ADCY2, ADCY5, and GRIA1 Are the Key Genes of Camp Signaling Pathway to Participate in Osteoporotic Spinal Fracture After the Manipulation of Wnt Signaling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Original Article Upregulation of HOXA13 As a Potential Tumorigenesis and Progression Promoter of LUSC Based on Qrt-PCR and Bioinformatics
Int J Clin Exp Pathol 2017;10(10):10650-10665 www.ijcep.com /ISSN:1936-2625/IJCEP0065149 Original Article Upregulation of HOXA13 as a potential tumorigenesis and progression promoter of LUSC based on qRT-PCR and bioinformatics Rui Zhang1*, Yun Deng1*, Yu Zhang1, Gao-Qiang Zhai1, Rong-Quan He2, Xiao-Hua Hu2, Dan-Ming Wei1, Zhen-Bo Feng1, Gang Chen1 Departments of 1Pathology, 2Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China. *Equal contributors. Received September 7, 2017; Accepted September 29, 2017; Epub October 1, 2017; Published October 15, 2017 Abstract: In this study, we investigated the levels of homeobox A13 (HOXA13) and the mechanisms underlying the co-expressed genes of HOXA13 in lung squamous cancer (LUSC), the signaling pathways in which the co-ex- pressed genes of HOXA13 are involved and their functional roles in LUSC. The clinical significance of 23 paired LUSC tissues and adjacent non-tumor tissues were gathered. HOXA13 levels in LUSC were detected by quantita- tive real-time polymerase chain reaction (qRT-PCR). HOXA13 levels in LUSC from The Cancer Genome Atlas (TCGA) and Oncomine were analyzed. We performed receiver operator characteristic (ROC) curves of various clinicopath- ological features of LUSC. Co-expressed of HOXA13 were collected from MEM, cBioPortal and GEPIA. The func- tions and pathways of the most reliable overlapped genes were achieved from the Gene Otology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. The protein-protein interaction (PPI) net- works were mapped using STRING. HOXA13 in LUSC were markedly upregulated compared with those in the non- cancerous controls as demonstrated by qRT-PCR (LUSC: 0.330±0.360; CONTROLS: 0.155±0.142; P=0.021). -
Adenylate Cyclase 3: a New Target for Anti‐Obesity Drug Development
obesity reviews doi: 10.1111/obr.12430 Obesity Pharmacotherapy Adenylate cyclase 3: a new target for anti-obesity drug development L. Wu,1 C. Shen,2 M. Seed Ahmed,3 C.-G. Östenson4 and H. F. Gu5,6 1Jiangsu Key Laboratory of Drug Screening, Summary China Pharmaceutical University, Nanjing Obesity has become epidemic worldwide, and abdominal obesity has a negative im- 210009, China, 2Department of Epidemiology, pact on health. Current treatment options on obesity, however, still remain limited. School of Public Health, Nanjing Medical It is then of importance to find a new target for anti-obesity drug development University, Nanjing 211166, China, 3Unit for based upon recent molecular studies in obesity. Adenylate cyclase 3 (ADCY3) is Medical Education, Centre for Learning and the third member of adenylyl cyclase family and catalyses the synthesis of cAMP Knowledge, Department of Learning, from ATP. Genetic studies with candidate gene and genome-wide association study Informatics, Management and Ethics, approaches have demonstrated that ADCY3 genetic polymorphisms are associated Karolinska Institutet, Stockholm 17177, with obesity in European and Chinese populations. Epigenetic studies have indi- Sweden, 4Rolf Luft Center for Diabetes cated that increased DNA methylation levels in the ADCY3 gene are involved in Research and Endocrinology, Department of the pathogenesis of obesity. Furthermore, biological analyses with animal models Molecular Medicine and Surgery, Karolinska have implicated that ADCY3 dysfunction resulted in increased body weight and Institutet, Karolinska University Hospital, Solna, fat mass, while reduction of body weight is partially explained by ADCY3 activa- Stockholm 17176, Sweden, 5Department of tion. In this review, we describe genomic and biological features of ADCY3, sum- Clinical Science, Intervention and marize genetic and epigenetic association studies of the ADCY3 gene with obesity Technologies, Karolinska Institutet, Karolinska and discuss dysfunction and activation of ADCY3. -
Genome-Wide Association and Transcriptome Studies Identify Candidate Genes and Pathways for Feed Conversion Ratio in Pigs
