Case Study Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coco Lumber Sawdust
MushroomPart II. Oyster Growers Mushrooms’ Handbook 1 Chapter 5. Substrate 91 Oyster Mushroom Cultivation Part II. Oyster Mushrooms Chapter 5 Substrate COCO LUMBER SAWDUST J. Christopher D. Custodio Bataan State College, the Philippines Oyster Mushrooms (Pleurotus spp.) are saprophytic as they obtain there nutrients by decomposing various agricultural by-products. This mushroom has been cultivated worldwide because of its taste and low maintenance technology. There are different substrates that have already been identified that can be utilized for the cultivation of oyster mushroom. The possible substrates include rice straw, coffee pulps, sawdust, and even paper. Most of these are types of low-value lignocellulosic wastes that are primarily derived from agricultural practices or the agro-industry. (J.A. Buswell et. al., 1996) The bioconversion of these wastes is one reason why the cultivation of edible mushrooms is an appropriate practice for a society that depends on its agriculture. In the early 1990s, ‘coco lumber’ was given a great attention in the province as a substitute for hardwood. Sawmills producing lumber from coconut trees bloomed in reaction to the increasing demand for this low cost constructional material. Though beginners in mushroom cultivation are usually persuaded not to use sawdust from softwoods, sawdust from coco lumber (Fig. 1) is another possible substrate for P. ostreatus and has shown great results. Growers living near a coco lumber sawmill can make use of this waste product in order to start their own cultivation of oyster mushroom species. Figure 1. Coco lumber sawdust Coco Lumber Sawdust as a Substrate of Oyster Mushroom Oyster mushroom is one example of edible mushrooms that can utilize lignocellulosic materials as a substrate. -
Section 061053 - Miscellaneous Rough Carpentry
SECTION 061053 - MISCELLANEOUS ROUGH CARPENTRY PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. 1.2 SUMMARY A. This Section includes the following: 1. Wood framing, blocking, and nailers 2. Wood battens, shims, and furring (for wall panel attachment). 3. Plywood sheathing for miscellaneous structures and replacement of deteriorated roof sheathing. B. Related Sections include the following: 1. Section 075216 "SBS Modified Bituminous Membrane Roofing" for adhesively applied 2-ply, SBS bituminous membrane roofing, with self-adhered base ply sheet. 2. Section 076200 "Sheet Metal Flashing and Trim" for installing sheet metal flashing and trim integral with roofing. 1.3 DEFINITIONS A. Dimension Lumber: Lumber of 2-inches nominal or greater but less than 5-inches nominal in least dimension. B. Lumber grading agencies, and the abbreviations used to reference them, include the following: 1. NLGA: National Lumber Grades Authority. 2. WCLIB: West Coast Lumber Inspection Bureau. 3. WWPA: Western Wood Products Association. 1.4 QUALITY ASSURANCE A. Testing Agency Qualifications: For testing agency providing classification marking for fire- retardant treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested. PRSD – Thompson Elementary School Roof Replacement 061053 – MISCELLANEOUS ROUGH CARPENTRY July, 2012 Page 1 of 7 B. Forest Certification: For the following wood products, provide materials produced from wood obtained from forests certified by an FSC-accredited certification body to comply with FSC 1.2, "Principles and Criteria": 1. -
GP LAM® Laminated Veneer Lumber PR-L257(F)
GP LAM® Laminated Veneer Lumber PR-L257(F) Georgia-Pacific Wood Products LLC Revised February 12, 2008 Products: GP Lam® 1.8-SP, 1.9-ES, 2.0-ES and 2.1-ES LVL Georgia-Pacific Wood Products LLC, 1000 North Park Drive, Roxboro, North Carolina 27573 (336) 599-1000 www.gp.com 1. Basis of the product report: • 2006 International Building Code: Section 104.11 Alternative Materials • 2006 International Residential Code: Section R104.11 Alternative Materials • 2004 Florida Building Code, Building: Section 104.11 Alternative Materials • ASTM D 5456-03 recognized by the 2006 International Building Code • ASTM D 5456-05 recognized by the 2006 Supplement to the 2004 Florida Building Code • APA Reports T2002P-44, T2002P-45, T2003M-13, T2003P-46, T2004M-41, T2004M-56, T2004M-80, T2005M-23, T2005M-97 