Predation in Molluscs: a Multi-Taxon Approach Using Neontological and Paleontological Data

Total Page:16

File Type:pdf, Size:1020Kb

Predation in Molluscs: a Multi-Taxon Approach Using Neontological and Paleontological Data PREDATION IN MOLLUSCS: A MULTI-TAXON APPROACH USING NEONTOLOGICAL AND PALEONTOLOGICAL DATA by Devapriya Chattopadhyay A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in The University of Michigan 2009 Doctoral Committee: Professor Tomasz K. Baumiller, Chair Professor Daniel C. Fisher Professor Kyger C. Lohmann Assistant Professor Thomas F. Duda Jr. Assistant Professor Jeffrey A. Wilson Research Scientist Janice L. Pappas ACKNOWLEDGEMENTS I want to extend my sincere gratitude to my academic adviser Prof. Tomasz K. Baumiller who introduced me to the modern trends in Paleontology. I wish to thank Prof. Michal Kowalewski of Virginia Polytechnic Institute and State University and Prof. Lindsey Leighton of University of Alberta who helped me to carry out the neontological experiments. Special thanks to Dr. Daniel J. Miller and G. Alex Janevski for numerous valuable discussions that significantly improved my dissertation. UROP student Sarah Groat helped me in collecting data from the museum specimens. I would like to thank my collaborator Ms. Michelle Casey (Yale University) for her part in our joint study that I included as an appendix in this dissertation. I am indebted to Dr. John Huntley for sharing his data on Phanerozoic predation intensity (Chapter VI). I wish to thank Ms. Anne Hudon for her unrelenting help with all official procedures that could be quite challenging for an international student. My sincere thanks to all the members of Museum of Paleontology who provided useful criticism that improved my work. My husband, Anirban Dutta stood by me in good time and in not so good times. I am grateful to my family members who supported me to reach my goal. This work was supported by grants from the Department of Geological Sciences of University of Michigan, Rackham Graduate School of University of Michigan, Conchologists of America, Friday Harbor Laboratory of University of Washington and Geological Society of America. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS…………………………………………………………… ii LIST OF FIGURES…………………………………………………………………….vii LIST OF TABLES………………………………………………………………………xi CHAPTER 1 ...................................................................................................................... 1 INTRODUCTION .......................................................................................................... 1 CHAPTER 2...................................................................................................................... 4 HYDRODYNAMIC EFFECTS OF DRILL HOLES ON POST-MORTEM TRANSPORTATION OF BIVALVE SHELLS ............................................................ 4 Introduction................................................................................................................. 4 Previous studies:..................................................................................................... 5 Conceptual model:.................................................................................................. 6 Materials and methods ................................................................................................ 8 Results.........................................................................................................................9 Discussion................................................................................................................. 10 Comparison of drilled and undrilled shells:......................................................... 10 Potential taphonomic bias in size:........................................................................ 11 Potential taphonomic bias in stereotypy: ............................................................. 12 Implication for an assemblage: ............................................................................ 13 Assessment of biases................................................................................................. 14 Conclusion ................................................................................................................ 16 CHAPTER 3.................................................................................................................... 31 AN EXPERIMENTAL ASSESSMENT OF PENETRATION, EXCAVATION AND CONSUMPTION RATES OF THE MURICID GASTROPOD, NUCELLA LAMELLOSA ................................................................................................................ 31 Introduction............................................................................................................... 31 Boring rate:........................................................................................................... 32 iii Consumption rate: ................................................................................................ 33 Materials and methods .............................................................................................. 33 Experimental design and procedure:.................................................................... 34 Data acquisition: .................................................................................................. 35 Results....................................................................................................................... 36 Discussion................................................................................................................. 36 CHAPTER 4.................................................................................................................... 55 DRILLING UNDER THREAT: AN EXPERIMENTAL ASSESSMENT OF DRILLING BEHAVIOR OF NUCELLA LAMELLOSA IN THE PRESENCE OF A PREDATOR ................................................................................................................. 55 Introduction............................................................................................................... 55 Materials ................................................................................................................... 56 Experimental design.................................................................................................. 57 Results....................................................................................................................... 59 Impact on overall drilling frequency:................................................................... 59 Impact on frequency of incomplete drill holes: .................................................... 59 Time and/or size dependence of the incomplete drill holes:................................. 60 Discussion................................................................................................................. 63 Conclusions............................................................................................................... 65 CHAPTER 5.................................................................................................................... 79 EFFECT OF DUROPHAGY ON DRILLING PREDATION: A CASE STUDY OF CENOZOIC MOLLUSCS FROM NORTH AMERICA ............................................. 79 Introduction............................................................................................................... 79 Influence of durophages on drilling predators:.................................................... 81 Materials and methods .............................................................................................. 82 Results....................................................................................................................... 84 Discussion................................................................................................................. 84 Shell Thickness: .................................................................................................... 85 Prey Selectivity: .................................................................................................... 85 Repair scars as proxy of durophage activity:....................................................... 86 iiiv Latitude:................................................................................................................ 86 Implications............................................................................................................... 87 Conclusions............................................................................................................... 89 Appendix................................................................................................................... 89 CHAPTER 6.................................................................................................................. 112 CENOZOIC HISTORY OF DRILLING PREDATION: A MULTI-TAXON APPROACH ............................................................................................................... 112 Introduction............................................................................................................. 112 History of predatory drilling: ............................................................................. 113 Behavior of drilling predators:........................................................................... 113 Materials and methods ............................................................................................ 114 Data: ................................................................................................................... 114 Statistical analysis: ............................................................................................
