The Correlations and Sequence of Plant Stomatal, Hydraulic, and Wilting Responses to Drought
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Identity of Diplospora Africana (Rubiaceae)
The identity of Diplospora africana (Rubiaceae) E. Robbrecht Nationale Plantentuin van Belgie, Domein van Bouchout, Meise, Belgium Diplospora africana Sim is shown to be a distinct species Introduction belonging to Tricalysia subg. Empogona sect. Kraussiopsis. When Sim (1907) dealt with Tricalysia in the Cape, he did It possesses the characteristics of this subgenus: Flowers not follow the delimitation of the genus proposed in with densely hairy corolla throat and appendiculate anthers, and fruits black at complete maturity. The necessary Schumann's (1891) account of the family (i.e. Diplospora and combination under the name Tricalysia and an amplified Kraussia are considered as sections of Trica/ysia) , but description of the species are provided. This rather rare distinguished between Diplospora (with tetramerous flowers), species is a Pondoland endemic separated by a wide Kraussia (pentamerous) and Tricalysia (hexamerous), stating interval from its Guineo-Congolian relatives. A key to the that this artifical distinction 'probably does not hold good species of Trica/ysia in South Africa is provided; T. africana elsewhere'. Sim recognized five species in South Africa: D . is easily distinguished from the five other southern African Trica/ysia species by its tetramerous flowers. ajricana Sim, K. lanceo/ata Sand. [ = T. lanceolata (Sand.) S. Afr. J. Bot. 1985, 51: 331-334 Burtt-Davy], K. jloribunda Harv., K. coriacea Sond. ( = T. sonderana Hiern) and T. capensis (Meisn.) Sim. While the Diplospora africana Sim is 'n maklik onderskeidbare spesie last four species are now well known elements of the South wat in Tricalysia subg. Empogona sect. Kraussiopsis African flora, Dip/ospora ajricana remained obscure and ingesluit word. -
Vegetation Benchmarks Rainforest and Related Scrub
Vegetation Benchmarks Rainforest and related scrub Eucryphia lucida Vegetation Condition Benchmarks version 1 Rainforest and Related Scrub RPW Athrotaxis cupressoides open woodland: Sphagnum peatland facies Community Description: Athrotaxis cupressoides (5–8 m) forms small woodland patches or appears as copses and scattered small trees. On the Central Plateau (and other dolerite areas such as Mount Field), broad poorly– drained valleys and small glacial depressions may contain scattered A. cupressoides trees and copses over Sphagnum cristatum bogs. In the treeless gaps, Sphagnum cristatum is usually overgrown by a combination of any of Richea scoparia, R. gunnii, Baloskion australe, Epacris gunnii and Gleichenia alpina. This is one of three benchmarks available for assessing the condition of RPW. This is the appropriate benchmark to use in assessing the condition of the Sphagnum facies of the listed Athrotaxis cupressoides open woodland community (Schedule 3A, Nature Conservation Act 2002). Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 10% - - - Large Trees - 6 20 5 Organic Litter 10% - Logs ≥ 10 - 2 Large Logs ≥ 10 Recruitment Continuous Understorey Life Forms LF code # Spp Cover % Immature tree IT 1 1 Medium shrub/small shrub S 3 30 Medium sedge/rush/sagg/lily MSR 2 10 Ground fern GF 1 1 Mosses and Lichens ML 1 70 Total 5 8 Last reviewed – 2 November 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg RPW Athrotaxis cupressoides open woodland: Sphagnum facies Species lists: Canopy Tree Species Common Name Notes Athrotaxis cupressoides pencil pine Present as a sparse canopy Typical Understorey Species * Common Name LF Code Epacris gunnii coral heath S Richea scoparia scoparia S Richea gunnii bog candleheath S Astelia alpina pineapple grass MSR Baloskion australe southern cordrush MSR Gleichenia alpina dwarf coralfern GF Sphagnum cristatum sphagnum ML *This list is provided as a guide only. -
Taxanomic Composition and Conservation Status of Plants in Imbak Canyon, Sabah, Malaysia
