Insulin-Like Growth Factor Signaling During Myogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Insulin-Like Growth Factor Signaling During Myogenesis INSULIN-LIKE GROWTH FACTOR SIGNALING DURING MYOGENESIS by Hongxia Ren A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy (Molecular, Cellular and Developmental Biology) in The University of Michigan 2009 Doctoral Committee: Professor Cunming Duan, Chair Professor Christin Carter-Su Professor Robert J. Denver Professor Daniel J. Klionsky ACKNOWLEDGEMENTS I have learned and experienced a lot over the years in Ann Arbor. Had it not been the generous help and warm encouragement from the people around me, I probably wouldn’t have come this far. I feel grateful beyond measure to my mentor Dr. Cunming Duan and, I must say, to the fates that allowed my path to cross his. Dr. Duan has taught me numerous things in scientific research and teaching. To this day, I am still learning from him. His integrity, generosity, intense devotion, and perseverance are what inspired me most. And, for their extraordinary grace and kindness, I offer my thanks to Dr. Duan’s family, who helped me through my most difficult times. I am grateful to my committee members – Dr. Carter-Su, Dr. Denver, and Dr. Klionsky for their guidance over the years. Dr. Carter-Su kindly shares her expertise in growth factor research. Her insightful suggestions and attention to details have always been critical inputs. Dr. Denver’s generous help is an invaluable part of my graduate school training. Dr. Klionsky’s dedication has been and will always be an inspiration for me. I want to express my gratitude to members in Duan lab, Denver lab, and Cadigan lab, past and present, for supporting the projects, encouraging me, and lending painstaking assistance. I wish to offer special thanks to Dr. Ping Yin and Dr. Peter Schlueter. Finally, I would like to acknowledge my family and friends for their unconditional love and support. Most importantly, I thank my parents for supporting me financially, physically, and spiritually. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii LIST OF FIGURES vi CHAPTER I: INTRODUCTION 1 Myogenesis 1 Muscle and myogenesis 1 Transcription factors in myogenesis 3 Signaling pathways regulating myogenesis 6 IGF 8 The IGF ligands 8 The IGF-I receptor 11 The IGF-II receptor 14 The IGF binding proteins 15 The function of IGFBPs 19 Cellular actions of IGFBPs 19 In vivo functions of IGFBPs 21 iii Post-translational regulation of IGFBPs 24 IGF and muscle 26 IGF and muscle biology 26 IGFBP-5 and myogenesis 28 Project summary 31 CHAPTER II: IGFBP-5 REGULATES MUSCLE CELL DIFFERENTIATION BY BINDING TO IGF-II AND SWITCHING ON THE IGF-II AUTO-REGULATION LOOP 38 Abstract 38 Introduction 39 Results 42 Discussion 52 Material and Methods 57 Acknowledgements 62 Chapter III: HYPOXIA CONVERTS THE MYOGENIC ACTION OF IGF INTO MITOGENIC ACTION BY REPROGRAMMING GLUCOSE METABOLISM AND MULTIPLE SIGNALING PATHWAYS 80 Abstract 80 Introduction 81 Results 83 iv Discussion 95 Material and Methods 102 Acknowledgements 107 CHAPTER IV: CONCLUSIONS AND FUTURE DIRECTIONS 128 IGFBP-5 potentiates IGF actions during myogenesis 128 Hypoxia converts IGF actions by reprogramming its signaling cascades and cellular metabolism 134 BIBLIOGRAPHY 151 v LIST OF FIGURES Figure 1.1 Major transcription factor network in myogenesis 34 Figure 1.2. Illustration of major signaling pathways regulating myogenesis 35 Figure 1.3. IGF-IR and major downstream effectors in IGF signaling pathway 36 Figure 1.4. Schematic representation of IGFBP-5 domain arrangement 37 Figure 2.1 The induction of IGFBP-5 precedes that of IGF-II during myogenesis 63 Figure 2.2. Knockdown of IGFBP-5 impairs myogenic differentiation 64 Figure 2.3. Knockdown of IGFBP-5 decreases Myogenin expression 