Eezs of Tonga, Fiji, Tuvalu, Solomon Islands, Vanuatu and Papua New Guinea

Total Page:16

File Type:pdf, Size:1020Kb

Eezs of Tonga, Fiji, Tuvalu, Solomon Islands, Vanuatu and Papua New Guinea SOPAC Technical Report 108 September 1990 SWATH-MAPPING TARGET AREAS IN THE EEZS OF TONGA, FIJI, TUVALU, SOLOMON ISLANDS, VANUATU AND PAPUA NEW GUINEA Bernard Pelletier ORSTOM B.P. A5 Noumea Cedex, New Caledonia Prepared for: South Pacific Applied Geoscience Commission (SOPAC) Offshore Programme [3] CONTENTS Page INTRODUCTION .................................................................................................. 5 IDENTIFYING THE AREAS ALREADY MAPPED ........................................ 6 TARGET AREAS IN THE EEZ OF FIJI ................................................................ 6 TARGET AREAS IN THE EEZ OF PAPUA NEW GUINEA ............................ 11 TARGET AREAS IN THE EEZ OF SOLOMON ISLANDS ....................... 13 TARGET AREAS IN THE EEZ OF TONGA ............................................. 17 TARGET AREAS IN THE EEZ OF TUVALU ............................................... 20 TARGET AREAS IN THE EEZ OF VANUATU ............................................... 20 SOME INFORMATION ON NEW SWATH MAPPING SYSTEMS .................... 23 REFERENCES ........................................................................................................ 25 [TR108 - Pelletier] [4] LIST OF FIGURES Figure Page 1 Map showing the navigation of swath mapping surveys in the EEZs of SOPAC countries ............................................. 7 2 EEZ of Fiji showing already mapped area, and proposed areas for future swath map surveys .............................................. 8 3 EEZ of Papua New Guinea showing already mapped areas, and proposed areas for future swath surveys ............................ 12 4 EEZ of Solomon Islands showing the already mapped areas, and the proposed areas for future surveys ........................... 14 5 EEZ of Tonga showing the already mapped areas, and the proposed areas for future surveys ...................................... 18 6 EEZ of Tuvalu showing the already mapped areas, and the proposed areas for future surveys .................................. 21 7 EEZ of Vanuatu showing the already mapped areas, and the proposed areas for future surveys .................................. 22 LIST OF TABLES Table 1 Swath mapping target areas in the EEZs of some SOPAC member countries .............................................................. 26 2 Recommended swath-mapping systems for each selected area ...... 28 [TR108 - Pelletier] [5] INTRODUCTION For the CCOP/SOPAC 17th Session (October 1988) held in Suva, Fiji, Kroenke (1988) prepared a report which emphasised the value of swath-mapping for the identification of potential resources in the Exclusive Economic Zones (EEZs) of SOPAC countries. The report reviewed the main seafloor mapping systems (deep and shallow water, multi-beam echosounders and bathymetric side-scan sonars), indicated the most appropriate system considering the specific objective of the survey, and finally proposed swath-mapping targets in each SOPAC member country. The primary objective of the present report is to identify swath-mapping target areas in the EEZs of some SOPAC member countries in order to plan the second SOPAC swath-mapping cruise for 1990-1991. The first was the GLORIA cruise in August 1989 (Tiffin and others, 1990). This work comes under the SOPAC Offshore Programme and is mainly focused on waters from 500 to 4000-5000m deep. Not all the SOPAC member countries’ waters are reviewed here. This report deals only with the EEZs of Fiji, Papua New Guinea, Solomon Islands, Tonga, Tuvalu and Vanuatu. With the exception of Tuvalu, all of these are countries associated with back-arc basins with resource potential. Back-arc basins are particularly amenable to good results from swath-mapping techniques. Tuvalu, although not part of a volcanic arc, has several large banks in its southern EEZ for which little information exists, and currently has both an active fisheries programme to investigate seamounts, and a boundary delineation programme to determine its legal EEZ. Both these programmes will greatly benefit from swath mapping. The Cook Islands and Kiribati were not included here because although their EEZs are large, they are remote from the island arcs and long costly transits are required to get to these areas. They will be targets for later cruises. Western Samoa and Guam, also