Image Analytic Tools for Tissue Characterization Using Optical Coherence Tomography
Total Page:16
File Type:pdf, Size:1020Kb
Image analytic tools for tissue characterization using optical coherence tomography Yu Gan Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2017 2017 Yu Gan All Rights Reserved ABSTRACT Image analytic tools for tissue characterization using optical coherence tomography Yu Gan Optical coherence tomography (OCT) has been emerging as a promising imaging technique, with a strong capability of non-invasive, in vivo, high resolution, depth-resolved imaging. There is a great potential to use OCT to guide the treatment of arrhythmias, to prevent preterm birth, and to detect breast cancer. To facilitate the clinical applications, this thesis presents three image analytic tools to characterize biological tissue: 1) automated fiber direction analysis; 2) automated volumetric stitching; 3) automated tissue classification. The fiber direction analysis consists of a particle-filter-based 3D tractography scheme and a pixel-wise fiber analysis scheme. The stitching algorithm enlarges the field of view of current OCT system from millimeter to centimeter level by volumetric stitching using scale-invariant feature transform. Based on relevance vector machine, a region-based classification scheme and a grid-based classification scheme are developed to automatically identify tissue composition in human cardiac tissue and human breast tissue. These tools are collaboratively used to study OCT images from cardiac, cervical, and breast tissue. In cardiac tissue, we apply the fiber orientation analysis to reconstruct 3D cardiac myofibers tractography and perform pixel-wise fiber analysis on the collagen region within human heart. In addition, we apply the region-based algorithm to segment and classify tissue compositions, such as collagen, adipose tissue, fibrotic myocardium, and normal myocardium, over a single or a stitched OCT volume. Using our algorithm, we observe fiber directionality change over depths and find that the fiber orientation changes more dramatically in atria than in ventricle. We also observe different dispersion patterns within collagen layer. In cervical tissue, our stitching algorithm enables a paramount 3D view of entire axial slices. Together with pixel-wise fiber orientation scheme, we analyze the difference of dispersion property within inner/outer regions of four quadrants. We observe two dispersion patterns in pregnant and non-pregnant cervical tissue at the location close to upper cervix. In addition, we discover that an increasing trend of dispersion and an increasing trend of penetration depth from internal orifice (os) to external os. In breast tissue, we visualize various features in both benign and malignant tissues such as invasive ductal carcinoma (IDC), ductal carcinoma in situ, cyst, and terminal duct lobule unit in stitched OCT images. Focusing on the automated detection of IDC, we propose a hierarchy framework of classification model and apply our classifier in two OCT systems and achieve both reasonable sensitivity and specificity in identifying cancerous region. Table of Content List of Figures ................................................................................................................................ ix List of Tables .............................................................................................................................. xxii Acknowledgement ..................................................................................................................... xxiv Chapter 1 Background and Significance......................................................................................... 1 1.1 Optical coherence tomography.............................................................................................. 1 1.1.1 Time Domain OCT ......................................................................................................... 3 1.1.2 Fourier Domain OCT...................................................................................................... 4 1.2 OCT techniques in biomedical imaging ................................................................................ 5 1.3 Challenges in OCT image analytic tools ............................................................................... 7 1.4 Existing OCT image analytic tools ....................................................................................... 8 1.4.1 Fiber orientation analysis................................................................................................ 8 1.4.2 Stitching algorithm ......................................................................................................... 9 1.4.3 Automated segmentation and tissue classification ....................................................... 10 1.5 Objective ............................................................................................................................. 11 Chapter 2 Automated algorithm for Fiber orientation analysis .................................................... 13 i 2.1 Introduction ......................................................................................................................... 13 2.2 Three-dimensional orientation and tractography of myofibers ........................................... 15 2.2.1 Quantification of fiber orientation in three dimensions ................................................ 15 2.2.2 Tractography of fibers· in three dimensions ................................................................. 19 2.3 Pixel-wise orientation estimations and dispersion analysis ................................................ 23 2.3.1 Pixel-wise orientation estimation ................................................................................. 23 2.3.2 Distribution fitting ........................................................................................................ 25 2.4 Method validation ............................................................................................................... 26 2.4.1 Validation setup ............................................................................................................ 26 2.4.2 Validation of 3D fiber orientation quantification ......................................................... 26 2.4.3 Comparison with manual measurements ...................................................................... 27 2.4.4 Rotation test .................................................................................................................. 29 2.4.5 3D tractography ............................................................................................................ 32 2.4.6 Pixel-wise fiber orientation .......................................................................................... 33 2.4.7 Comparison with intensity gradient technique ............................................................. 34 2.5 Discussion ........................................................................................................................... 35 2.6 Conclusion ........................................................................................................................... 36 ii Chapter 3 Automated stitching algorithm to enlarge OCT Field of View .................................... 38 3.1 Introduction ......................................................................................................................... 38 3.2 Stitching algorithm .............................................................................................................. 39 3.2.1 Algorithm flow ............................................................................................................. 39 3.2.2 Step 1: registration within en face plane ...................................................................... 41 3.2.3 Step 2: registration along axial axis .............................................................................. 46 3.2.4 Step 3: post-processing ................................................................................................. 48 3.3 Method validation ............................................................................................................... 50 3.3.1 Validation setup ............................................................................................................ 50 3.3.2 Auto-correction method ................................................................................................ 51 3.3.3 Stitching accuracy ......................................................................................................... 52 3.3.4 Multiband blending and gain compensation ................................................................. 53 3.4 Discussion ........................................................................................................................... 55 3.5 Conclusion ........................................................................................................................... 56 Chapter 4 Automated classification of tissue composition ........................................................... 57 4.1 Introduction ......................................................................................................................... 57 4.2 Automated classification of myocardium ........................................................................... 58 iii 4.2.1 Algorithm flow ............................................................................................................