65 Figure 2.4. Forced expression of Myogenin does not rescue the myogenic defects in IGFBP-5 deficient cells 66 Figure 2.5. Knockdown of IGFBP-5 suppresses IGF-II gene expression and decreases IGF-IR-mediated signaling activity 68 Figure 2.6. Exogenous IGFs or expression of a constitutively active Akt “rescues” the myogenic defects caused by IGFBP-5 knockdown 70 Figure 2.7. IGF-II up-regulates its own gene expression through the PI3K-Akt signaling pathway 72 Figure 2.8. IGFBP-5 does not exert direct effect on IGF-II gene expression 74 Figure 2.9. IGFBP-5 is localized on the cell surface and promotes myogenic differentiation by binding to and promoting IGF-II action 76 Figure 2.10. The IGF-II and IGFBP-5 genes exhibit similar induction patterns and IGFBP-5 knockdown inhibits myogenic differentiation in primary skeletal muscle cells 78 vi Figure 3.1. IGF stimulates differentiation under normoxic conditions but promotes proliferation under hypoxic conditions through the activation of the same receptor 108 Figure 3.2. Hypoxia converts the myogenic action of IGF into mitogenic action through HIF-1-dependent mechanisms 112 Figure 3.3. Hypoxia reprograms glucose metabolism and this action is enhanced by IGF stimulation 114 Figure 3.4. Hypoxia represses mTOR signaling during myogenesis and the inhibition of mTOR activity abolishes the myogenic action but not the mitogenic action of IGF 116 Figure 3.5. Hypoxia represses Akt signaling activity, and expression of constitutively active Akt restores the mTOR activity and myogenic action of IGF under hypoxic conditions 118 Figure 3.6. Hypoxia alters IGF actions by differentially regulating Erk1/2 and p38 MAPK pathways 122 Figure 3.7. Schematic diagram illustrates the mechanisms by which hypoxia alter the myogenic and mitogenic actions of IGF during myogenesis 126 Figure 4.1. IGF-I and IGF-II transcription is differentially regulated by IGF-II stimulation during myoblast differentiation 149 Figure 4.2. IGFBP-5 siRNA decreases cell number with a concomitant increase in apoptosis in at early phase of differentiation 150 vii CHAPTER I INTRODUCTION Myogenesis Muscle and myogenesis In mammals, muscle constitutes a large part of the body mass. Muscle is a tissue specialized for contraction. Based on the difference in function, structure, and development, muscle tissue can be divided into four main categories – skeletal muscle, cardiac muscle, smooth muscle, and myoepithelium. This thesis will focus on the molecular mechanisms regarding skeletal muscle development. Skeletal muscle, under the control of nervous system, is responsible for voluntary movements. Mammalian skeletal muscle is composed of large cells with elongated shape. Therefore, these muscle cells are often referred to as muscle fibers. There are two broad types of voluntary muscle fibers: slow twitch and fast twitch, which are innervated by different motor neurons (Pette, 2002). Slow twitch fibers contract for long periods of time but generate less force, while fast twitch fibers contract more rapidly and powerfully but fatigue very rapidly. The different contractile properties are imparted by the expression of specific myosin isoforms. Recent studies have revealed that fiber composition is regulated by signaling molecules and transcriptional factors, such as calcineurin, CaM kinase, Hedgehog, and peroxisome-proliferator-activated receptor-gamma co-activator (PGC) (Arany et al., 2007; Blagden et al., 1997; Du et al., 1997; Lin et al., 2002). 