not included, have small EEZs. In Guam, the US Geological Survey plans to survey the EEZ with GLORIA, probably in 1992. These latter two countries thus have prospects for good maps already. The target areas proposed in this report have been chosen taking into account the known bathymetry, geological and geophysical data and previous swath mapping surveys and are arranged in alphabetical, not priority, order. The characteristics of each area (location, size, depth, objective and recommended mapping system) are summarised on Figures 2 to 7 and in Tables 1 and 2 (see pages 26 and 28). Only a brief description of each area is given in the text. [TR108 - Pelletier] [6] IDENTIFYING THE AREAS ALREADY MAPPED The first step in identifying future swath mapping target areas is to know the location of areas already mapped. Figure 1 is a compilation of tracklines from various cruises that used swath mapping systems (Seabeam, SeaMARC II and GLORIA) in the EEZs of SOPAC countries. The map has been compiled with the assistance of the Data Management section of the SOPAC Technical Secretariat (Techsec) (Yann Morel and Andre Dauzat). Figure 1 also shows the boundaries of the EEZs of SOPAC countries which can be requested at any scale from SOPAC. The map shows five features: 1. A number of cruises using swath mapping systems have been conducted in the Southwest Pacific since 1984 by Germany (RV Sonne: Seabeam), France (RV Jean Charcot : Seabeam), Japan (RV Kaiyo: Seabeam), Hawaii, USA (RV Moana Wave: SeaMARC II), Scripps, USA (RV Thomas Washington: Seabeam), England (RV Charles Darwin: GLORIA), Australia (HMAS Cook: Seabeam), and SOPAC (HMAS COOK: GLORIA and Seabeam). 2. Most of the areas of full coverage are located in back-arc basins along the active spreading centres or active troughs (Lau Basin, North-Fiji Basin, Vanuatu back-arc Troughs, Woodlark Basin, Manus Basin) although parts of the Tonga and New Hebrides trenches are also covered. Arc areas have received almost no attention. 3. Most of the areas covered are in the EEZs of Tonga, Fiji, Vanuatu and Papua New Guinea. 4. Little swath mapping has been done in the EEZ of Solomon Islands and nothing in the EEZ of Tuvalu. 5. During this compilation, it became apparent that some cruises have not been able to be precisely located due to the lack of good navigational information in SOPAC's database. Consequently, it is recommended that navigation data from the EEZs of SOPAC member countries be sent to Techsec as soon as possible after each cruise. TARGET AREAS IN THE EEZ OF FIJI (Figure 2) The EEZ of Fiji is largely composed of active marginal basins in which active spreading centres, extensional zones and fracture zones exist. Most of the previous swath mapping cruises have [TR108 - Pelletier] [9] been devoted to these active features (Lau Basin, Peggy Ridge, Fiji Fracture Zone and the various tectonic elements of the North Fiji Basin). However, the EEZ of Fiji also comprises the Fiji Platform, the Lau Ridge (a remnant arc), the northern part of the South Fiji Basin (an inactive marginal basin) and, north of the paleo Vitiaz Lineament, a part of the Pacific Plate where seamounts are present. Although large areas have been already mapped by Seabeam, SeaMARC II and GLORIA, numerous future target areas can be identified due to the complexity of the geology of the North Fiji Basin, resulting from the interaction of the Pacific and Indo-Australian plates, and its location between the opposing Tonga and New Hebrides subduction zones. Occurrences of polymetallic massive sulfides associated with the N-S trending spreading ridge have been proved in the central part of the North Fiji basin. Eight areas can be selected in the EEZ of Fiji for future swath mapping surveys. Area FJ 1 Little is known about this area, corresponding to the Koro Sea Basin between Viti Levu and the Lau Group, which is probably quite complex due to the supposed counterclockwise rotation of the Fiji Platform during the opening of the North Fiji Basin. The Hunter Fracture Zone, which may be an old subduction zone and is a sub-active feature, ends in the Koro Sea Basin. The main interest in this area is possibly fishing potential, due to its central position with respect to all the Fijian islands, but this area is given a low priority in comparison with the others. The recommended mapping systems are GLORIA or SeaMARC R. Area FJ 2 This is located just north of the Fiji Platform and is associated with the Fiji Fracture Zone, mapped during the recent SOPAC