INDUSTRIAL INSTRUMENTATION (2–Year Course) Revised June 2016 CURRICULUM FOR

Total Page:16

File Type:pdf, Size:1020Kb

INDUSTRIAL INSTRUMENTATION (2–Year Course) Revised June 2016 CURRICULUM FOR GOVERNMENT OF THE PUNJAB TECHNICAL EDUCATION & VOCATIONAL TRAINING AUTHORITY CURRICULUM FOR INDUSTRIAL INSTRUMENTATION (2–Year Course) Revised June 2016 CURRICULUM FOR CURRICULUM SECTION ACADEMICS DEPARTMENT 96-H, GULBERG-II, LAHORE Ph # 042-99263055-9, 99263064 [email protected], [email protected] Industrial Instrumentation (2 – Year Course) 1 TRAINING OBJECTIVES Increasing tendency for adopting of emerging technologies systems by the industry has made the qualitative production with more speed. The most of the works are being shifted from manual system to automation. To carry out the works of machine operations, rectification and maintenance of such machines, the skillful workforce would be required having ability to take on such responsibility. This curriculum of two years duration consisting upon 4 semesters is revised/updated by more focusing on practical alongwith necessarily required theoretical knowledge keeping in view the present & future need of industrial demand. The curriculum covers the major topics of “Domestic wiring, Measuring instruments, Relay logic control & PCB Design, Analog Electronics, AC/DC Machine, Power Electronics, AC/DC drives, Digital electronics, PLCs, Electro pneumatics, Microprocessor & Microcontroller techniques, Process variable & control techniques, Distribution control system and most important, the in- plant training, alongwith Technical Mathematics, Technical Drawing, Functional English and Work Ethics”. CURRICULUM SALIENTS Name of course : Industrial Instrumentation Entry Level : Matric Total duration of course : 2 Years (4 Semester) Total training hours : 3200 Contact Hours 800 Contact Hours per semester. Training Methodology : Practical 70% Theory 30% Medium Of instruction : Urdu/ English Developed by Curriculum Section, Academics Depa rtment TEVTA. Industrial Instrumentation (2 – Year Course) 2 SKILL PROFICIENCY DETAILS On successful completion of the course, is trainee should be able to: - 1. Adapt safety rules while dealing with electrical circuits and components and prevent electric shock for others and themselves. 2. Use measurement and test equipment safely and accurately. 3. Assemble/ repair electronic control cards. 4. Operate and maintain : a. Industrial wiring b. AC/DC Machines c. Inverters/ converters d. Low power transformer e. Electro pneumatic control system f. Process control units g. Microprocessor/Microcontroller h. PLC System 5. Installation/ commissioning & shut down of industrial system in: a. Manufacturing sector b. Textile c. Process d. Chemical/ petrochemical e. Fertilizer/food f. Cement plant . Developed by Curriculum Section, Academics Depa rtment TEVTA. Industrial Instrumentation (2 – Year Course) 3 KNOWLEDGE PROFICIENCY DETAILS On the successful completion of the course the trainee should be able to: - 1. Define terms of electrical, electronics and instrumentation fields. 2. State working and characteristics of AC/DC machines and drives control. 3. Describe the process and pneumatic control loops and controllers. 4. Evaluate and logically analyze microprocessor/ microcontrollers. 5. Explain the logic control based system. 