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Glycymeris Longior (Sowerby, 1832) Clam at the Southern Edge of Its Distribution (Argentine Sea) Lucas H
    Gimenez et al. Helgol Mar Res (2020) 74:2 https://doi.org/10.1186/s10152-020-0534-x Helgoland Marine Research ORIGINAL ARTICLE Open Access Age and growth of Glycymeris longior (Sowerby, 1832) clam at the southern edge of its distribution (Argentine Sea) Lucas H. Gimenez1,2†, María del Socorro Doldan1,3,4*† , Paula C. Zaidman1,3,4 and Enrique M. Morsan1,3 Abstract Even though Glycymeris longior is a clam widely distributed in the SW Atlantic Ocean, little is known about its biology and life history. The present study assessed the periodicity of the internal growth increments of G. longior using thin shell sections. Each internal growth increment was composed of two alternating bands: a translucent band (light- coloured when viewed with transmitted light) and an opaque band (dark-coloured). Annual formation for each pair of bands was demonstrated. The formation of the annual growth increments was synchronous among individuals. Growth was determined from live clams collected at El Sótano, Argentine Sea (age range 29 to 69 years). Accord- ing to the growth model, G. longior grows fast during the frst 5 years of life and then growth= becomes slower in later years; individuals reached 50% and 90% of maximum size at 5 and 13 years of age, respectively. High variability was found in shell height for the frst 10 years: diferences up to 5–7 mm among individuals were registered for the frst 2 years of age, and up to 11 mm between the ages of 3 and 9 years. The growth performance index phi-prime (φ′) and the index of growth performance (P) of G.
    [Show full text]
  • Molluscan (Gastropoda and Bivalvia) Diversity and Abundance in Rocky Intertidal Areas of Lugait, Misamis Oriental, Northern Mindanao, Philippines
    J. Bio. & Env. Sci. 2017 Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 11, No. 3, p. 169-179, 2017 http://www.innspub.net RESEARCH PAPER OPEN ACCESS Molluscan (Gastropoda and Bivalvia) diversity and abundance in rocky intertidal areas of Lugait, Misamis Oriental, Northern Mindanao, Philippines Shirlamaine Irina G. Masangcay1, Maria Lourdes Dorothy G. Lacuna*2 1Department of Biology, College of Arts and Sciences, Caraga State University, Ampayon Campus National Highway, NH1, Butuan City, Philippines 2Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines Article published on September 30, 2017 Key words: Cerithium stercusmuscarum, Drupella margariticola, total organic matter, calcium carbonate, density. Abstract Composition, diversity and abundance of rocky intertidal mollusks and their relationship with the environmental parameters, viz. water quality, total organic matter and calcium carbonate were determined. A total of 43 species were identified, of which 41 species belong to Class Gastropoda under 18 families and 2 species were categorized under Class Bivalvia from 2 families. Using several diversity indices, results revealed high diversity and equitability values in the 2 sampling sites. Moreover, comparison of the mollusks abundance between the 2 sampling stations showed station 2 to be dominantly abundant with Cerithium stercusmuscarum comprising almost one-third of the total population. Canonical Correspondence Analysis showed that total organic matter and calcium carbonate in the sediment may have influenced the abundance of mollusk assemblage in station 2. The results obtained from the study are vital in order to strongly support the need to continue monitoring the Lugait marine sanctuary and its nearby surroundings.