cruise. An area between the GLORIA tracks and the Vanua Levu Platform, probably part of the Fiji Platform, remains uncharted. This area is interesting for two reasons: fishery potential and completion of the map of the Fiji Fracture Zone. The recommended tools are the SIS 09 or SeaMARC II. Area FJ 3 This is located in the eastern part of the North Fiji Basin along a seismically active tectonic feature composed of ridges and troughs, This feature connects the Fiji Fracture Zone (176'E) and [TR108 - Pelletier] [10] the N-S trending North Fiji Basin spreading centre (21'S) which at this latitude is offset by about 80 km by a fracture zone. Part of this feature, west of Viti Levu, has already been mapped by Seabeam and its
Recommended publications
  • Mantle Avalanche As a Driving Force for Tectonic Reorganization in the Southwest Paci¢C
    Earth and Planetary Science Letters 209 (2003) 29^38 www.elsevier.com/locate/epsl Mantle avalanche as a driving force for tectonic reorganization in the southwest Paci¢c R.N. Pysklywec a;Ã, J.X. Mitrovica b, M. Ishii c a Department of Geology, University of Toronto, Toronto, ON, Canada M5S 3B1 b Department of Physics, University of Toronto, Toronto, ON, Canada M5S 1A7 c Department of Earthand Planetary Sciences, Harvard University, Cambridge, MA 02138, USA Received 1November 2002; received in revised form 23 January 2003; accepted 24 January 2003 Abstract The mechanism responsible for the recent, dramatic reorganization of the tectonic plate boundary in the New Hebrides region of the southwest Pacific has remained elusive. We propose that an ongoing avalanche of cold, dense slab material into the lower mantle, imaged by high-resolution seismic tomographic methods, provides the necessary driving force for this enigmatic evolution. Numerical experiments demonstrate that the avalanche model reconciles a broad suite of observational constraints, including the change in polarity of plate subduction, the rapid migration of the New Hebrides arc and opening of the North Fiji Basin, and the present-day geometry of slabs associated with both active and extinct subduction zones. ß 2003 Elsevier Science B.V. All rights reserved. Keywords: plate tectonics; subduction; New Hebrides; mantle convection; numerical modeling 1. Introduction of such ‘back-arc’ environments suggests that a multitude of deformational mechanisms may be A growing body of evidence suggests that at play [1]. present-day tectonic plate boundaries are subject The recent evolution of the New Hebrides sub- to a far more complex deformational history than duction boundary (Fig.
    [Show full text]
  • MORPHOSTRUCTURE and MAGNETIC FABRIC of the NORTHWESTERN NORTH FIJI BASIN ! Bemardipelletier 1 ORSTOM, Nouméa, Nouvelle-Calédonie
    CORE I Metadata, citation and similar papers at core.ac.uk Provided by Horizon / Pleins textes GEOPHYSICAL RESEARCH LETTERS, VOL. 20, NO. 12, PAGES 1151-1154, JUNE 18, 1993 MORPHOSTRUCTURE AND MAGNETIC FABRIC OF THE NORTHWESTERN NORTH FIJI BASIN ! BemardiPelletier 1 ORSTOM, Nouméa, Nouvelle-Calédonie Yves Lafoy - ._ Service des Mines et de l'Energie, Nouméa, Nouvelle-Calédonie F'rançoi/ Missegue ORSTOM, Nouméa, Nouvelle-Calédonie Abstract. Four successive spreading phases are 1988 and 1993); ii) data collected during previous cruises distinguished in the northwestern part of the North Fiji Basin. through the NFB and the NHA (IFP-ORSTOM-CNEXO After an initial NE-SW opening, a N-S spreading phase took cruises: Austradec I, III, IV; ORSTOM cruises: Eva X, XI, place, up to the northwesternmost tip of the basin, along the XIII, Georstom I, II, Multipso; ORSTOM-CCOP SOPAC South Pandora, Tikopia and 9'30 Ridges. The N-S spreading cruises: Geovan I and II; IFREMER-ORSTOM cruises: phase in the northern North Fiji Basin was followed by an E- Seapso I, II, III; Woods Hole Oceanographic Institution W opening phase along the central North Fiji Basin axis. A cruise: Chain 100; Hawaii Institute of Geophysics cruises: triple junction was probably active during an intermediate Kana Keoki 1972 and Kana Keoki Tripartite; United States stage between the two phases. E-W spreading underwent a Geological Survey cruise: Lee Tripartite I). reorganisation that induced the functioning of the 16'40's triple junction and the development of the E-W trending Hazel Morphostructure and magnetic fabric Holme Extensional Zone from the active central spreading axis to the southern tip of the New Hebrides Back-Arc Six main morphological units can be distinguished in the Troughs.