1 Each skeletal muscle fiber is a syncytium, containing many nuclei within a common cytoplasm. The multinucleated skeletal muscle cells are formed by the fusion of muscle precursor cells – myoblasts. Myogenesis is a highly ordered process (Buckingham et al., 2003). During embryonic development, the muscle precursor cells commit to myogenic linage. After a period of proliferation, the myoblasts withdraw from cell cycle, express muscle-specific genes, and eventually fuse with one another to form multinucleated myotubes. This process is known as myoblast differentiation. It is subjected to the intricate regulation of intrinsic muscle specific transcription factors, such as myogenic regulatory factors (MRFs) (Weintraub, 1993), and extrinsic growth hormones. Mature muscle cells express muscle-specific proteins matching with specific physical activities. Of note, before myoblast differentiation, the presence of these proteins is either not detectable or exist in very low concentrations. Proteins, that are parts of the contractile apparatus, are abundantly expressed, including specific isoforms of actin, myosin, tropomyosin, and troponin. Muscle tissue consumes much of the body’s energy and produces adenosine triphosphate (ATP) to power the contractile apparatus. In line with this, muscles adopt specialized metabolism by expressing creatine kinase to regenerate ATP during burst activity (van Deursen et al., 1993). Mature muscle cells also express acetylcholine receptors on the surface within specialized neural muscular junction called synapse, which renders them sensitive to the stimuli coming from the nerve terminal. Terminal myoblast differentiation and proliferation are often considered as two mutually exclusive events. After differentiation, the multinucleated muscle cells do not divide and the nuclei stop replicating their DNA. In humans, the number of multinucleated skeletal muscle fibers is determined before birth. Postnatal muscle growth is mainly achieved 2 by muscle hypertrophy – the increase in the size of muscle fibers without an increase in muscle fiber number. The increase in muscle fiber size is achieved by individual myoblasts being recruited to and subsequently fusing with existing multinucleated muscle fibers. Transcription factors in myogenesis Myoblast differentiation is controlled by at least two families of transcription factiors – the MyoD family
Recommended publications
  • Dermo-1: a Novel Twist-Related Bhlh Protein Expressed in The
    DEVELOPMENTAL BIOLOGY 172, 280±292 (1995) Dermo-1: A Novel Twist-Related bHLH Protein View metadata,Expressed citation and similar in papers the at core.ac.uk Developing Dermis brought to you by CORE provided by Elsevier - Publisher Connector Li Li, Peter Cserjesi,1 and Eric N. Olson2 Department of Biochemistry and Molecular Biology, Box 117, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 Transcription factors belonging to the basic helix±loop±helix (bHLH) family have been shown to control differentiation of a variety of cell types. Tissue-speci®c bHLH proteins dimerize preferentially with ubiquitous bHLH proteins to form heterodimers that bind the E-box consensus sequence (CANNTG) in the control regions of target genes. Using the yeast two-hybrid system to screen for tissue-speci®c bHLH proteins, which dimerize with the ubiquitous bHLH protein E12, we cloned a novel bHLH protein, named Dermo-1. Within its bHLH region, Dermo-1 shares extensive homology with members of the twist family of bHLH proteins, which are expressed in embryonic mesoderm. During mouse embryogenesis, Dermo- 1 showed an expression pattern similar to, but distinct from, that of mouse twist. Dermo-1 was expressed at a low level in the sclerotome and dermatome of the somites, and in the limb buds at Day 10.5 post coitum (p.c.), and accumulated predominantly in the dermatome, prevertebrae, and the derivatives of the branchial arches by Day 13.5 p.c. As differentiation of prechondrial cells proceeded, Dermo-1 expression became restricted to the perichondrium. Expression of Dermo-1 increased continuously in the dermis through Day 17.5 p.c.