Miao et al. BMC Genomics (2021) 22:294 https://doi.org/10.1186/s12864-021-07570-w RESEARCH ARTICLE Open Access Genome-wide association and transcriptome studies identify candidate genes and pathways for feed conversion ratio in pigs Yuanxin Miao1,2,3, Quanshun Mei1,2, Chuanke Fu1,2, Mingxing Liao1,2,4, Yan Liu1,2, Xuewen Xu1,2, Xinyun Li1,2, Shuhong Zhao1,2 and Tao Xiang1,2* Abstract Background: The feed conversion ratio (FCR) is an important productive trait that greatly affects profits in the pig industry. Elucidating the genetic mechanisms underpinning FCR may promote more efficient improvement of FCR through artificial selection. In this study, we integrated a genome-wide association study (GWAS) with transcriptome analyses of different tissues in Yorkshire pigs (YY) with the aim of identifying key genes and signalling pathways associated with FCR. Results: A total of 61 significant single nucleotide polymorphisms (SNPs) were detected by GWAS in YY. All of these SNPs were located on porcine chromosome (SSC) 5, and the covered region was considered a quantitative trait locus (QTL) region for FCR. Some genes distributed around these significant SNPs were considered as candidates for regulating FCR, including TPH2, FAR2, IRAK3, YARS2, GRIP1, FRS2, CNOT2 and TRHDE. According to transcriptome analyses in the hypothalamus, TPH2 exhibits the potential to regulate intestinal motility through serotonergic synapse and oxytocin signalling pathways. In addition, GRIP1 may be involved in glutamatergic and GABAergic signalling pathways, which regulate FCR by affecting appetite in pigs. Moreover, GRIP1, FRS2, CNOT2,andTRHDE may regulate metabolism in various tissues through a thyroid hormone signalling pathway. -
Gene and Pathway-Based Second-Wave Analysis of Genome-Wide Association Studies
European Journal of Human Genetics (2010) 18, 111–117 & 2010 Macmillan Publishers Limited All rights reserved 1018-4813/10 $32.00 www.nature.com/ejhg ARTICLE Gene and pathway-based second-wave analysis of genome-wide association studies Gang Peng1, Li Luo2, Hoicheong Siu1, Yun Zhu1, Pengfei Hu1, Shengjun Hong1, Jinying Zhao3, Xiaodong Zhou4, John D Reveille4, Li Jin1, Christopher I Amos5 and Momiao Xiong*,2 Despite the great success of genome-wide association studies (GWAS) in identification of the common genetic variants associated with complex diseases, the current GWAS have focused on single-SNP analysis. However, single-SNP analysis often identifies only a few of the most significant SNPs that account for a small proportion of the genetic variants and offers only a limited understanding of complex diseases. To overcome these limitations, we propose gene and pathway-based association analysis as a new paradigm for GWAS. As a proof of concept, we performed a comprehensive gene and pathway-based association analysis of 13 published GWAS. Our results showed that the proposed new paradigm for GWAS not only identified the genes that include significant SNPs found by single-SNP analysis, but also detected new genes in which each single SNP conferred a small disease risk; however, their joint actions were implicated in the development of diseases. The results also showed that the new paradigm for GWAS was able to identify biologically meaningful pathways associated with the diseases, which were confirmed by a gene-set-rich analysis using gene expression -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Table S1. Detailed Clinical Features of Individuals with IDDCA and LADCI Syndromes
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Med Genet Table S1. Detailed clinical features of individuals with IDDCA and LADCI syndromes Lodder E., De Nittis P., Koopman C. et al., 2016 Family A Family B Family C Family D Family E Family F Individual 1 2 3 4 5 6 7 8 9 Gender, Age (years) F, 22 F, 20 F, 6 F, 11 M, 9 F, 12 F, 13 M, 8 M, 23 c.249G>A,r.249_250 c.249G>A,r.249_250 Nucleotide change c.249+1G>T/ c.249+3G>T/ c.249+3G>T/ c.906C>G/ c.242C>T/ c.242C>T/ c.242C>T/ ins249+1_249+25/ ins249+1_249+25/ (NM_006578.3) c.249+1G>T c.249+3G>T c.249+3G>T c.906C>G c.242C>T c.242C>T c.242C>T c.994C>T c.994C>T Amino acid change p.Asp84Valfs*52/ p.Asp84Valfs*52/ p.Asp84Leufs*31/ p.Asp84Valfs*31/ p.Asp84Valfs*31/ p.Tyr302*/ p.(Ser81Leu)/ p.(Ser81Leu)/ p.(Ser81Leu)/ (NP_006569.1) p.(Arg332*) p.(Arg332*) p.Asp84Leufs*31 p.Asp84Valfs*31 p.Asp84Valfs*31 p.Tyr302* p.(Ser81Leu) p.(Ser81Leu) p.(Ser81Leu) 3580 g (50th 2751 g (15 th Birth weight NA NA NA 2845 g (15th NA NA NA percentile) percentile) percentile) Ethnicity Italy Italy Jordan Puerto Rico Puerto Rico India Morocco Morocco Brazil Consanguinity − − + + + − − − + Altered speech + + NR + + + + + NA development - Verbal NA NA nonverbal unremarkable unremarkable NA NA NA NA understanding - Lexical production NA NA nonverbal delayed delayed nonverbal delayed delayed NA Intellectual + + + + + + mild mild mild disability (ID) Epilepsy + + + - -