    [Show full text]
  • Double-Saloon-Door Tectonics in the North Fiji Basin
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257820732 Double-saloon-door tectonics in the North Fiji Basin Article in Earth and Planetary Science Letters · July 2013 DOI: 10.1016/j.epsl.2013.05.041 CITATION READS 1 229 1 author: Keith Martin Looking for opportunities 29 PUBLICATIONS 726 CITATIONS SEE PROFILE All content following this page was uploaded by Keith Martin on 03 January 2017. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Earth and Planetary Science Letters 374 (2013) 191–203 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Double-saloon-door tectonics in the North Fiji Basin A.K. Martin n Repsol, Al Fattan Plaza, PO Box 35700, Dubai, United Arab Emirates article info abstract Article history: Fiji Platform rotated counter clockwise from at least 10.2 Ma until 1.56 Ma, while Vanuatu Arc rotated Received 3 January 2013 clockwise from 12/10 Ma until the present.
    [Show full text]
  • 24. Tectonics of the Central New Hebrides Arc, North Aoba Basin1
    Greene, H.G., Collot, J.-Y., Stokking, L.B., et al., 1994 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 134 24. TECTONICS OF THE CENTRAL NEW HEBRIDES ARC, NORTH AOBA BASIN1 Bernard Pelletier,2 Martin Meschede,3 Thierry Chabernaud,4 Pierrick Roperch,5 and Xixi Zhao6 ABSTRACT Drilling at Sites 832 and 833 in the North Aoba Basin provided the first continuous section in the central New Hebrides Island Arc from the Late Miocene. We report here tectonic structures observed in the cores and data obtained from the boreholes with the Formation MicroScanner logging tool. The structures observed on cores were geographically oriented using the declination of the natural remanent magnetism obtained from continuous core sections and from discrete samples. The corrected data are generally in good agreement with in-situ Formation MicroScanner measurements, indicating the reliability of the reorientation method that assumes that no tectonic rotation occurred since the deposition of the sediments. Finally, structural data allow us to obtain information concerning the deformations, especially the direction of sequence tilting and the orientations of principal stress axes. Using also the lithostratigraphy, we reconstruct the late Miocene to Pleistocene tectonic history recorded in the North Aoba Basin and attempt to correlate these data with the onshore geology in the context of the New Hebrides Island Arc-d'Entrecasteaux Zone collision. INTRODUCTION We report here the type and the depth distribution of the structures observed at Sites 832 and 833. Orientation of the structures observed In the southwest Pacific, the New Hebrides Island Arc extends in the cores using paleomagnetic data, as well as in-situ Formation over 1700 km delineating a major converging plate boundary along MicroScanner (FMS) measurements, provide information concern- which the Australian plate is subducting to the east beneath the Pacific ing deformation, such as directions of sequence tilting and principal plate and the North Fiji Basin.
    [Show full text]
  • New Insights on the Tectonics Along the New Hebrides Subduction Zone
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B6, 2319, doi:10.1029/2001JB000644, 2003 New insights on the tectonics along the New Hebrides subduction zone based on GPS results Ste´phane Calmant,1 Bernard Pelletier, and Pierre Lebellegard Laboratoire de Ge´ophysique, Centre IRD, Noumea, New Caledonia, France Michael Bevis Hawaii Institute for Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, USA Frederick W. Taylor Institute for Geophysics, University of Texas at Austin, Austin, Texas, USA David A. Phillips Hawaii Institute for Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, USA Received 25 May 2001; revised 7 November 2002; accepted 28 February 2003; published 27 June 2003. [1] At the New Hebrides (NH) subduction zone, ridges born by the subducting Australia plate enter the trench and collide with the overriding margin. Results from GPS surveys conducted on both sides of the trench and new bathymetry maps of the NH archipelago bring new light on the complex tectonics of this area. Convergence vectors present large variations that are not explained by Australia/Pacific (A/P) poles and that define four segments. Vectors remain mostly perpendicular to the trench and parallel to the earthquake slip vectors. Slow convergence (i.e., 30–40 mm/yr) is found at the central segment facing the D’Entrecasteaux Ridge. The southern segment moves faster than A/P motion predicts (89 to 124 mm/yr). Relatively to a western North Fiji basin (WNFB) reference, the northern and southern segments rotate in opposite directions, consistently with the extension observed in the troughs east of both segments.