    [Show full text]
  • The Title of the Dissertation
    UNIVERSITY OF CALIFORNIA SAN DIEGO Novel network-based integrated analyses of multi-omics data reveal new insights into CD8+ T cell differentiation and mouse embryogenesis A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Kai Zhang Committee in charge: Professor Wei Wang, Chair Professor Pavel Arkadjevich Pevzner, Co-Chair Professor Vineet Bafna Professor Cornelis Murre Professor Bing Ren 2018 Copyright Kai Zhang, 2018 All rights reserved. The dissertation of Kai Zhang is approved, and it is accept- able in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California San Diego 2018 iii EPIGRAPH The only true wisdom is in knowing you know nothing. —Socrates iv TABLE OF CONTENTS Signature Page ....................................... iii Epigraph ........................................... iv Table of Contents ...................................... v List of Figures ........................................ viii List of Tables ........................................ ix Acknowledgements ..................................... x Vita ............................................. xi Abstract of the Dissertation ................................. xii Chapter 1 General introduction ............................ 1 1.1 The applications of graph theory in bioinformatics ......... 1 1.2 Leveraging graphs to conduct integrated analyses .......... 4 1.3 References .............................. 6 Chapter 2 Systematic
    [Show full text]
  • Role of the Nuclear Receptor Rev-Erb Alpha in Circadian Food Anticipation and Metabolism Julien Delezie
    Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism Julien Delezie To cite this version: Julien Delezie. Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism. Neurobiology. Université de Strasbourg, 2012. English. NNT : 2012STRAJ018. tel- 00801656 HAL Id: tel-00801656 https://tel.archives-ouvertes.fr/tel-00801656 Submitted on 10 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE CNRS UPR 3212 · Institut des Neurosciences Cellulaires et Intégratives THÈSE présentée par : Julien DELEZIE soutenue le : 29 juin 2012 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Neurosciences Rôle du récepteur nucléaire Rev-erbα dans les mécanismes d’anticipation des repas et le métabolisme THÈSE dirigée par : M CHALLET Etienne Directeur de recherche, université de Strasbourg RAPPORTEURS : M PFRIEGER Frank Directeur de recherche, université de Strasbourg M KALSBEEK Andries
    [Show full text]
  • Lncmyod Promotes Skeletal Myogenesis and Regulates Skeletal Muscle Fiber-Type Composition by Sponging Mir-370-3P
    G C A T T A C G G C A T genes Article LncMyoD Promotes Skeletal Myogenesis and Regulates Skeletal Muscle Fiber-Type Composition by Sponging miR-370-3p Peiwen Zhang 1,2,† , Jingjing Du 1,2,†, Xinyu Guo 1,2, Shuang Wu 1,2, Jin He 1,2 , Xinrong Li 1,2, Linyuan Shen 1,2 , Lei Chen 1,2, Bohong Li 1, Jingjun Zhang 1, Yuhao Xie 1, Lili Niu 1,2, Dongmei Jiang 1,2, Xuewei Li 1,2, Shunhua Zhang 1,2 and Li Zhu 1,2,* 1 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (P.Z.); [email protected] (J.D.); [email protected] (X.G.); [email protected] (S.W.); [email protected] (J.H.); [email protected] (X.L.); [email protected] (L.S.); [email protected] (L.C.); [email protected] (B.L.); [email protected] (J.Z.); [email protected] (Y.X.); [email protected] (L.N.); [email protected] (D.J.); [email protected] (X.L.); [email protected] (S.Z.) 2 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The development of skeletal muscle is a highly ordered and complex biological process. Increasing evidence has shown that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play a vital role in the development of myogenic processes.
    [Show full text]
  • Differential Spatio-Temporal Regulation of T-Box Gene Expression by Micrornas During Cardiac Development
    Journal of Cardiovascular Development and Disease Article Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development Mohamad Alzein, Estefanía Lozano-Velasco , Francisco Hernández-Torres , Carlos García-Padilla , Jorge N. Domínguez , Amelia Aránega and Diego Franco * Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; [email protected] (M.A.); [email protected] (E.L.-V.); [email protected] (F.H.-T.); [email protected] (C.G.-P.); [email protected] (J.N.D.); [email protected] (A.A.) * Correspondence: [email protected] Abstract: Cardiovascular development is a complex process that starts with the formation of symmet- rically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcrip- tional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA–mRNA expression pro- Citation: Alzein, M.; Lozano-Velasco, files.