    [Show full text]
  • Population Dynamics of Pomacea Flagellata
    Limnetica, 29 (2): x-xx (2011) Limnetica, 34 (1): 69-78 (2015). DOI: 10.23818/limn.34.06 c Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Population dynamics of the native apple snail Pomacea flagellata (Ampullariidae) in a coastal lagoon of the Mexican Caribbean Frank A. Ocaña∗, Alberto de Jesús-Navarrete, José Juan Oliva-Rivera, Rosa María de Jesús- Carrillo and Abel Abraham Vargas-Espósitos1 Departamento de Sistemática y Ecología Acuática. El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal. Av. Centenario km 5.5, Chetumal, Quintana Roo, México ∗ Corresponding author: [email protected] 2 Received: 25/07/2014 Accepted: 20/11/2014 ABSTRACT Population dynamics of the native apple snail Pomacea flagellata (Ampullariidae) in a coastal lagoon of the Mexican Caribbean Apple snails Pomacea spp inhabit tropical and subtropical freshwater environments and are of ecological and economic importance. To evaluate the population dynamics of P. flagellata, monthly samples were collected from Guerrero Lagoon (Yucatán Peninsula) from June 2012 to May 2013. The measured environmental variables did not differ significantly among the sampling stations. However, salinity was lower during the rainy season, and the temperature was lower during the north season (i.e., the season dominated by cold fronts). The snails were more abundant during the rainy season, and they were restricted to the portion of the lagoon that receives freshwater discharges. The snails ranged from 4 to 55 mm in size, with a –1 maximum estimated length of L∞ = 57.75 mm and a growth rate of K = 0.68 y (the abbreviation “y” means “year”) with a seasonal oscillation; the lowest growth rate occurred in early December.
    [Show full text]
  • Download Download
    Appendix C: An Analysis of Three Shellfish Assemblages from Tsʼishaa, Site DfSi-16 (204T), Benson Island, Pacific Rim National Park Reserve of Canada by Ian D. Sumpter Cultural Resource Services, Western Canada Service Centre, Parks Canada Agency, Victoria, B.C. Introduction column sampling, plus a second shell data collect- ing method, hand-collection/screen sampling, were This report describes and analyzes marine shellfish used to recover seven shellfish data sets for investi- recovered from three archaeological excavation gating the siteʼs invertebrate materials. The analysis units at the Tseshaht village of Tsʼishaa (DfSi-16). reported here focuses on three column assemblages The mollusc materials were collected from two collected by the researcher during the 1999 (Unit different areas investigated in 1999 and 2001. The S14–16/W25–27) and 2001 (Units S56–57/W50– source areas are located within the village proper 52, S62–64/W62–64) excavations only. and on an elevated landform positioned behind the village. The two areas contain stratified cultural Procedures and Methods of Quantification and deposits dating to the late and middle Holocene Identification periods, respectively. With an emphasis on mollusc species identifica- The primary purpose of collecting and examining tion and quantification, this preliminary analysis the Tsʼishaa shellfish remains was to sample, iden- examines discarded shellfood remains that were tify, and quantify the marine invertebrate species collected and processed by the site occupants for each major stratigraphic layer. Sets of quantita- for approximately 5,000 years. The data, when tive information were compiled through out the reviewed together with the recovered vertebrate analysis in order to accomplish these objectives.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Trophic Facilitation by the Oystercatcher Haematopus Palliatus Temminick on the Scavenger Snail Buccinanops Globulosum Kiener in a Patagonian Bay
    Journal of Experimental Marine Biology and Ecology 325 (2005) 27–34 www.elsevier.com/locate/jembe Trophic facilitation by the oystercatcher Haematopus palliatus Temminick on the scavenger snail Buccinanops globulosum Kiener in a Patagonian bay Pedro Daleoa,b,*, Mauricio Escapab,c, Juan Pablo Isaccha,b, Pablo Ribeiroa,b, Oscar Iribarnea,b aDepartamento de Biologı´a (FCEyN), Universidad Nacional de Mar del Plata, Funes 3250, CC 573 Correo Central, B7600WAG, Mar del Plata, Argentina bConsejo Nacional de Investigaciones Cientı´ficas y Te´cnicas (CONICET), Argentina cInstituto Argentino de Oceanografı´a (IADO), Argentina Received 25 August 2004; received in revised form 4 April 2005; accepted 7 April 2005 Abstract This study investigated the role of the American oystercatcher (Haematopus palliatus) as a resource subsidizer for the scavenger snail Buccinanops globulosum in a