Microrna Let-7I-5P Mediates the Relationship Between Muscle Fat
www.nature.com/scientificreports OPEN microRNA let‑7i‑5p mediates the relationship between muscle fat infltration and neck pain disability following motor vehicle collision: a preliminary study James M. Elliott1,2, Cathleen A. Rueckeis3, Yue Pan3,4, Todd B. Parrish2,5, David M. Walton6 & Sarah D. Linnstaedt3,7* Persistent neck‑pain disability (PNPD) is common following traumatic stress exposures such as motor vehicle collision (MVC). Substantial literature indicates that fat infltration into neck muscle (MFI) is associated with post‑MVC PNPD. However, little is known about the molecular mediators underlying this association. In the current study, we assessed whether microRNA expression signatures predict PNPD and whether microRNA mediate the relationship between neck MFI and PNPD. A nested cohort of 43 individuals from a longitudinal study of MVC survivors, who provided blood (PAXgene RNA) and underwent magnetic resonance imaging (MRI), were included in the current study. Peritraumatic microRNA expression levels were quantifed via small RNA sequencing, neck MFI via MRI, and PNPD via the Neck Disability Index two‑weeks, three‑months, and twelve‑months following MVC. Repeated measures regression models were used to assess the relationship between microRNA and PNPD and to perform mediation analyses. Seventeen microRNA predicted PNPD following MVC. One microRNA, let‑7i‑5p, mediated the relationship between neck MFI and PNPD. Peritraumatic blood‑ based microRNA expression levels predict PNPD following MVC and let‑7i‑5p might contribute to the underlying efects of neck MFI on persistent disability. In conclusion, additional studies are needed to validate this fnding. While most individuals recover following traumatic stress exposures such as motor vehicle collision (MVC), a substantial subset develop adverse posttraumatic neuropsychiatric sequelae such as persistent neck pain and persistent neck-pain related disability (PNPD)1–4, which is typically measured by a self-report region-specifc disability scale (such as the Neck Disability Index (NDI)5). -
Supplementary Table 2
Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942 -
Increased Plasma Levels of Adenylate Cyclase 8 and Camp Are Associated with Obesity and Type 2 Diabetes: Results from a Cross-Sectional Study
biology Article Increased Plasma Levels of Adenylate Cyclase 8 and cAMP Are Associated with Obesity and Type 2 Diabetes: Results from a Cross-Sectional Study 1, 2, , 2, 2 Samy M. Abdel-Halim y, Ashraf Al Madhoun * y , Rasheeba Nizam y, Motasem Melhem , Preethi Cherian 3, Irina Al-Khairi 3, Dania Haddad 2, Mohamed Abu-Farha 3 , Jehad Abubaker 3, Milad S. Bitar 4 and Fahd Al-Mulla 2,* 1 Department of Oncology, Karolinska University Hospital, 17177 Stockholm, Sweden; [email protected] 2 Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; [email protected] (R.N.); [email protected] (M.M.); [email protected] (D.H.) 3 Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; [email protected] (P.C.); [email protected] (I.A.-K.); [email protected] (M.A.-F.); [email protected] (J.A.) 4 Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Jabriya 046302, Kuwait; [email protected] * Correspondence: [email protected] (A.A.M.); [email protected] (F.A.-M.); Tel.: +965-2224-2999 (ext. 2805) (A.A.M.); +965-6777-1040 (F.A.-M.) These authors equally contributed to this work. y Received: 5 July 2020; Accepted: 20 August 2020; Published: 24 August 2020 Abstract: Adenylate cyclases (ADCYs) catalyze the conversion of ATP to cAMP,an important co-factor in energy homeostasis. Giving ADCYs role in obesity, diabetes and inflammation, we questioned whether calcium-stimulated ADCY isoforms may be variably detectable in human plasma. -