    [Show full text]
  • Selective Repression of Myod Transcription by V-Myc Prevents
    Oncogene (2002) 21, 4838 – 4842 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc SHORT REPORTS Selective repression of myoD transcription by v-Myc prevents terminal differentiation of quail embryo myoblasts transformed by the MC29 strain of avian myelocytomatosis virus Severina A La Rocca1,3,5, Serena Vannucchi1,4,5, Monica Pompili1, Deborah F Pinney2, Charles P Emerson Jr2, Milena Grossi*,1 and Franco Tato` 1,6 1Istituto Pasteur-Fondazione Cenci-Bolognetti, Dipartimento di Biologia Cellulare e dello Sviluppo, Sezione di Scienze Microbiologiche, Universita’ di Roma ‘La Sapienza’, 00185-Roma, Italy; 2Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, PA 19104-6058, USA We have investigated the mechanism by which expression In vitro, after an initial proliferative phase, myogenic of the v-myc oncogene interferes with the competence of cells withdraw from the cell cycle, enter the post- primary quail myoblasts to undergo terminal differentia- mitotic stage and activate the transcription of a battery tion. Previous studies have established that quail of muscle-specific genes. Terminal differentiation of myoblasts transformed by myc oncogenes are severely skeletal myogenic cells is activated and maintained by impaired in the accumulation of mRNAs encoding the the concerted action of ubiquitous transcription myogenic transcription factors Myf-5, MyoD and factors, transcriptional coactivators (Puri and Sartor- Myogenin. However, the mechanism responsible for such elli, 2000) and muscle-specific transcription factors a repression remains largely unknown. Here we present belonging to two major groups: the Muscle Regulatory evidence that v-Myc selectively interferes with quail Factors (MRFs) of the MyoD family (Myf-5, MyoD, myoD expression at the transcriptional level.
    [Show full text]
  • Early Transcriptional Targets of Myod Link Myogenesis and Somitogenesis
    Developmental Biology 371 (2012) 256–268 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Early transcriptional targets of MyoD link myogenesis and somitogenesis Richard J. Maguire, Harry V. Isaacs, Mary Elizabeth Pownall n Biology Department, University of York, Heslington, York, North Yorkshire YO10 5YW, United Kingdom article info abstract Article history: In order to identify early transcriptional targets of MyoD prior to skeletal muscle differentiation, we Received 27 February 2012 have undertaken a transcriptomic analysis on gastrula stage Xenopus embryos in which MyoD has been Received in revised form knocked-down. Our validated list of genes transcriptionally regulated by MyoD includes Esr1 and Esr2, 10 July 2012 which are known targets of Notch signalling, and Tbx6, mesogenin, and FoxC1; these genes are all are Accepted 22 August 2012 known to be essential for normal somitogenesis but are expressed surprisingly early in the mesoderm. Available online 31 August 2012 In addition we found that MyoD is required for the expression of myf5 in the early mesoderm, in Keywords: contrast to the reverse relationship of these two regulators in amniote somites. These data highlight a Skeletal muscle role for MyoD in the early mesoderm in regulating a set of genes that are essential for both myogenesis Gene regulation and somitogenesis. Muscle progenitors & 2012 Elsevier Inc. All rights reserved. Determination Introduction gastrula embryo requires continued cell signals, such as FGF4, to maintain a myogenic fate (Standley et al., 2001), however, a single In vertebrates, the myogenic regulatory genes myoD, myf5, cell taken from a late gastrula embryo behaves as a determined myogenin, and mrf4 code for bHLH transcription factors which are myoblast: when transplanted to a ventral region, it differentiates expressed specifically in the myogenic cell lineage.
    [Show full text]
  • PAX Genes in Childhood Oncogenesis: Developmental Biology Gone Awry?