    [Show full text]
  • Probabilistic Seismic Hazard Model for Vanuatu by Jenny Suckale* and Gottfried Grünthal
    Bulletin of the Seismological Society of America, Vol. 99, No. 4, pp. 2108–2126, August 2009, doi: 10.1785/0120080188 Probabilistic Seismic Hazard Model for Vanuatu by Jenny Suckale* and Gottfried Grünthal Abstract This study develops a preliminary probabilistic seismic hazard model for Vanuatu. The area of investigation, formerly referred to as the New Hebrides, lies in the center of a chain of partly vulcanologically active islands that mark the present-day boundary between the Australia-India plate and the microplate of the North Fiji basin. The seismicity of the Vanuatu arc is dominated by an east-dipping subduction zone, which shows striking structural anomalies in the central part between 14° and 18° S. Our historical catalog contains 7519 events within the Vanuatu region for the period from 1964 to 2003, drawn from the global teleseismic catalogs by the United States Geological Survey/National Earthquake Information Center (USGS/NEIC, see Data and Resources section) and Engdahl et al. (1998). As a measure of seismic hazard, we use horizontal peak ground acceleration (PGA) and horizontal spectral ground ac- celeration (SGA) at a period of 1 sec. The hazard estimates are based on a logic-tree approach to account for the epistemic uncertainties associated with our analysis. Our results suggest that the entire island arc experiences a high and uniform seismic hazard. Typical values for PGAs range from 0.65g to 0.77g with a 10% probability of exceedence in 50 yr. For Port Vila, the capital and largest city in Vanuatu, we ad- ditionally present a PGA hazard curve and a uniform hazard spectrum over the period range 0.1–2 sec.
    [Show full text]
  • Fiji Executive Summary
    Republic of the Fiji Islands Partial Submission to the Commission on the Limits of the Continental Shelf in Respect of the South East Region of the North Fiji Basin, Lau-Colville, Tonga-Kermadec Complex Executive Summary Table of Contents A. Introduction ...................................................................................................................................... 3 B. Maps and Coordinates...................................................................................................................... 4 C. Commission members who provided advice during the preparation of the submission.................. 4 D. Provisions of Article 76 invoked in support of the submission ....................................................... 4 E. Outstanding Maritime Delimitations................................................................................................ 4 F. Note of Authentication..................................................................................................................... 5 G. Overview of the South East Region ................................................................................................. 6 Annex Tables listing the points defining the outer limit of the Republic of Fiji’s extended continental shelf in decimal degrees List of figures Figure 1. Map of The Republic of Fiji’s three areas of extended continental shelf in the North Fiji Basin, Lau-Colville, Tonga-Kermadec Complex. The Charlotte bank (CB), The North Fiji Basin (NFB) and the South East region (SE) Figure
    [Show full text]
  • Probabilistic Seismic Hazard Assessment for Vanuatu
    ISSN 1610-0956 Scientific Technical Report STR 05/16 GeoForschungsZentrum Potsdam Probabilistic Seismic Hazard Assessment for Vanuatu m/s2 J. Suckale1, G. Gr¨unthal1, M. Regnier2, C. Bosse1 1GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, email: [email protected] 2Institut de Recherche pour le D´eveloppement, Unit´emixte de recherche - G´eoscienceAzur, 250 rue Albert Einstein, Sophia Antipolis, 06560 Valbonne Scientific Technical Report STR 05/16 Scientific Technical Report STR 05/16 GeoForschungsZentrum Potsdam Scientific Technical Report STR 05/16 GeoForschungsZentrum Potsdam Contents List of Figures :::::::::::::::::::::::::::::::::: iii 1. Introduction :::::::::::::::::::::::::::::::::: 1 2. Geological and Tectonic Setting ::::::::::::::::::::: 5 2.1 Geomorphology of the arc . 5 2.1.1 Trench . 5 2.1.2 Arc platform . 7 2.1.3 Backarc . 7 2.2 Tectonic evolution . 7 2.2.1 Submarine ridges . 9 2.2.2 Convergence rates . 9 2.2.3 Uplift of the trench and the arc platform in central Vanuatu . 10 2.2.4 Subsidence of the intra-arc basins . 11 2.2.5 Crustal shortening . 11 3. Seismicity Data :::::::::::::::::::::::::::::::: 13 3.1 Global catalogues . 13 3.1.1 USGS/NEIC . 13 3.1.2 Engdahl catalogue . 15 3.2 Local catalogues . 15 3.2.1 First measurement period . 15 3.2.2 Second measurement period . 17 3.3 Magnitude conversion . 17 3.4 Completeness . 17 4. Methodology ::::::::::::::::::::::::::::::::: 19 4.1 Probabilistic seismic hazard assessment (PSHA) . 19 4.1.1 Identification of dependent earthquakes . 20 4.1.2 Â2-tests . 22 4.1.3 Probability of exceedance . 22 4.2 Logic tree approach . 22 Scientific Technical Report STR 05/16 GeoForschungsZentrum Potsdam ii Contents 5.
