Examining Spring and Autumn Phenology in a Temperate Deciduous Urban Woodlot Rong Yu University of Wisconsin-Milwaukee
Total Page:16
File Type:pdf, Size:1020Kb
University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations 12-1-2013 Examining Spring and Autumn Phenology in a Temperate Deciduous Urban Woodlot Rong Yu University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Climate Commons, and the Geographic Information Sciences Commons Recommended Citation Yu, Rong, "Examining Spring and Autumn Phenology in a Temperate Deciduous Urban Woodlot" (2013). Theses and Dissertations. 445. https://dc.uwm.edu/etd/445 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. EXAMINING SPRING AND AUTUMN PHENOLOGY IN A TEMPERATE DECIDUOUS URBAN WOODLOT by Rong Yu A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Geography at The University of Wisconsin - Milwaukee December 2013 Abstract EXAMINING SPRING AND AUTUMN PHENOLOGY IN A TEMPERATE DECIDUOUS URBAN WOODLOT by Rong Yu The University of Wisconsin - Milwaukee, 2013 Under the Supervision of Distinguished Professor Mark D. Schwartz This dissertation is an intensive phenological study in a temperate deciduous urban woodlot over six consecutive years (2007-2012). It explores three important topics related to spring and autumn phenology, as well as ground and remote sensing phenology. First, it examines key climatic factors influencing spring and autumn phenology by conducting phenological observations four days a week and recording daily microclimate measurements. Second, it investigates the differences in phenological responses between an urban woodlot and a rural forest by employing comparative basswood phenological data. Finally, it bridges ground visual phenology and remote sensing derived phenological changes by using the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from the Moderate Resolution Imaging Spectro-radiometer (MODIS). ii The primary outcomes are as follows: 1) empirical spatial regression models for two dominant tree species - basswood and white ash - have been built and analyzed to detect spatial patterns and possible causes of phenological change; the results show that local urban settings significantly affect phenology; 2) empirical phenological progression models have been built for each species and the community as a whole to examine how phenology develops in spring and autumn; the results indicate that the critical factor influencing spring phenology is AGDD (accumulated growing degree-days) and for autumn phenology, ACDD (accumulated chilling degree-days) and day length; and 3) satellite derived phenological changes have been compared with ground visual community phenology in both spring and autumn seasons, and the results confirm that both NDVI and EVI depict vegetation dynamics well and therefore have corresponding phenological meanings. iii © Copyright by Rong Yu, 2013 All Rights Reserved iv Dedication TO MY PARENTS AND TO MY GRANDPARENTS v Contents 1. Introduction ................................................................................................................ 1 2. Literature Review ....................................................................................................... 9 2.1 Direct observation and simulation phenology .......................................................... 9 2.2 Land surface (remote sensing) phenology .............................................................. 15 2.3 Autumn phenology.................................................................................................. 22 2.4 Phenological studies in an urban setting ................................................................. 23 3. Research Questions .................................................................................................. 26 4. Study Area ................................................................................................................ 29 4.1 Downer Woods ....................................................................................................... 29 4.2 Park Falls Range District ........................................................................................ 33 5. Data and Methods .................................................................................................... 35 5.1 Data - Downer Woods ............................................................................................ 35 5.1.1 Tree sampling strategies .................................................................................. 35 5.1.2 Spring and autumn phenological observations ................................................ 35 5.1.3 Measurements of microclimate parameters ..................................................... 38 5.1.4 Satellite data ..................................................................................................... 46 5.2 Data - Park Falls ...................................................................................................... 46 5.2.1 Tree sampling ................................................................................................... 46 5.3 Methods................................................................................................................... 48 5.3.1 Preprocessing ................................................................................................... 48 5.3.2 Spatial pattern analysis .................................................................................... 51 5.3.3 Relationships between phenology and microclimate ....................................... 54 5.3.4 Breakpoint detection ........................................................................................ 55 6. Results ...................................................................................................................... 57 6.1 Descriptive summary of the phenological data ....................................................... 57 6.1.1 Downer Woods ................................................................................................ 57 6.1.2 Parks Fall Range District ................................................................................. 77 6.2 Spatial patterns of phenology in Downer Woods ................................................... 79 6.2.1 Spatial autocorrelation analysis ....................................................................... 79 vi 6.2.2 Spatial regression model .................................................................................. 80 6.3 Relationships between phenology and microclimate .............................................. 91 6.3.1 Microclimate parameters ................................................................................. 91 6.3.2 Correlation between phenology and temperature .......................................... 103 6.3.3 Correlation between phenology and moisture ............................................... 111 6.3.4 Correlation between phenology and day length ............................................. 116 6.3.5 Correlation between phenology and light intensity ....................................... 119 6.3.6 Correlation between phenology and wind ..................................................... 121 6.3.7 Regression models for phenology and microclimatic factors ........................ 123 6.4 Relationships between VI and ground visual phenology ...................................... 129 7. Discussion .............................................................................................................. 133 7.1 Spatially and temporally intensive phenological observations ............................. 133 7.2 Spring and autumn phenology .............................................................................. 137 7.2.1 Spring phenology ........................................................................................... 137 7.2.2 Autumn phenology......................................................................................... 139 7.2.3 Growing season .............................................................................................. 140 7.2.4 Implications of changing phenology .............................................................. 142 7.3 Phenological progression models ......................................................................... 143 7.3.1 Spring phenological progression models ....................................................... 143 7.3.2 Autumn phenological progression models..................................................... 146 7.4 Spatial regression models ..................................................................................... 148 7.4.1 Spring spatial regression models ................................................................... 149 7.4.2 Autumn spatial regression models ................................................................. 150 7.5 Relationships between remote sensing phenology and ground visual phenology 151 8. Conclusions ............................................................................................................ 153 8.1 Major conclusions ............................................................................................. 153 8.2 Remaining issues and recommendations .......................................................... 155 References .....................................................................................................................