northern Patagonian bay (40845VS, 64856VW, San Antonio Bay, Argentina). The most frequent food item for the snails was dead crabs Cyrtograpsus angulatus Dana, and the snails preferred this item. In the field, most dead crabs (78%) resulted from oystercatcher predation. Field densities of dead crabs were within the 95% confidence limits of the estimated densities produced by oystercatcher foraging activity, suggesting that a large proportion of carrion available for snails is a byproduct of oystercatcher predation. Dead crabs with injuries were more rapidly detected and consumed by snails, probably because injuries produced by oystercatchers increase leakage of body fluids and facilitate penetration of the proboscis of the snails. Our results suggest that oystercatcher predation subsidize this scavenger snail by increasing availability of food, decreasing variability in their provision and facilitating their consumption.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • Spondylus and Glycymeris Bracelets> Trade Reflections at Neolithic
    UDK 903.25'12\'15 (497.11)''633\634''>594.1 Documenta Praehistorica XXXIII (2006) Spondylus and Glycymeris bracelets> trade reflections at Neolithic Vin;a-Belo Brdo Vesna Dimitrijevic´ 1, Boban Tripkovic´ 2 1 Institute of Regional Geology and Palaeontology, Faculty of Mining and Geology, Serbia [email protected] 2 Department of Archaeology, Faculty of Philosophy, Serbia [email protected] ABSTRACT – In the provision, production and exchange of prestigious items and materials in prehi- storic Europe, marine shell ornaments play important role. The marine shell collection at the Vin≠a- Belo Brdo site is the largest in the central and northern Balkans. More than 300 ornament items ma- nufactured from marine shells have been collected since the first excavations in 1908 up until the most recent campaign. The majority of ornaments were made using recent shells that were obtained through trade with contemporaneous Neolithic communities; few ornaments were made of fossil bi- valve shells. Bracelets were the most common type. Two bivalve genera, Spondylus and Glycymeris, were used in their production. These are easily recognizable when complete valves are compared, but dif- ficult to distinguish in highly modified items where shell morphology is obscured. The defining charac- teristics for shell identification are presented, particularly to differentiate ornaments manufactured from the Spondylus and Glycymeris genera, as well as those made of recent and fossil shells. The pos- sible exchange routes for these are discussed, as well as their diachronic distribution at the Vin≠a site. IZVLE∞EK – Okraski iz morskih ∏koljk so igrali pomembno vlogo pri pripravi, izdelavi in menjavi pre- sti∫nih predmetov in materialov v prazgodovinski Evropi.
    [Show full text]
  • The Diet and Predator-Prey Relationships of the Sea Star Pycnopodia Helianthoides (Brandt) from a Central California Kelp Forest
    THE DIET AND PREDATOR-PREY RELATIONSHIPS OF THE SEA STAR PYCNOPODIA HELIANTHOIDES (BRANDT) FROM A CENTRAL CALIFORNIA KELP FOREST A Thesis Presented to The Faculty of Moss Landing Marine Laboratories San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Arts by Timothy John Herrlinger December 1983 TABLE OF CONTENTS Acknowledgments iv Abstract vi List of Tables viii List of Figures ix INTRODUCTION 1 MATERIALS AND METHODS Site Description 4 Diet 5 Prey Densities and Defensive Responses 8 Prey-Size Selection 9 Prey Handling Times 9 Prey Adhesion 9 Tethering of Calliostoma ligatum 10 Microhabitat Distribution of Prey 12 OBSERVATIONS AND RESULTS Diet 14 Prey Densities 16 Prey Defensive Responses 17 Prey-Size Selection 18 Prey Handling Times 18 Prey Adhesion 19 Tethering of Calliostoma ligatum 19 Microhabitat Distribution of Prey 20 DISCUSSION Diet 21 Prey Densities 24 Prey Defensive Responses 25 Prey-Size Selection 27 Prey Handling Times 27 Prey Adhesion 28 Tethering of Calliostoma ligatum and Prey Refugia 29 Microhabitat Distribution of Prey 32 Chemoreception vs. a Chemotactile Response 36 Foraging Strategy 38 LITERATURE CITED 41 TABLES 48 FIGURES 56 iii ACKNOWLEDGMENTS My span at Moss Landing Marine Laboratories has been a wonderful experience. So many people have contributed in one way or another to the outcome. My diving buddies perse- vered through a lot and I cherish our camaraderie: Todd Anderson, Joel Thompson, Allan Fukuyama, Val Breda, John Heine, Mike Denega, Bruce Welden, Becky Herrlinger, Al Solonsky, Ellen Faurot, Gilbert Van Dykhuizen, Ralph Larson, Guy Hoelzer, Mickey Singer, and Jerry Kashiwada. Kevin Lohman and Richard Reaves spent many hours repairing com­ puter programs for me.
