremity she admitted to having for 5 months, which had not responded to multiple courses of antibiotics. She acid-fast bacillus Mycobacterium tuberculosis via either primary exogenous inoculation (direct implantation resided in Puerto Rico but recently moved to the area to be closer to her children.
    [Show full text]
  • A Case of Miliary Tuberculosis Presenting with Whitlow of the Thumb
    A Case of Miliary Tuberculosis Presenting with Whitlow of the Thumb Romaric Larcher, Albert Sotto, Jean-Marc Mauboussin, Jean-Philippe Lavigne, François-Xavier Blanc, Didier Laureillard To cite this version: Romaric Larcher, Albert Sotto, Jean-Marc Mauboussin, Jean-Philippe Lavigne, François-Xavier Blanc, et al.. A Case of Miliary Tuberculosis Presenting with Whitlow of the Thumb. Acta Dermato- Venereologica, Society for Publication of Acta Dermato-Venereologica, 2016, 96 (4), pp.560 - 561. 10.2340/00015555-2285. hal-01909474 HAL Id: hal-01909474 https://hal.archives-ouvertes.fr/hal-01909474 Submitted on 25 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Acta Derm Venereol 2016; 96: 560–561 SHORT COMMUNICATION A Case of Miliary Tuberculosis Presenting with Whitlow of the Thumb Romaric Larcher1, Albert Sotto1*, Jean-Marc Mauboussin1, Jean-Philippe Lavigne2, François-Xavier Blanc3 and Didier Laureillard1 1Infectious Disease Department, 2Department of Microbiology, University Hospital Caremeau, Place du Professeur Robert Debré, FR-0029 Nîmes Cedex 09, and 3L’Institut du Thorax, Respiratory Medicine Department, University Hospital, Nantes, France. *E-mail: [email protected] Accepted Nov 10, 2015; Epub ahead of print Nov 11, 2015 Tuberculosis remains a major public health concern, accounting for millions of cases and deaths worldwide.
    [Show full text]
  • A Step Towards Revising the Model for Vaccine Tuberculosis Immunity
    COMMENTARY CONTEST Revising the model for vaccine development: a step towards tuberculosis immunity Amy Dagenais1 1University of Ottawa, Ottawa, Ontario, Canada Date Published: August 26, 2021 DOI: https://doi.org/10.18192/UOJM.V11iS1.5929 Keywords: Tuberculosis, COVID-19, vaccines hanks to accelerated vaccine development, the first with the largest infectious disease burden in the world, COVID-19 vaccine was approved for use by Health tolling 10 million new infections and 1.2 million deaths Canada only nine months after the disease was in 2019 alone.² Indeed, tuberculosis is one of the top 10 Tdeclared a pandemic by the World Health Organization.¹ causes of death worldwide—but the situation remains This unprecedented feat was made possible by three underdiscussed as most cases are recorded in developing critical factors: a stressed sense of urgency, substantial areas, such as South-East Asia (44%) and Africa (25%), or funding, and parallel pre-clinical and clinical trials. Such in underserved populations such as the Inuit in Canada.2,3 a concerted effort not only led to the development of Approximately one-quarter of the world population is multiple effective vaccines, but also bred innovation as infected by the etiological agent of tuberculosis: the mRNA technology bloomed despite its limited use in the bacterium Mycobacterium tuberculosis (Mtb), known as past. This success story paves the way for the accelerated the most successful human pathogen.² development of vaccines for other diseases, such as tuberculosis—the deadliest infectious disease of modern The intracellular pathogen has co-evolved with humans times before COVID-19 emerged. to evade host immune defenses, rendering TB treatment particularly difficult.