    [Show full text]
  • A PLATE TECTONIC RECONSTRUCTION of the SOUTHWEST PACIFIC, 0-100 Ma1
    Berger, W.H., Kroenke, L.W., Mayer, L.A., et al., 1993 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 130 43. A PLATE TECTONIC RECONSTRUCTION OF THE SOUTHWEST PACIFIC, 0-100 Ma1 Chun Yeung Yan2 and Loren W. Kroenke3 ABSTRACT Southwest Pacific paleogeography has been reconstructed back to 100 Ma on the basis of the hotspot frame of reference. Plate circuits for all key tectonic elements have been determined with respect to the Indo-Australia (I-A), Antarctica, and Pacific plates, using hotspot trails on the India, Australia, and Pacific plates to constrain the motions of all the plates. Paleo-locations of rifted continental margins, oceanic plateaus, subduction zones, and marginal basins have been reconstructed for the Southwest Pacific in a series of palinspastic maps that are thought to closely portray the tectonic development of the Southwest Pacific during the last 100 m.y. Successive periods of convergence are shown occurring along five different paleo-subduction zones that formed concomitantly with changes in I-A and Pacific plate motions from the Eocene to the late Miocene along the Papuan-Rennell-New Caledonia-Nor- folk (55-40 Ma), Manus-North Solomon-Vitiaz (43-25 Ma), New Guinea-proto-Tonga-Kermadec (27-10 Ma), New Britain-San Cristobal-New Hebrides (12-0 Ma), and Tonga-Kermadec (10-0 Ma) trenches. Episodes of basin formation are shown occurring along the western and southwestern margins of the Pacific Plate and along the eastern and northeastern margins of the I-A Plate from the Late Cretaceous to the present, including the Tasman (85-55 Ma), New Caledonia (74-65 Ma), Coral Sea (63-53 Ma), Loyalty (52-40 Ma), d'Entrecasteaux (34-28 Ma), Caroline (34-27 Ma), Solomon Sea (34-28 Ma), South Fiji (34-27 Ma), North Fiji (10-0 Ma), and Lau, Woodlark, and Manus (5.5-0 Ma) basins.
    [Show full text]
  • The Fiji Region Includes Three Back-Arc/Marginal Basins Known As South Fiji Basin, Lau Basin, and North Fiji Basin (Fig
    J. Phys. Earth, 34, 407-426, 1986 UPPER MANTLE VELOCITY OF FIJI REGION FROM SURFACE WAVE DISPERSION Kandiah SUNDARALINGAM Department of Physics, The University of the South Pacific, Suva, Fiji (Received May 12, 1986; Revised October 17, 1986) Single station group velocities over the period range 15-100 s are computed for nine fundamental mode Rayleigh wave propagation paths that cross tectonic provinces of the Fiji region. These computations are based on recordings of the earthquakes around the Fiji Islands by the WWSSN (World Wide Standard Seismic Network) stations AFI (Afiamalu), HNR (Honiara), and WEL (Wellington). The inversion of the derived dispersion curves for shear velocity-depth structure shows that uppermost mantle velocity beneath South Fiji basin, Lau basin, and North Fiji basin is slightly lower than that derived for the Pacific ocean region of similar age by Yu and MITCHELL(1979). The uppermost mantle lid is almost absent beneath these marginal basins, and the shear velocity is between 4.0-4.3 km/s in the depth range from Moho down to 220 km. 1. Introduction The Fiji region includes three back-arc/marginal basins known as South Fiji basin, Lau basin, and North Fiji basin (Fig. 1). The South Fiji basin is one of a series of marginal basins west of the Tonga- Kermadec Island arc-trench system (KARIG, 1970). It lies to the north of New Zealand and is bounded by the Lau-Colville ridge to the east, the Hunter fracture zone to the north and the Loyalty rise and Three Kings rise to the west. The basin is underlain by oceanic crust (SH©Ret al., 1971) and was considered by KARIG(1970) to be formed by crustal extension in Oligocene times, with the Three Kings rise and Loyalty rise being interpreted as remanent arcs.