6. Describe the essentials of advanced Industrial Instrumentation Developed by Curriculum Section, Academics Depa rtment TEVTA. Industrial Instrumentation (2 – Year Course) 4 SCHEME OF STUDIES Industrial Instrumentation (2 – Years Course) 1st Semester Sr. Theory Practical Total Subject No. Hours Hours Hours 1. Work shop practice –I 28 120 148 2. Domestic Wiring & soldering 40 170 210 3. Basic Electrical Engineering-I 52 152 202 4. Measuring Instruments 20 40 60 5. Technical Math – I 60 - 60 6. Technical Drawing – I 20 40 60 7. Functional English 20 20 40 8. Work Ethics - 20 20 Total 240 560 800 2nd Semester Sr. Theory Practical Total Subject No. Hours Hours Hours 1. Basic Machine Work 20 60 80 2. Relay Logic & PCB design 40 100 140 3. Analog Electronics – I 60 100 160 4. Digital Electronics – I 30 90 120 5. Basic Electrical Engineering – II 50 130 180 6. Technical Math – II 20 - 20 7. Technical Drawing -II - 40 40 8. Functional English 20 20 40 9. Work Ethics - 20 20 Total 240 560 800 Developed by Curriculum Section, Academics Depa rtment TEVTA. Industrial Instrumentation (2 – Year Course) 5 3rd Semester Sr. Theory Practical Total Subject No. Hours Hours Hours 1. Industrial Wiring 20 100 120 2. Analog Electronics – II 20 60 80 3. Digital Electronics-II 20 40 60 4. Computer Applications 20 60 80 5. AC/DC Machines 20 60 80 6. Power Electronics 20 20 40 7. Process Variable Measurement-I 40 80 120 8. Process Control Technique-I 20 40 60 9. Electro Pneumatics 40 60 100 10. Functional English 20 20 40 11. Work Ethics - 20 20 Total 240 560 800 4th Semester Sr. Theory Practical Total Subject No. Hours Hours Hours 1. Industrial Project Work 60 100 160 Microprocessor techniques & Micro 2. 40 40 80 controller 3. PLCs 40 40 80 4. Process Variable Measurement-II 40 60 100 5. Process Control Technique-II 20 80 100 6. In-Plant training - 160 160 7. Distribution Control System 20 40 60 8. Functional English 20 20 40 9. Work Ethics - 20 20 Total 240 560 800 Developed by Curriculum Section, Academics Depa rtment TEVTA. Industrial Instrumentation (2 – Year Course) 6 DETAIL OF COURSE CONTENTS Industrial Instrumentation (2 Year Course) 1st SEMESTER S. Theory Practical Detail of Topics No. Hours Hours 3.1. Workshop Practice-I 28 120 1.2. Domestic Wiring & Soldering 2.1. Soldering 15 65 2.1.1. Terminal plate 2.1.2. Cross soldering 2.1.3. Diagonal soldering 2.1.4. Dice soldering 2.1.5. Soldering with connector block 2.1.6. PCB components soldering 2.1.7. T. Joint 2.1.8. Cross Joint 2.2. Wire And Cable Handling 15 56 2.2.1. Laying of wires, 1 2.2.2. Handling of wires. 2 2.2.3. Handling of wires in vertical position 2.2.4. Laying of cable 2.2.5. On-off lamp with single pole switch 2.2.6. Two-way with intermediate switch. 2.3. Domestic Wiring 10 49 2.3.1. On off switch circuit 2.3.2. Two way switch circuit 2.3.3. Three way switch circuit 2.3.4. Single phase watt meter. 2.3.5. Stair case timer circuit. 3. Basic Electrical Engineering 3.1. Introduction 4 - 3.1.1. Trade introduction 3.1.2. Laboratory introduction 3.1.3. Laboratory safety Developed by Curriculum Section, Academics Depa rtment TEVTA. Industrial Instrumentation (2 – Year Course) 7 3.1.4. Trade safety 3.2. Electricity, Attributes, Causes, Features 6 6 3.2.1. Electrical changes 3.2.2. Atomic structure and attributes 3.2.3. Atomic structure of silicon 3.2.4. Conductor, insulator and semiconductor 3.3. Electrical Voltage 3.3.1. Electrical charges/voltage 4 14 3.3.2. Generation of voltage ( heat, chemical, light, pressure, friction, induction) 3.3.3. Different voltage mixed voltage 3.3.4. Measuring voltage 3.4. Electrical Current 4 8 3.4.1. Electrical circuit (closed and open) 3.4.2. Definition of current and direction of electrons 3.4.3. Different currents 3.4.4. Measuring current 3.5. Electrical Resistance 4 10 3.5.1. Specific resistance 3.5.2. Conductivity of different materials 3.6. The Simple Electrical Circuits 3.6.1. The setup of an electrical circuit 4 14 3.6.2. Arrows representing voltage and current 3.6.3. Ohm’s law 3.6.4. Measuring and calculating of V.I.R 3.7. Types Of Resistors 3.7.1. Types of resistors (material vise) 4 20 3.7.2. Types of resistors configuration (variable fix liner, logarithmic) 3.7.3. Color