    [Show full text]
  • The Fossil Record of Shell-Breaking Predation on Marine Bivalves and Gastropods
    Chapter 6 The Fossil Record of Shell-Breaking Predation on Marine Bivalves and Gastropods RICHARD R. ALEXANDER and GREGORY P. DIETL I. Introduction 141 2. Durophages of Bivalves and Gastropods 142 3. Trends in Antipredatory Morphology in Space and Time .. 145 4. Predatory and Non-Predatory Sublethal Shell Breakage 155 5. Calculation ofRepair Frequencies and Prey Effectiveness 160 6. Prey Species-, Size-, and Site-Selectivity by Durophages 164 7. Repair Frequencies by Time, Latitude, and Habitat.. 166 8. Concluding Remarks 170 References 170 1. Introduction Any treatment of durophagous (shell-breaking) predation on bivalves and gastropods through geologic time must address the molluscivore's signature preserved in the victim's skeleton. Pre-ingestive breakage or crushing is only one of four methods of molluscivory (Vermeij, 1987; Harper and Skelton, 1993), the others being whole­ organism ingestion, insertion and extraction, and boring. Other authors in this volume treat the last behavior, whereas whole-organism ingestion, and insertion and extraction, however common, are unlikely to leave preservable evidence. Bivalve and gastropod ecologists and paleoecologists reconstruct predator-prey relationships based primarily on two, although not equally useful, categories of pre-ingestive breakage, namely lethal and sublethal (repaired) damage. Peeling crabs may leave incriminating serrated, helical RICHARD R. ALEXANDER • Department of Geological and Marine Sciences, Rider University, Lawrenceville, New Jersey, 08648-3099. GREGORY P. DIETL. Department of Zoology, North Carolina State University, Raleigh, North Carolina, 27695-7617. Predator-Prey Interactions in the Fossil Record, edited by Patricia H. Kelley, Michal Kowalewski, and Thor A. Hansen. Kluwer Academic/Plenum Publishers, New York, 2003. 141 142 Chapter 6 fractures in whorls of high-spired gastropods (Bishop, 1975), but unfortunately most lethal fractures are far less diagnostic of the causal agent and often indistinguishable from abiotically induced, taphonomic agents ofshell degradation.
    [Show full text]
  • Seasonal Reproductive Anatomy and Sperm Storage in Pleurocerid Gastropods (Cerithioidea: Pleuroceridae) Nathan V
    989 ARTICLE Seasonal reproductive anatomy and sperm storage in pleurocerid gastropods (Cerithioidea: Pleuroceridae) Nathan V. Whelan and Ellen E. Strong Abstract: Life histories, including anatomy and behavior, are a critically understudied component of gastropod biology, especially for imperiled freshwater species of Pleuroceridae. This aspect of their biology provides important insights into understanding how evolution has shaped optimal reproductive success and is critical for informing management and conser- vation strategies. One particularly understudied facet is seasonal variation in reproductive form and function. For example, some have hypothesized that females store sperm over winter or longer, but no study has explored seasonal variation in accessory reproductive anatomy. We examined the gross anatomy and fine structure of female accessory reproductive structures (pallial oviduct, ovipositor) of four species in two genera (round rocksnail, Leptoxis ampla (Anthony, 1855); smooth hornsnail, Pleurocera prasinata (Conrad, 1834); skirted hornsnail, Pleurocera pyrenella (Conrad, 1834); silty hornsnail, Pleurocera canaliculata (Say, 1821)). Histological analyses show that despite lacking a seminal receptacle, females of these species are capable of storing orientated sperm in their spermatophore bursa. Additionally, we found that they undergo conspicuous seasonal atrophy of the pallial oviduct outside the reproductive season, and there is no evidence that they overwinter sperm. The reallocation of resources primarily to somatic functions outside of the egg-laying season is likely an adaptation that increases survival chances during winter months. Key words: Pleuroceridae, Leptoxis, Pleurocera, freshwater gastropods, reproduction, sperm storage, anatomy. Résumé : Les cycles biologiques, y compris de l’anatomie et du comportement, constituent un élément gravement sous-étudié de la biologie des gastéropodes, particulièrement en ce qui concerne les espèces d’eau douce menacées de pleurocéridés.
    [Show full text]