and other qualification data 2. Product description: GP Lam® LVL is made with veneer sheets of various species and grades in accordance with the in-plant manufacturing standard approved by APA. GP Lam® LVL are available in thicknesses from 3/4 inch to 5-1/4 inches, widths of 1-1/2 inches to 48 inches and lengths up to 80 feet. 3. Design properties: Table 1 lists the design properties and Table 2 lists the equivalent specific gravities for connection design for GP Lam® LVL. The allowable spans for GP Lam® LVL shall be in accordance with the recommendations provided by the manufacturer as published in the GP Engineered Lumber Residential Floor and Roof Systems Product Guide (Lit. Item 123040 dated June 2006). 4. Product installation: GP Lam® LVL shall be installed in accordance with the recommendations provided by the manufacturer as published in the GP Engineered Lumber Residential Floor and Roof Systems Product Guide (Lit. -
LP Solidstart LVL Technical Guide
U.S. Technical Guide L P S o l i d S t a r t LV L Technical Guide 2900Fb-2.0E Please verify availability with the LP SolidStart Engineered Wood Products distributor in your area prior to specifying these products. Introduction Designed to Outperform Traditional Lumber LP® SolidStart® Laminated Veneer Lumber (LVL) is a vast SOFTWARE FOR EASY, RELIABLE DESIGN improvement over traditional lumber. Problems that naturally occur as Our design/specification software enhances your in-house sawn lumber dries — twisting, splitting, checking, crowning and warping — design capabilities. It ofers accurate designs for a wide variety of are greatly reduced. applications with interfaces for printed output or plotted drawings. Through our distributors, we ofer component design review services THE STRENGTH IS IN THE ENGINEERING for designs using LP SolidStart Engineered Wood Products. LP SolidStart LVL is made from ultrasonically and visually graded veneers arranged in a specific pattern to maximize the strength and CODE EVALUATION stifness of the veneers and to disperse the naturally occurring LP SolidStart Laminated Veneer Lumber has been evaluated for characteristics of wood, such as knots, that can weaken a sawn lumber compliance with major US building codes. For the most current code beam. The veneers are then bonded with waterproof adhesives under reports, contact your LP SolidStart Engineered Wood Products pressure and heat. LP SolidStart LVL beams are exceptionally strong, distributor, visit LPCorp.com or for: solid and straight, making them excellent for most primary load- • ICC-ES evaluation report ESR-2403 visit www.icc-es.org carrying beam applications. • APA product report PR-L280 visit www.apawood.org LP SolidStart LVL 2900F -2.0E: AVAILABLE SIZES b FRIEND TO THE ENVIRONMENT LP SolidStart LVL 2900F -2.0E is available in a range of depths and b LP SolidStart LVL is a building material with built-in lengths, and is available in standard thicknesses of 1-3/4" and 3-1/2". -
Environmental Considerations of Treated Wood National Park Service – Pacific West Region
Environmental Considerations of Treated Wood National Park Service – Pacific West Region Overview In support of the mission of the National Park Service, making wise decisions about using wood treatments will help protect the natural areas and biodiversity of our parks, and the health of our employees. Preservative-treated wood’s most important benefit is its resistance to water, fungal, and insect damage. Extending the life of wood products reduces the demands on forests for replacement lumber and reduces maintenance and replacement costs. Historic wooden structures that must be repaired with compatible materials or replaced with in-kind materials make durability even more important. Treated woods are nearly impervious to rot and insects, making them good for outdoor use. Wood treated with chromated copper arsenate (CCA) poses certain environmental and health risks, including the leaching of chemicals such as arsenic and chromium into the environment and workers’ risk of exposure to hazardous chemicals. Disposal of treated wood also proves to be an issue, particularly disposal by incineration. Due to these concerns, manufacturers of treated wood and the EPA reached an agreement to end the sale of CCA-treated wood for most lumber products, effective January 1, 2004. The following offers less-toxic alternatives to CCA, handling and use precautions, and other recommendations when considering using treated wood. Due to the toxicity and potential effects on health and the environment, the Presidio Trust implemented a policy on the use of pressure treated lumber. Standard operating procedure now prohibits the use of CCA, ACZA, CZC, ACC, and Pentachlorophenol. All dimensional lumber is now treated with ACQ as an alternative. -