    [Show full text]
  • The Influence of Social Conditions Upon Diphtheria, Measles, Tuberculosis and Whooping Cough in Early Childhood in London
    VOLUME 42, No. 5 OCTOBER 1942 THE INFLUENCE OF SOCIAL CONDITIONS UPON DIPHTHERIA, MEASLES, TUBERCULOSIS AND WHOOPING COUGH IN EARLY CHILDHOOD IN LONDON BY G. PAYLING WRIGHT AND HELEN PAYLING WRIGHT, From the Department of Pathology-, Guy's Hospital Medical School (With 1 Figure in the Text) Before the war diphtheria, measles, tuberculosis and whooping cough were the most important of the better-defined causes of death amongst young children in the London area. The large numbers of deaths registered from these four diseases in the age group 0-4 years in the Metropolitan Boroughs alone between 1931 and 1938, together with the deaths recorded under bronchitis and pneumonia, are set out in Table 1. These records Table 1. Deaths from diphtheria, measles, tuberculosis (all forms), whooping cough, bron- chitis and pneumonia amongst children, 0-4 years, in the Metropolitan Boroughs from 1931 to 1938 Whooping Year Diphtheria Measles Tuberculosis cough Bronchitis Pneumonia 1931 148 109 184 301 195 1394 1932 169 760 207 337 164 1009 1933 163 88 150 313 101 833 1934 232 783 136 ' 277 167 1192 1935 125 17 108 161 119 726 1936 113 539 122 267 147 918 1937 107 21 100 237 122 827 1938 90 217 118 101 109 719 for diphtheria, measles, tuberculosis and whooping cough fail, however, to show all the deaths that should properly be ascribed to these specific diseases. For the most part, the figures represent the deaths occurring during their more acute stages, and necessarily omit some of the many instances in which these infections, after giving rise to chronic disabilities, terminate fatally from some less well-specified cause.
    [Show full text]
  • Latent Tuberculosis Infection
    © National HIV Curriculum PDF created September 27, 2021, 4:20 am Latent Tuberculosis Infection This is a PDF version of the following document: Module 4: Co-Occurring Conditions Lesson 1: Latent Tuberculosis Infection You can always find the most up to date version of this document at https://www.hiv.uw.edu/go/co-occurring-conditions/latent-tuberculosis/core-concept/all. Background Epidemiology of Tuberculosis in the United States Although the incidence of tuberculosis in the United States has substantially decreased since the early 1990s (Figure 1), tuberculosis continues to occur at a significant rate among certain populations, including persons from tuberculosis-endemic settings, individual in correctional facilities, persons experiencing homelessness, persons who use drugs, and individuals with HIV.[1,2] In recent years, the majority of tuberculosis cases in the United States were among the persons who were non-U.S.-born (71% in 2019), with an incidence rate approximately 16 times higher than among persons born in the United States (Figure 2).[2] Cases of tuberculosis in the United States have occurred at higher rates among persons who are Asian, Hispanic/Latino, or Black/African American (Figure 3).[1,2] In the general United States population, the prevalence of latent tuberculosis infection (LTBI) is estimated between 3.4 to 5.8%, based on the 2011 and 2012 National Health and Nutrition Examination Survey (NHANES).[3,4] Another study estimated LTBI prevalence within the United States at 3.1%, which corresponds to 8.9 million persons
    [Show full text]
  • Elizabeth Gyamfi
    University of Ghana http://ugspace.ug.edu.gh GENOTYPING AND TREATMENT OF SECONDARY BACTERIAL INFECTIONS AMONG BURULI ULCER PATIENTS IN THE AMANSIE CENTRAL DISTRICT OF GHANA BY ELIZABETH GYAMFI (10442509) THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF GHANA, LEGON IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF A MASTER OF PHILOSOPHY DEGREE IN MEDICAL BIOCHEMISTRY JULY, 2015 University of Ghana http://ugspace.ug.edu.gh DECLARATION I ELIZABETH GYAMFI, do hereby declare that with the exception of references to other people’s work, which have been duly acknowledged, this thesis is the outcome of my own research conducted at the Department of Medical Biochemistry, University of Ghana Medical School, College of Health Sciences and the Department of Cell, Molecular Biology and Biochemistry, University of Ghana, College of Basic and Applied Science under the supervision of Dr. Lydia Mosi and Dr. Bartholomew Dzudzor. Neither all nor parts of this project have been presented for another degree elsewhere. ……………………………………………. Date: ………………………. ELIZABETH GYAMFI (Student) ……………………………………………. Date: ………………………… DR. LYDIA MOSI (Supervisor) ………………………………………….. Date: ……………………….. DR. BATHOLOMEW DZUDZOR (Supervisor) i University of Ghana http://ugspace.ug.edu.gh ABSTRACT Background Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans. BU is the third most common mycobacterial disease after tuberculosis and leprosy, but in Ghana and Cote d’ Ivoire, it is the second. M. ulcerans produces mycolactone, an immunosuppressant macrolide toxin which makes the infection painless. However, some patients have complained of painful lesions and delay healing. Painful ulcers and delay healing experienced by some patients may be due to secondary bacterial infections. Main Objective: To identify secondary microbial infections of BU patients, their genetic diversity as well as determine the levels of antibiotics resistance of these microorganisms.
    [Show full text]