    Oncogene (2015) 34, 2681–2689 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc REVIEW PAX genes in childhood oncogenesis: developmental biology gone awry? P Mahajan1, PJ Leavey1 and RL Galindo1,2,3 Childhood solid tumors often arise from embryonal-like cells, which are distinct from the epithelial cancers observed in adults, and etiologically can be considered as ‘developmental patterning gone awry’. Paired-box (PAX) genes encode a family of evolutionarily conserved transcription factors that are important regulators of cell lineage specification, migration and tissue patterning. PAX loss-of-function mutations are well known to cause potent developmental phenotypes in animal models and underlie genetic disease in humans, whereas dysregulation and/or genetic modification of PAX genes have been shown to function as critical triggers for human tumorigenesis. Consequently, exploring PAX-related pathobiology generates insights into both normal developmental biology and key molecular mechanisms that underlie pediatric cancer, which are the topics of this review. Oncogene (2015) 34, 2681–2689; doi:10.1038/onc.2014.209; published online 21 July 2014 INTRODUCTION developmental mechanisms and PAX genes in medical (adult) The developmental mechanisms necessary to generate a fully oncology. patterned, complex organism from a nascent embryo are precise. Undifferentiated primordia undergo a vast array of cell lineage specification, migration and patterning, and differentiate into an STRUCTURAL MOTIFS DEFINE THE PAX FAMILY SUBGROUPS ensemble of interdependent connective, muscle, nervous and The mammalian PAX family of transcription factors is comprised of epithelial tissues. Dysregulation of these precise developmental nine members that function as ‘master regulators’ of organo- programs cause various diseases/disorders, including—and genesis4 (Figure 1).
    [Show full text]
  • Development of an in Vitro Myogenesis Assay Anna Arnaud University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Biomedical Engineering Undergraduate Honors Biomedical Engineering Theses 5-2015 Development of an in vitro myogenesis assay Anna Arnaud University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/bmeguht Recommended Citation Arnaud, Anna, "Development of an in vitro myogenesis assay" (2015). Biomedical Engineering Undergraduate Honors Theses. 13. http://scholarworks.uark.edu/bmeguht/13 This Thesis is brought to you for free and open access by the Biomedical Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Biomedical Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Development of an in vitro myogenesis assay An Undergraduate Honors College Thesis in the Department of Biomedical Engineering College of Engineering University of Arkansas Fayetteville, AR by Anna J Arnaud 1 2 Abstract The objective of this study was to explore the interaction between mouse C2C12 cells and the extracellular matrix, particularly the process of myoblasts converting to myocytes. This study aimed to create a myogenesis assay that presents a process to effectively monitor the development of mouse C2C12 myoblasts into differentiated skeletal myotubes through detection of the protein MyoD. Myogenesis, the development of muscle tissue, occurs when muscle progenitor cells, myoblasts, fuse to form multinucleated myotubes, followed by cell fusion and resulting in a myofiber capable of contraction. An in vitro myogenesis assay would enable further research to efficiently test the effect of various growth factors and other parameters on skeletal muscle development, a field with numerous clinical applications.
    [Show full text]
  • The Myocardin Family of Transcriptional Coactivators: Versatile Regulators of Cell Growth, Migration, and Myogenesis
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis G.C. Teg Pipes, Esther E. Creemers, and Eric N. Olson1 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA The association of transcriptional coactivators with se- gene regulation and expands the regulatory potential of quence-specific DNA-binding proteins provides versatil- individual cis-regulatory elements. ity and specificity to gene regulation and expands the The regulation of serum response factor (SRF) and its regulatory potential of individual cis-regulatory DNA se- target genes provides a classic example of the diversity of quences. Members of the myocardin family of coactiva- genes controlled by a single DNA-binding protein and tors activate genes involved in cell proliferation, migra- the importance of cofactor interactions in the control of tion, and myogenesis by associating with serum re- gene expression (Shore and Sharrocks 1995). Among the sponse factor (SRF). The partnership of myocardin family many target genes of SRF are genes involved in cell pro- members and SRF also controls genes encoding compo- liferation and muscle differentiation, which represent nents of the actin cytoskeleton and confers responsive- opposing programs of gene expression: Muscle genes are ness to extracellular growth signals and intracellular repressed by growth factor signals and generally do not changes in the cytoskeleton, thereby creating a tran- become activated until myoblasts exit the cell cycle. The scriptional–cytoskeletal regulatory circuit. These func- ability of SRF to regulate different sets of downstream tions are reflected in defects in smooth muscle differen- effector genes depends on its association with positive tiation and function in mice with mutations in myocar- and negative cofactors (Treisman 1994; Shore and Shar- din family members.