    [Show full text]
  • The Seabed Morphology of the Hazel Holme Fracture Zone and the New Hebrides Arc, Northern Vanuatu - Solomon Islands Region
    THE SEABED MORPHOLOGY OF THE HAZEL HOLME FRACTURE ZONE AND THE NEW HEBRIDES ARC, NORTHERN VANUATU - SOLOMON ISLANDS REGION D.P. Johnson, P.C. Maillet, R.C Rice August 1992 SOPAC Technical Report 138 Marine Geophysical Laboratory, James Cook University, Townsville, Queensland, Australia ORSTOM, France and Department of Geology, LaTrobe University, Bundoora, Victoria 3083, Australia Geology Department, LaTrobe University, Bundoora, Victoria 3083, Australia Prepared for: South Pacific Applied Geoscience Commission (SOPAC) Offshore Program on EC Consultancy Contract no. SP/SOP/04/90 GLORIA data interpretation and reporting Dr David P. Johnson [3] CONTENTS Page ABSTRACT ....................................................................................................................................... 5 ACKNOWLEDGEMENTS .................................................................................................................. 6 INTRODUCTION ............................................................................................................................... 7 REGIONAL GEOLOGY AND GEOLOGICAL SETTING .......................................................... 7 PREVIOUS WORK AND OVERVIEWS ........................................................................ 11 Petrology and Geochronology .............................................. 13 DATA ACQUISITION AND POSITION FIXING ........................................................................... 14 DATA PROCESSING AND COMPILATION ..............................................................................
    [Show full text]
  • 2. Neogene Tectonic Evolution of the New Hebrides Island Arc: a Review Incorporating Odp Drilling Results1
    Greene, H.G., Collot, J.-Y, Stokking, L.B., et al., 1994 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 134 2. NEOGENE TECTONIC EVOLUTION OF THE NEW HEBRIDES ISLAND ARC: A REVIEW INCORPORATING ODP DRILLING RESULTS1 H. Gary Greene,2,3 Jean-Yves Collot,4 Michael A. Fisher,2 and Anthony J. Crawford5 ABSTRACT Evolution of the New Hebrides Island Arc occurred primarily during the Neogene, when, as part of the Vitiaz Arc it was ripped away from Fiji and Tonga and rotated clockwise (westward) to its present position. A combination of subduction polarity reversal, backarc spreading, and ridge-arc collision is responsible for the present-day configuration of the arc. During Ocean Drilling Program (ODP) Leg 134 drilling in the central New Hebrides Island Arc, where the collision of the d'Entrecasteaux Zone occurs, new information was revealed that resolves questions of timing for d'Entrecasteaux Zone collision, the style of arc deformation associated with colliding ridges, and rates of North Fiji Basin opening. These results constrain late Cenozoic relative plate motion along this section of the Australian (Australia-India) and Pacific Plate boundary. The opening of the North Fiji Basin, the separation of the New Hebrides Island Arc from the Vitiaz Trench, and the counter-clockwise rotation of the arc probably started sometime between 10 and 12 Ma. A mean relative convergence rate of 13.8 to 14.8 cm/yr between the Australian (Australia-India) and Pacific plates, was determined based on the chronostratigraphy of Bougainville Guyot (Site 831). Initial impact of the d'Entrecasteaux Zone may have occurred at -1.5-3.0 Ma in the vicinity of Epi Island and has propagated northward along the forearc at a rate of 2 to 4 cm/yr.
    [Show full text]