UFGS 06 10 00 Rough Carpentry
************************************************************************** USACE / NAVFAC / AFCEC / NASA UFGS-06 10 00 (August 2016) Change 2 - 11/18 ------------------------------------ Preparing Activity: NAVFAC Superseding UFGS-06 10 00 (February 2012) UNIFIED FACILITIES GUIDE SPECIFICATIONS References are in agreement with UMRL dated July 2021 ************************************************************************** SECTION TABLE OF CONTENTS DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES SECTION 06 10 00 ROUGH CARPENTRY 08/16, CHG 2: 11/18 PART 1 GENERAL 1.1 REFERENCES 1.2 SUBMITTALS 1.3 DELIVERY AND STORAGE 1.4 GRADING AND MARKING 1.4.1 Lumber 1.4.2 Structural Glued Laminated Timber 1.4.3 Plywood 1.4.4 Structural-Use and OSB Panels 1.4.5 Preservative-Treated Lumber and Plywood 1.4.6 Fire-Retardant Treated Lumber 1.4.7 Hardboard, Gypsum Board, and Fiberboard 1.4.8 Plastic Lumber 1.5 SIZES AND SURFACING 1.6 MOISTURE CONTENT 1.7 PRESERVATIVE TREATMENT 1.7.1 Existing Structures 1.7.2 New Construction 1.8 FIRE-RETARDANT TREATMENT 1.9 QUALITY ASSURANCE 1.9.1 Drawing Requirements 1.9.2 Data Required 1.9.3 Humidity Requirements 1.9.4 Plastic Lumber Performance 1.10 ENVIRONMENTAL REQUIREMENTS 1.11 CERTIFICATIONS 1.11.1 Certified Wood Grades 1.11.2 Certified Sustainably Harvested Wood 1.11.3 Indoor Air Quality Certifications 1.11.3.1 Adhesives and Sealants 1.11.3.2 Composite Wood, Wood Structural Panel and Agrifiber Products SECTION 06 10 00 Page 1 PART 2 PRODUCTS 2.1 MATERIALS 2.1.1 Virgin Lumber 2.1.2 Salvaged Lumber 2.1.3 Recovered Lumber -
End Jointing of Laminated Veneer Lumber for Structural Use
End jointing of laminated veneer lumber for structural use J.A. Youngquist T.L. Laufenberg B.S. Bryant proprietary process for manufacturing extremely long Abstract lengths of the material both in panel widths and in LVL Laminated veneer lumber (LVL) materials rep- form. The proprietary process requires a substantial resent a design alternative for structural lumber users. capital investment, limiting production of LVL. If ex- The study of processing options for producing LVL in isting plywood facilities were adapted to processing of plywood manufacturing and glued-laminating facilities 5/8-inch- to 1-1/2-inch-thick panels, subsequent panel is of interest as this would allow existing production ripping and end jointing of the resultant structural equipment to be used. This study was conducted in three components could conceivably compete both in price and phases to assess the feasibility of using visually graded performance with the highest structural grades of lum- veneer to produce 8-foot LVL lengths which, when end ber. Herein lies the major concern of this study: Is it jointed, could be competitive with existing structural technically feasible to manufacture end-jointed LVL lumber products. Phase I evaluated panel-length from PLV panels made in conventional plywood 3/4-inch-thick LVL made from C- or D-grade 3/16-, 1/8-, presses? or 1/10-inch-thick veneer, and the effect of specimen width on flexural and tensile properties. Phase II evalu- An evaluation of the production and marketing ated the use of vertical and horizontal finger joints and feasibility of LVL products made from panel lengths scarfjoints to join 3/4-inch thicknesses of LVL. -
Wood from Midwestern Trees Purdue EXTENSION