coding of resistor (3 and 4 band, military, RKM code) 3.7.4. Wattages of resistors Developed by Curriculum Section, Academics Depa rtment TEVTA. Industrial Instrumentation (2 – Year Course) 8 3.7.5. Special resistors 3.8. Resistance And Temperature 3.8.1. Demonstration of resistance upon 2 10 temperature 3.8.2. Cold and hot conductors 3.9. Resistors In Circuits 3.9.1. Series connection 4 20 3.9.2. Parallel connection 3.9.3. Kerchief’s laws 3.9.4. Combined circuits 3.9.5. Voltage divider 3.10. Electrical Power And Work 3.10.1. Electrical power 4 20 3.10.2. Electrical work / energy 3.10.3. Measuring and resistance 3.10.4. Power & resistance 3.10.5. Efficiency 3.11. Energy Voltage & Current Sources 3.11.1. Voltage source under different loads 4 10 3.11.2. Internal resistance of energy sources 3.11.3. Matching power / voltage 3.11.4. Constant current source 3.11.5. Series connection of voltage sources 3.11.6. Parallel connection voltage sources 3.12. Electrical Field & Capacitor 3.12.1. Electrical field intensity 2 18 3.12.2. Dielectric polarization 3.12.3. Capacitance of capacitors 3.12.4. Capacitor in DC circuit chagrining & discharging 3.12.5. Capacitor 3.12.6. In series / parallel circuit 3.12.7. Different capacitors material / structure. Developed by Curriculum Section, Academics Depa rtment TEVTA. Industrial Instrumentation (2 – Year Course) 9 4. Measuring Instruments 4.1. General Concept 2 - 4.1.1. Measurement in different applications 4.1.2. Analogs vs. Digital systems 4.2. Analog Measuring System 4.2.1. General 6 6 4.2.2. Working principle of meter 4. 4.2.3. Operation of a meter reading 4.2.4. Accuracy of a meter / classification 4.2.5. Occurring errors 4.2.6. Systematic errors 4.2.7. Outside influence 4.3. Measuring Voltage And Current Using Different Instruments 2 4 4.3.1. DC values 4.3.2. AC Values 4.3.3. AC+DC values 4.3.4. Comparing different meters advantages/disadvantages 4.3.5. Applications 4.4. Measuring Of Resistance 4.4.1. Indirect method (voltmeter / ammeter) 2 4 4.4.2. Direct method 4.5. Measuring Power And Work 4.5.1. Power ( AC/DC) work (AC/DC) 4.5.2.
Recommended publications
  • ANT-FR Autonomous NERF Turret with Facial Recognition University
    Final Project and Group Identification Document ANT-FR Autonomous NERF Turret with Facial Recognition A mounted non-expanding recreational foam turret that utilizes facial recognition software to detect and acquire designated targets within a field of vision. University of Central Florida Group 23 Steffen J. Camarato Nicolas Jaramillo Michael A. Young B.S., Computer Engineering B.S., Computer Engineering B.S., Electrical Engineering Sponsors: Soar Technology, Inc. (SoarTech) Valencia College Division of Engineering and Built Environments Table of Contents 1 Executive Summary ..................................................................................................... 1 2 Project Description ...................................................................................................... 3 2.1 Project Motivation and Goals ............................................................................. 3 2.2 Objectives ........................................................................................................... 4 2.3 Requirements Specifications ............................................................................... 4 2.4 House of Quality Analysis .................................................................................. 6 2.5 Initial Design Architectures and Related Diagrams ............................................ 7 2.5.1 Unified Modeling Language Use Case Diagram .......................................... 7 2.5.2 Software Block Diagram..............................................................................
