A Nuclear Export Signal Is Essential for the Cytosolic Localization of the Ran Binding Protein, Ranbp1 Stephanie A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
XPO1E571K Mutation Modifies Exportin 1 Localisation And
cancers Article XPO1E571K Mutation Modifies Exportin 1 Localisation and Interactome in B-Cell Lymphoma Hadjer Miloudi 1, Élodie Bohers 1,2, François Guillonneau 3 , Antoine Taly 4,5 , Vincent Cabaud Gibouin 6,7 , Pierre-Julien Viailly 1,2 , Gaëtan Jego 6,7 , Luca Grumolato 8 , Fabrice Jardin 1,2 and Brigitte Sola 1,* 1 INSERM U1245, Unicaen, Normandie University, F-14000 Caen, France; [email protected] (H.M.); [email protected] (E.B.); [email protected] (P.-J.V.); [email protected] (F.J.) 2 Centre de lutte contre le Cancer Henri Becquerel, F-76000 Rouen, France 3 Plateforme Protéomique 3P5, Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; [email protected] 4 Laboratoire de Biochimie Théorique, CNRS UPR 9030, Université de Paris, F-75005 Paris, France; [email protected] 5 Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, F-75005 Paris, France 6 INSERM, LNC UMR1231, F-21000 Dijon, France; [email protected] (V.C.G.); [email protected] (G.J.) 7 Team HSP-Pathies, University of Burgundy and Franche-Comtée, F-21000 Dijon, France 8 INSERM U1239, Unirouen, Normandie University, F-76130 Mont-Saint-Aignan, France; [email protected] * Correspondence: [email protected]; Tel.: +33-2-3156-8210 Received: 11 September 2020; Accepted: 28 September 2020; Published: 30 September 2020 Simple Summary: Almost 25% of patients with either primary mediastinal B-cell lymphoma (PMBL) or classical Hodgkin lymphoma (cHL) possess a recurrent mutation of the XPO1 gene encoding the major nuclear export protein. -
FAK Nuclear Export Signal Sequences
FEBS Letters 582 (2008) 2402–2406 FAK nuclear export signal sequences Valeria Ossovskayaa,1, Ssang-Taek Limb, Nobuyuki Otac, David D. Schlaepferb, Dusko Ilicc,d,* a Department of Anatomy, University of California San Francisco, San Francisco, CA, USA b Department of Reproductive Medicine, University of California, San Diego, CA, USA c A-cube Inc., Burlingame, CA, USA d Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA Received 13 April 2008; revised 28 May 2008; accepted 1 June 2008 Available online 10 June 2008 Edited by Varda Rotter accumulation. R177/R178A mutations also prevented FERM Abstract Ubiquitously expressed focal adhesion kinase (FAK), a critical component in transducing signals from sites of cell con- nuclear localization [12]. tacts with extracellular matrix, was named after its typical local- Since it is found in both cytoplasm and nucleus, FAK obvi- ization in focal adhesions. A nuclear localization of FAK has ously has to have a mechanism that enables nucleocytoplasmic been also reported and its scaffolding role in nucleus and require- shuttling. Leucine-rich nuclear export signal (NES) sequences ment for p53 ubiquitination were only recently described. often mediate protein export from the nucleus to the cyto- Whereas FAK nuclear localization signal (NLS) was found in plasm [13–16]. The first NES were identified in human immu- F2 lobe of FERM domain, nuclear export signal (NES) nodeficiency virus, type I-coded Rev protein [17] and protein sequences have not been yet determined. Here we demonstrate kinase A inhibitor of cAMP-dependent protein kinase [18]. that FAK has two NES sequences, NES1 in F1 lobe of FERM NES sequences consist of 4–5 hydrophobic residues within a domain and NES2 in kinase domain. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Functional Analysis of Sall4
UNIVERSITY OF CALIFORNIA, SAN DIEGO Functional analysis of Sall4 in modulating embryonic stem cell fate A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Pathology by Pei Jen A. Lee Committee in charge: Professor Steven Briggs, Chair Professor Geoff Rosenfeld, Co-Chair Professor Alexander Hoffmann Professor Randall Johnson Professor Mark Mercola 2009 Copyright Pei Jen A. Lee, 2009 All rights reserved. The dissertation of Pei Jen A. Lee is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Co-Chair ______________________________________________________________ Chair University of California, San Diego 2009 iii Dedicated to my parents, my brother ,and my husband for their love and support iv Table of Contents Signature Page……………………………………………………………………….…iii Dedication…...…………………………………………………………………………..iv Table of Contents……………………………………………………………………….v List of Figures…………………………………………………………………………...vi List of Tables………………………………………………….………………………...ix Curriculum vitae…………………………………………………………………………x Acknowledgement………………………………………………….……….……..…...xi Abstract………………………………………………………………..…………….....xiii Chapter 1 Introduction ..…………………………………………………………………………….1 Chapter 2 Materials and Methods……………………………………………………………..…12 -
Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R. -
Goat Anti-RCBTB2 Antibody Size: 100Μg Specific Antibody in 200Μl