    [Show full text]
  • Single-Cell RNA Landscape of Intratumoral Heterogeneity and Immunosuppressive Microenvironment in Advanced Osteosarcoma
    ARTICLE https://doi.org/10.1038/s41467-020-20059-6 OPEN Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma Yan Zhou1,11, Dong Yang2,11, Qingcheng Yang2,11, Xiaobin Lv 3,11, Wentao Huang4,11, Zhenhua Zhou5, Yaling Wang 1, Zhichang Zhang2, Ting Yuan2, Xiaomin Ding1, Lina Tang 1, Jianjun Zhang1, Junyi Yin1, Yujing Huang1, Wenxi Yu1, Yonggang Wang1, Chenliang Zhou1, Yang Su1, Aina He1, Yuanjue Sun1, Zan Shen1, ✉ ✉ ✉ ✉ Binzhi Qian 6, Wei Meng7,8, Jia Fei9, Yang Yao1 , Xinghua Pan 7,8 , Peizhan Chen 10 & Haiyan Hu1 1234567890():,; Osteosarcoma is the most frequent primary bone tumor with poor prognosis. Through RNA- sequencing of 100,987 individual cells from 7 primary, 2 recurrent, and 2 lung metastatic osteosarcoma lesions, 11 major cell clusters are identified based on unbiased clustering of gene expression profiles and canonical markers. The transcriptomic properties, regulators and dynamics of osteosarcoma malignant cells together with their tumor microenvironment particularly stromal and immune cells are characterized. The transdifferentiation of malignant osteoblastic cells from malignant chondroblastic cells is revealed by analyses of inferred copy-number variation and trajectory. A proinflammatory FABP4+ macrophages infiltration is noticed in lung metastatic osteosarcoma lesions. Lower osteoclasts infiltration is observed in chondroblastic, recurrent and lung metastatic osteosarcoma lesions compared to primary osteoblastic osteosarcoma lesions. Importantly, TIGIT blockade enhances the cytotoxicity effects of the primary CD3+ T cells with high proportion of TIGIT+ cells against osteo- sarcoma. These results present a single-cell atlas, explore intratumor heterogeneity, and provide potential therapeutic targets for osteosarcoma. 1 Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China.
    [Show full text]
  • When Wnt Meets Myostatin
    Chapter 4 Role and Function of Wnts in the Regulation of Myogenesis: When Wnt Meets Myostatin Yann Fedon, Anne Bonnieu, Stéphanie Gay, Barbara Vernus, Francis Bacou and Henri Bernardi Additional information is available at the end of the chapter http://dx.doi.org/10.5772/48330 1. Introduction Wnt glycolipoproteins are extracellular ligands that can be found in many species, ranging from the sea anemone to human [1]. Wnts are signaling factors regulating several key developmental processes, such as proliferation, differentiation, asymmetric division, patterning and cell fate determination [2,3]. The Wnt family consists of 19 lipid modified secreted glycoproteins that are primarily divided into two main categories based on their role in cytosolic -catenin stabilization: canonic and non canonic [4,5,6]. During canonical Wnt signaling, binding of Wnt ligands to Frizzled/low-density lipoprotein-related protein (LRP) receptor complexes causes a stabilization of -catenin, which is normally degraded by axin/glycogen synthase kinase-3 (GSK-3)/adenomatous polyposis coli (APC) complexes. Stabilized -catenin is then able to translocate to the nucleus and through interactions with the T-cell factor (Tcf)/ lymphoid enhancer factor 1 (LEF-1), modulates the expression of specific genes [7]. These genes, by regulating cell proliferation, differentiation, adhesion, morphogenesis are involved in various essential physiological and physiopathological processes as embryonic and adult development, cellular and tissular homeostasis, and diseases [8,9,10,11,12]. In contrast, the less-characterized non-canonical Wnt pathways are independent of -catenin and transduce Wnt signals through numerous signaling, including either c-Jun NH2-terminal kinases (JNK)/planar cell polarity or Wnt/calcium pathways [13,14,15,16,17].
    [Show full text]