    [Show full text]
  • Linux Ohne X Mit Dem Raspberry Pi
    Noch Eine Raspberry KurzAnleitung Linu – Linux ohne X mit dem Raspberry Pi Alfred H. Gitter∗ Version vom 28. Oktober 2020 Das vorliegende Manuskript ist eine langsame Baustelle und soll erst nach Vollendung der Sagrada Família fertig werden. Informationen und Ratschläge werden ohne Gewähr gegeben ! KonstruktiveA.H. Kritik und auch Aufmunterung Gitter bitte per E-Mail. ∗E-Mail: [email protected] Inhaltsverzeichnis 1 Grundlagen 6 1.1 Vorbemerkungen . 6 1.1.1 Rechenleistung . 6 1.1.2 Betriebssystem (OS) . 6 1.1.3 Terminals . 6 1.2 Hardware . 8 1.2.1 Raspberry Pi . 8 1.2.2 Datenaustausch durch GPIO . 12 1.2.3 Externe Elektronik . 14 2 Installation und Konfiguration 24 2.1 Betriebssystem auf eine Speicherkarte übertragen . 24 2.2 Grundkonfiguration . 25 2.2.1 Konfiguration mit raspi-config, Neustart und Beenden . 25 2.2.2 Umgebungsvariablen und Kurzbefehle setzen mit .bashrc . 29 2.2.3 WLAN Konfiguration, Fernsteuerung über SSH . 30 2.2.4 Größere Schrift, Unterverzeichnisse einrichten . 34 2.2.5 Konfigurations- und Informationsdateien . 35 2.3 Audio . 36 2.3.1 Ausgabe über HDMI oder Analogausgang . 36 2.3.2 Eingabe durch USB-Mikrophon . 37 2.3.3 Ein- und Ausgabe über USB-Soundkarte . 38 2.4 Autostart . 40 2.4.1 rc.local (veraltet) . 40 2.4.2 Dienstanmeldung in systemd . 40 2.4.3 Autostart mit .bashrc . 41 3 Administration des Systems 42 3.1 Paketverwaltung . 42 3.1.1 Aktualisierung . 43 3.1.2A.H. Paketinstallation, -löschung und Gitter -information . 43 3.1.3 Wichtige Pakete . 44 3.2 Der Linux-Framebuffer .
    [Show full text]
  • Scientific Notation
    Scientific notation Scientific notation (also referred to as scientific form or standard index form, or standard form in the UK) is a way of expressing numbers that are too big or too small to be conveniently written in decimal form. It is commonly used by scientists, mathematicians and engineers, in part because it can simplify certain arithmetic operations. On scientific calculators it is usually known as "SCI" display mode. In scientific notation, all numbers are written in the form Decimal notation Scientific notation m × 10n 2 2 × 100 300 3 × 102 (m times ten raised to the power of n), where the exponent n is an integer, and the coefficient m is any real number. The integer n is called the order of 4,321.768 4.321 768 × 103 [1] magnitude and the real number m is called the significand or mantissa. −53,000 −5.3 × 104 However, the term "mantissa" may cause confusion because it is the name of 6,720,000,000 6.72 × 109 the fractional part of the common logarithm. If the number is negative then a minus sign precedes m (as in ordinary decimal notation). In normalized 0.2 2 × 10−1 notation, the exponent is chosen so that the absolute value (modulus) of the 987 9.87 × 102 significand m is at least 1 but less than 10. 0.000 000 007 51 7.51 × 10−9 Decimal floating point is a computer arithmetic system closely related to scientific notation. Contents Normalized notation Engineering notation Significant figures Estimated final digit(s) E-notation Examples and other notations Order of magnitude Use of spaces Further examples of scientific notation Converting numbers Decimal to scientific Scientific to decimal Exponential Basic operations Other bases See also References External links Normalized notation Any given real number can be written in the form m × 10n in many ways: for example, 350 can be written as 3.5 × 102 or 35 × 101 or 350 × 100.
    [Show full text]
  • Parallel Circuits and Current Dividers
    Modular Electronics Learning (ModEL) project * SPICE ckt v1 1 0 dc 12 v2 2 1 dc 15 r1 2 3 4700 r2 3 0 7100 .dc v1 12 12 1 .print dc v(2,3) .print dc i(v2) .end V = I R Parallel Circuits and Current Dividers c 2016-2021 by Tony R. Kuphaldt – under the terms and conditions of the Creative Commons Attribution 4.0 International Public License Last update = 15 September 2021 This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International Public License. A copy of this license is found in the last Appendix of this document. Alternatively, you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. ii Contents 1 Introduction 3 2 Case Tutorial 5 2.1 Example: Battery, lamps, jumper wires, and meters .................. 6 2.2 Example: Three-resistor circuit .............................. 9 2.3 Example: Five-resistor circuit ............................... 10 3 Simplified Tutorial 11 4 Full Tutorial 17 5 Derivations and Technical References 35 5.1 Derivation of parallel resistance formulae ......................... 36 5.2 Metric prefixes ....................................... 38 5.3 Resistor labeling ...................................... 41 6 Programming References 43 6.1 Programming in C++ ................................... 44 6.2 Programming in Python .................................. 48 6.3 Modeling a parallel circuit using C++ .......................... 53 7 Questions 55 7.1 Conceptual reasoning .................................... 59 7.1.1 Reading outline and reflections .........................
    [Show full text]