EB09067 - Goat Anti-RCBTB2 Antibody Size: 100µg specific antibody in 200µl Target Protein Principal Names: RCBTB2, regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein 2, CHC1L, OTTHUMP00000018399, RCC1-like G UK Office exchanging factor RLG, chromosome condensation 1-like, regulator of chromosome condensation and BTB domain containing protein 2 Everest Biotech Ltd Official Symbol: RCBTB2 Cherwell Innovation Centre Accession Number(s): NP_001259.1 77 Heyford Park Human GeneID(s): 1102 Upper Heyford Non-Human GeneID(s): 105670 (mouse), 290363 (rat) Oxfordshire Important Comments: This antibody is not expected to cross-react with RCBTB1. OX25 5HD UK Immunogen Peptide with sequence CEHFRSSLEDNEDD, from the internal region of the protein Enquiries: sequence according to NP_001259.1. [email protected] Sales: Please note the peptide is available for sale. [email protected] Tech support: Purification and Storage [email protected] Purified from goat serum by ammonium sulphate precipitation followed by antigen affinity chromatography using the immunizing peptide. Tel: +44 (0)1869 238326 Supplied at 0.5 mg/ml in Tris saline, 0.02% sodium azide, pH7.3 with 0.5% bovine serum Fax: +44 (0)1869 238327 albumin. Aliquot and store at -20°C. Minimize freezing and thawing. US Office Everest Biotech c/o Abcore Applications Tested 405 Maple Street, Suite A106 Peptide ELISA: antibody detection limit dilution 1:2000. Ramona, Western blot: Preliminary experiments gave an approx. 30kDa band in Human Liver, CA 92065 Lung and Tonsil lysates after 1µg/ml antibody staining. Please note that currently we USA cannot find an explanation in the literature for the band we observe given the calculated size of 60.3kDa according to NP_001259.1. -
1 Supporting Information for a Microrna Network Regulates
Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia. -
Rangap1 Induces Gtpase Activity of Nuclear Ras-Related Ran (Gtpase-Activating Protein/Rccl/TC4/G2 Checkpoint) F
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 2587-2591, March 1994 Biochemistry RanGAP1 induces GTPase activity of nuclear Ras-related Ran (GTPase-activating protein/RCCl/TC4/G2 checkpoint) F. RALF BISCHOFF*t, CHRISTIAN KLEBEt, JURGEN KRETSCHMER*, ALFRED WITrINGHOFERt, AND HERWIG PONSTINGL* *Division for Molecular Biology of Mitosis, German Cancer Research Center, D-69120 Heidelberg, Federal Republic of Germany; and *Abteilung Strukturelle Biologie, Max-Planck-Institut ffr Molekulare Physiologie, D-44139 Dortmund, Federal Republic of Germany Communicated by Hans Neurath, December 3, 1993 ABSTRACT The nuclear Ras-related protein Ran binds DMAE-650/M (Merck; Superformance, 26 x 115 mm) in 20 guanine nucleotide and is involved in cell cycle regulation. mM Bis-Tris-propane HCl, pH 7.0/1 mM DTT with a linear Models of the signal pathway predict Ran to be active as gradient of NaCl from 0.05 M to 1 M at a flow rate of 5 Ran GTP at the initiation of S phase upon activation by the ml/min. Fractions containing RanGAP were pooled and nucleotide exchange factor RCC1 and to be inactivated for the immediately applied to a hydroxylapatite column (Merck; onset of mitosis by hydrolysis of bound GTP. Here a nuclear Superformance, 10 x 150 mm) in 20 mM potassium phos- homodimeric 65-kDa protein, RanGAPl, is described, which phate, pH 7.0/1 mM DTT, with a linear gradient from 20 mM we believe to be the immediate antagonist of RCC1. It was to 1 M phosphate at a flow rate of 2 ml/min. To fractions purified from HeLa cell lysates and induces GTPase activity of containing RanGAP, ammonium sulfate in 20 mM Bis-Tris- Ran, but not Ras, by more than 3 orders of magnitude. -
Nucleocytoplasmic Transport in Apoptosis
Nucleocytoplasmic transport in apoptosis E Ferrando-May*,1 Introduction 1 Molecular Toxicology Group, Faculty of Biology, University of Konstanz, PO The separation of the nucleus and the cytoplasm is the Box X911, 78457 Konstanz, Germany defining feature of eukaryotic cells and is achieved by the * Corresponding author: E Ferrando-May; Tel: þ 49 7531 884054; nuclear envelope, a double-membrane system of highly Fax: þ 49 7531 884033; E-mail: [email protected] selective permeability. Interchange of material between these two compartments occurs through dedicated transport chan- nels perforating the nuclear envelope, the nuclear pore complexes (NPCs). These are elaborate supramolecular structures consisting of about 30 different proteins, most of Abstract which are termed nucleoporins (Nups). The composition and structure of the NPC have been analysed in detail by a The apoptotic demolition of the nucleus is accomplished by combination of proteomics and electron microscopy ap- diverse proapoptotic factors, most of which are activated in proaches both in yeast and vertebrates, leading to a refined the cytoplasm and gain access to the nucleoplasm during the view of its molecular architecture. Essentially, the NPC is cell death process. The nucleus is also the main target for composed of three substructures of eight-fold rotational genotoxic insult, a potent apoptotic trigger. Signals generated symmetry: the cytoplasmic fibrils, the central framework, in the nucleus by DNA damage have to propagate to all and the nuclear basket (Figure 1). In the central framework, cellular compartments to ensure the coordinated execution of Nups form distinct subcomplexes which are arranged cell demise. The nucleocytoplasmic shuttling of signalling symmetrically with respect to the plane of the nuclear and execution factors is thus an integral part of the apoptotic envelope and enclose the central pore channel. -
Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002) -
RANBP1 (NM 002882) Human Recombinant Protein – TP323305 | Origene
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP323305 RANBP1 (NM_002882) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human RAN binding protein 1 (RANBP1) Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 23.1 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_002873 Locus ID: 5902 UniProt ID: P04049, P43487, L7RRS6, A0A140VK94 RefSeq Size: 884 Cytogenetics: 22q11.21 RefSeq ORF: 603 Synonyms: HTF9A Summary: This gene encodes a protein that forms a complex with Ras-related nuclear protein (Ran) and metabolizes guanoside triphosphate (GTP). This complex participates in the regulation of the cell cycle by controlling transport of proteins and nucleic acids into the nucleus. There are multiple pseudogenes for this gene on chromosomes 9, 12, 17, and X. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013] This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 RANBP1 (NM_002882) Human Recombinant Protein – TP323305 Product images: Coomassie blue staining of purified RANBP1 protein (Cat# TP323305). -
Multiple Roles of Phosphoinositide-Specific Phospholipase C Isozymes
BMB reports Mini Review Multiple roles of phosphoinositide-specific phospholipase C isozymes Pann-Ghill Suh1,*, Jae-Il Park1, Lucia Manzoli2, Lucio Cocco2, Joanna C. Peak3, Matilda Katan3, Kiyoko Fukami4, Tohru Kataoka5, Sanguk Yun1 & Sung Ho Ryu1 1Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Korea, 2Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, Via Irnerio, 48 I-40126, Bologna, Italy, 3Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK, 4Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo, Japan, 5Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan Phosphoinositide-specific phospholipase C is an effector mole- cellular calcium release (1-3; Fig. 1a). cule in the signal transduction process. It generates two sec- The first evidence of PLC activity was suggested by Hokin et ond messengers, inositol-1,4,5-trisphosphate and diacylglycer- al. in 1953 who reported specific hydrolysis of phospholipids ol from phosphatidylinositol 4,5-bisphosphate. Currently, thir- in pigeon’s pancreas slices after cholinergic stimulation (4). teen mammal PLC isozymes have been identified, and they are The authors showed that the enhanced turnover of phosphor- divided into six groups: PLC-β, -γ, -δ, -ε, -ζ and -η. Sequence ylinositol groups of phosphatidylinositol occurred in cells as a analysis studies demonstrated that each isozyme has more response to a variety of stimuli. In 1983, Streb et al. -
Small Gtpase Ran and Ran-Binding Proteins
BioMol Concepts, Vol. 3 (2012), pp. 307–318 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/bmc-2011-0068 Review Small GTPase Ran and Ran-binding proteins Masahiro Nagai 1 and Yoshihiro Yoneda 1 – 3, * highly abundant and strongly conserved GTPase encoding ∼ 1 Biomolecular Dynamics Laboratory , Department a 25 kDa protein primarily located in the nucleus (2) . On of Frontier Biosciences, Graduate School of Frontier the one hand, as revealed by a substantial body of work, Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Ran has been found to have widespread functions since Osaka 565-0871 , Japan its initial discovery. Like other small GTPases, Ran func- 2 Department of Biochemistry , Graduate School of Medicine, tions as a molecular switch by binding to either GTP or Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 , GDP. However, Ran possesses only weak GTPase activ- Japan ity, and several well-known ‘ Ran-binding proteins ’ aid in 3 Japan Science and Technology Agency , Core Research for the regulation of the GTPase cycle. Among such partner Evolutional Science and Technology, Osaka University, 1-3 molecules, RCC1 was originally identifi ed as a regulator of Yamada-oka, Suita, Osaka 565-0871 , Japan mitosis in tsBN2, a temperature-sensitive hamster cell line (3) ; RCC1 mediates the conversion of RanGDP to RanGTP * Corresponding author in the nucleus and is mainly associated with chromatin (4) e-mail: [email protected] through its interactions with histones H2A and H2B (5) . On the other hand, the GTP hydrolysis of Ran is stimulated by the Ran GTPase-activating protein (RanGAP) (6) , in con- Abstract junction with Ran-binding protein 1 (RanBP1) and/or the large nucleoporin Ran-binding protein 2 (RanBP2, also Like many other small GTPases, Ran functions in eukaryotic known as Nup358).