PURDUE EXTENSION FNR-270 Daniel L. Cassens Professor, Wood Products Eva Haviarova Assistant Professor, Wood Science Sally Weeks Dendrology Laboratory Manager Department of Forestry and Natural Resources Purdue University Indiana and the Midwestern land, but the remaining areas soon states are home to a diverse array reforested themselves with young of tree species. In total there are stands of trees, many of which have approximately 100 native tree been harvested and replaced by yet species and 150 shrub species. another generation of trees. This Indiana is a long state, and because continuous process testifies to the of that, species composition changes renewability of the wood resource significantly from north to south. and the ecosystem associated with it. A number of species such as bald Today, the wood manufacturing cypress (Taxodium distichum), cherry sector ranks first among all bark, and overcup oak (Quercus agricultural commodities in terms pagoda and Q. lyrata) respectively are of economic impact. Indiana forests native only to the Ohio Valley region provide jobs to nearly 50,000 and areas further south; whereas, individuals and add about $2.75 northern Indiana has several species billion dollars to the state’s economy. such as tamarack (Larix laricina), There are not as many lumber quaking aspen (Populus tremuloides), categories as there are species of and jack pine (Pinus banksiana) that trees. Once trees from the same are more commonly associated with genus, or taxon, such as ash, white the upper Great Lake states. oak, or red oak are processed into In urban environments, native lumber, there is no way to separate species provide shade and diversity the woods of individual species. -
Murphy Laminated Veneer Lumber PR-L283 Murphy Engineered Wood Division Revised May 30, 2013
Murphy Laminated Veneer Lumber PR-L283 Murphy Engineered Wood Division Revised May 30, 2013 Product: 2250Fb-1.5E, 2600Fb-1.7E, 2750Fb-1.8E, 2850Fb-1.9E, 2950Fb-2.0E, 3100Fb-2.0E, and 3100Fb-2.2E Murphy LVL Murphy Engineered Wood Division, 412 West Central, Sutherlin, Oregon 97479 (541) 459-4545 www.murphyplywood.com 1. Basis of the product report: 2012 and 2009 International Building Code (IBC): Sections 104.11 Alternative Materials and 2303.1.9 Structural composite lumber 2012 and 2009 International Residential Code (IRC): Section R104.11 Alternative Materials, and 2012 IRC Sections R502.1.7, R602.1.4, and R802.1.6 Structural composite lumber ASTM D5456-09 and ASTM D5456-05a recognized by the 2012 IBC and IRC, and 2009 IBC, respectively APA Reports T2008P-10, T2008P-31, T2008P-43, T2008P-113, T2009P-12, T2009P-15, T2010P-02, T2010P-33, T2012P-03, and other qualification data 2. Product description: Murphy laminated veneer lumber (LVL) is made with wood veneers laminated with grain parallel to the length of the member in accordance with the in-plant manufacturing standard approved by APA. Murphy LVL is available with thicknesses up to 7 inches, widths up to 24 inches, and lengths up to 80 feet. 3. Design properties: Table 1 lists the design properties, Table 2 lists the equivalent specific gravities for connection design, and Table 3 lists the allowable nail spacing for Murphy LVL. The allowable spans for Murphy LVL shall be determined based on the information provided in this report and/or based on recommendations provided by the manufacturer (http://murphyplywood.com/downloads/7417%20Murphy%20LVL%20GuideSept2010Rev.pd f). -
Lumber and Related Products; a Base Syllabus on Wood Technology. Eastern Kentucky Univ., Richmond
4-f,r ' DOCUMENT RESUME ED 031 558 VT 007 859 Lumber and Related Products; A Base Syllabus on Wood Technology. Eastern Kentucky Univ., Richmond. Pub Date Aug 68 Note-108p.; From NDEA Inst. on Wood Technology (Eastern Kentucky UM, June 10-Aug. 2, 1968). EDRS Price MF-$0.50 HC-$5.50 Descriptors-*Building Materials, Curriculum Development, *Curriculum Guides, *Industrial Arts, Instructional Improvement, Lumber Industry, *Resource Materials, Summer Institutes, Teacher Developed Materials, Teacher Education, *Woodworking Identifiers-*National Defense Education Act Title XI Institute, NDEA Title XI Institute Prepared by participants in the 1%8 National Defense Education Act Institute on Wood Technology, this syllabus is one of a seriesof basic outlines designed to aid college level industrial arts instructors in improving and broadening the scope and .content of their programs. The primary objective of this course outhne is to point out the importance and the many uses of wood and wood products. Topics covered are: (1 )Lumber Grades and Sizes,(2)Plywood,(3)Veneer,(4)Fiberboard,(5) Particleboard,(6)Sheetboard,(7)InsulationBoard,(8)StructuralSandwich Construction,(9)Shingles,(10)Pulp and Paper,(11) Wood Flour,and (12) Cellulose-DerivedProducts.Mostunitscontain 'informationonmanufacturing processes, properties,types and grades, and uses of the products. Selected bibliographies are listed for each unit. The final section provides instructional aids, suggested projects and student activities, and materials and equipment needed for specific prolects. The document is &strafed with drawings, charts, and photographs. Related documents are available as VT 007 857, VT 007 858, and VT 007 861: (AW) ft; LUMBER BAS YLLABUS ON WOOD CHNOLOGY .:'Pre,pare4 by INSTITUTE. -