The Suppressive Role of Mir-542-5P in NSCLC
He et al. BMC Cancer (2017) 17:655 DOI 10.1186/s12885-017-3646-1 RESEARCH ARTICLE Open Access The suppressive role of miR-542-5p in NSCLC: the evidence from clinical data and in vivo validation using a chick chorioallantoic membrane model Rong-quan He1†, Xiao-jiao Li2†, Lu Liang3, You Xie3, Dian-zhong Luo3, Jie Ma3, Zhi-gang Peng3, Xiao-hua Hu1,3* and Gang Chen3* Abstract Background: Non-small cell lung cancer (NSCLC) has led to the highest cancer-related mortality for decades. To enhance the efficiency of early diagnosis and therapy, more efforts are urgently needed to reveal the origins of NSCLC. In this study, we explored the effect of miR-542-5p in NSCLC with clinical samples and in vivo models and further explored the prospective function of miR-542-5p though bioinformatics methods. Methods: A total of 125 NSCLC tissue samples were collected, and the expression of miR-542-5p was detected by qRT-PCR. The relationship between miR-542-5p level and clinicopathological features was analyzed. The effect of miR-542-5p on survival time was also explored with K-M survival curves and Cox’s regression. The effect of miR-542- 5p on the tumorigenesis of NSCLC was verified with a chick chorioallantoic membrane (CAM) model. The potential target genes were predicted by bioinformatics tools, and relevant pathways were analyzed by GO and KEGG. Several hub genes were validated by Proteinatlas. Results: The expression of miR-542-5p was down-regulated in NSCLC tissues, and consistent results were also found in the subgroups of adenocarcinoma and squamous cell carcinoma. -
Loss-Of-Function Variants in ADCY3 Increase Risk of Obesity and Type 2 Diabetes
BRIEF COMMUNICATION https://doi.org/10.1038/s41588-017-0022-7 Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes Niels Grarup 1, Ida Moltke 2, Mette K. Andersen 1, Maria Dalby2, Kristoffer Vitting-Seerup2,3, Timo Kern1, Yuvaraj Mahendran1, Emil Jørsboe 2, Christina V. L. Larsen4,5, Inger K. Dahl-Petersen4, Arthur Gilly6, Daniel Suveges6, George Dedoussis7, Eleftheria Zeggini 6, Oluf Pedersen1, Robin Andersson 2, Peter Bjerregaard4,5, Marit E. Jørgensen4,5,8*, Anders Albrechtsen 2* and Torben Hansen 1,9* We have identified a variant in ADCY3 (encoding adenylate carriers had type 2 diabetes (P = 7.8 × 10−5; Table 1), while one had cyclase 3) associated with markedly increased risk of obesity impaired fasting glucose and one had impaired glucose tolerance. and type 2 diabetes in the Greenlandic population. The variant Notably, the association with type 2 diabetes remained significant disrupts a splice acceptor site, and carriers have decreased after adjustment for BMI (P = 6.5 × 10−4), suggesting that it is not ADCY3 RNA expression. Additionally, we observe an enrich- simply mediated by increased BMI. The effects on BMI and type 2 ment of rare ADCY3 loss-of-function variants among indi- diabetes were also observed, although with smaller sizes, when data viduals with type 2 diabetes in trans-ancestry cohorts. These were analyzed according to an additive genetic model (Table 1). findings provide new information on disease etiology relevant However, when we compared the recessive and additive models for future treatment strategies. with the full genotype model, we rejected the additive model (BMI, Identification of homozygous loss-of-function mutations in P = 0.002; type 2 diabetes, P = 0.004) but not the recessive model humans may readily provide information about the biological (BMI, P = 0.17; type 2 diabetes, P = 0.095). -
Epigenetic Modifications to Cytosine and Alzheimer's Disease
University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2017 EPIGENETIC MODIFICATIONS TO CYTOSINE AND ALZHEIMER’S DISEASE: A QUANTITATIVE ANALYSIS OF POST-MORTEM TISSUE Elizabeth M. Ellison University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.398 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Ellison, Elizabeth M., "EPIGENETIC MODIFICATIONS TO CYTOSINE AND ALZHEIMER’S DISEASE: A QUANTITATIVE ANALYSIS OF POST-MORTEM TISSUE" (2017). Theses and Dissertations--Chemistry. 86. https://uknowledge.uky.edu/chemistry_etds/86 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.