Architectural Woodwork Standards, 2Nd Edition
Architectural Woodwork Standards WALL/CEILING SURFACING & PARTITIONS 8S E C T I O N SECTION 8 Wall/Ceiling Surfacing and Partitions table of contents INTRODUCTORY INFORMATION COMPLIANCE REQUIREMENTS Guide Specifications ...........................................................................194 GENERAL Introduction .........................................................................................195 Basic Considerations ....................................................................212 Wall and Ceiling Surfacing ..................................................................195 Grades .....................................................................................212 Opaque .........................................................................................195 Economy ...........................................................................212 Transparent ..................................................................................195 Custom ..............................................................................212 Contract Documents ...........................................................................195 Premium ............................................................................212 Product Advisory .................................................................................195 Grade Limitations ..............................................................212 Panel Sequence ..................................................................................196 Contract Documents -
Laminated Ve Laminated Veneer L Laminated Veneer Lumber Minated Veneer Lumber (LVL) D Veneer Lumber (LVL) Eer Lumber (LVL)
Laminated Veneer Lumber (LVL) Key Information General Process Description 1 m 3 of laminatedlaminated veneerveneer lumberlumber basedbased onon thethe UKUK consumptionconsumption mixmix Reference Flow /Declared Unit 1 m 3 of laminatedlaminated veneerveneer lumber,lumber, 12%12% woodwood moisturemoisture contentcontent (dry(dry basis),basis), average product density of 488 kg/m 3 Reference Year 2013 Methodological Approach This generic dataset has been developed with reference to CEN/TR 15941:2010 Environmental product declarations — Methodology for selection and use of generic data and has made use of data from existing databases and EPD, compensated with data from UK industry and national statistics for the specific situation related to UK consumptionconsumption ofof timbertimber product s. With regard to methodology, the datasets are in lineline withwith thethe corecore Product Category Rules given in EN 15804+A1: 2013 Environmental product declarations — Core rules for the product category of construction productsproducts , and further detailed in FprEN 16485: 2013 Round and sawn timber — Environmental Product Declarations — Product category rules for wood and wood -based products for use in construction and the draft EN 16449, Wood and wood -based products ― Calculaon of sequestraon of atmospheric carbon diox ide . The generic dataset is intended for use as upstream datadata forfor UKUK consumedconsumed timber products within EPDs and building level LCA assessments to EN 15978:2011 Assessment of environmental performance of buildings — Calculation method. Modelling & Assumptions Laminated veneer lumber (LVL) is an engineered wood productproduct consistingconsisting ofof multiple thin layers of wood held together with a synthetic adhesive. The individualindividual layerslayers inin LVL,LVL, knownknown asas veneers,veneers, areare obtobtained by peeling larger softwood pieces to thin layers around 3mm thick.