Journal of Tropical Biology and Conservation 16: 79–100, 2019 ISSN 1823-3902 E-ISSN 2550-1909 Short Notes Taxanomic Composition and Conservation Status of Plants in Imbak Canyon, Sabah, Malaysia Elizabeth Pesiu1*, Reuben Nilus2, John Sugau2, Mohd. Aminur Faiz Suis2, Petrus Butin2, Postar Miun2, Lawrence Tingkoi2, Jabanus Miun2, Markus Gubilil2, Hardy Mangkawasa3, Richard Majapun2, Mohd Tajuddin Abdullah1,4 1Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu 2Forest Research Centre, Sabah Forestry Department, Sandakan, Sabah, Malaysia 3 Maliau Basin Conservation Area, Yayasan Sabah 4Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu *Corresponding authors: [email protected] Abstract A study of plant diversity and their conservation status was conducted in Batu Timbang, Imbak Canyon Conservation Area (ICCA), Sabah. The study aimed to document plant diversity and to identify interesting, endemic, rare and threatened plant species which were considered high conservation value species. A total of 413 species from 82 families were recorded from the study area of which 93 taxa were endemic to Borneo, including 10 endemic to Sabah. These high conservation value species are key conservation targets for any forested area such as ICCA. Proper knowledge of plant diversity and their conservation status is vital for the formulation of a forest management plan for the Batu Timbang area. Keywords: Vascular plant, floral diversity, endemic, endangered, Borneo Introduction The earth as it is today has a lot of important yet beneficial natural resources such as tropical forests. Tropical forests are one of the world’s richest ecosystems, providing a wide range of important natural resources comprising vital biotic and abiotic components (Darus, 1982). -
World Heritage Values and to Identify New Values
FLORISTIC VALUES OF THE TASMANIAN WILDERNESS WORLD HERITAGE AREA J. Balmer, J. Whinam, J. Kelman, J.B. Kirkpatrick & E. Lazarus Nature Conservation Branch Report October 2004 This report was prepared under the direction of the Department of Primary Industries, Water and Environment (World Heritage Area Vegetation Program). Commonwealth Government funds were contributed to the project through the World Heritage Area program. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Department of Primary Industries, Water and Environment or those of the Department of the Environment and Heritage. ISSN 1441–0680 Copyright 2003 Crown in right of State of Tasmania Apart from fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any means without permission from the Department of Primary Industries, Water and Environment. Published by Nature Conservation Branch Department of Primary Industries, Water and Environment GPO Box 44 Hobart Tasmania, 7001 Front Cover Photograph: Alpine bolster heath (1050 metres) at Mt Anne. Stunted Nothofagus cunninghamii is shrouded in mist with Richea pandanifolia scattered throughout and Astelia alpina in the foreground. Photograph taken by Grant Dixon Back Cover Photograph: Nothofagus gunnii leaf with fossil imprint in deposits dating from 35-40 million years ago: Photograph taken by Greg Jordan Cite as: Balmer J., Whinam J., Kelman J., Kirkpatrick J.B. & Lazarus E. (2004) A review of the floristic values of the Tasmanian Wilderness World Heritage Area. Nature Conservation Report 2004/3. Department of Primary Industries Water and Environment, Tasmania, Australia T ABLE OF C ONTENTS ACKNOWLEDGMENTS .................................................................................................................................................................................1 1. -
Flora of Singapore Precursors, 9: the Identities of Two Unplaced Taxa Based on Types from Singapore
Gardens' Bulletin Singapore 70 (2): 295–299. 2018 295 doi: 10.26492/gbs70(2).2018-06 Flora of Singapore precursors, 9: The identities of two unplaced taxa based on types from Singapore I.M. Turner1, 2, M. Rodda2, K.M. Wong2 & D.J. Middleton2 1Singapore Botanical Liaison Officer, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, U.K. [email protected] 2Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore. ABSTRACT. Work on the Gentianales for the Flora of Singapore has clarified the identities of two names based on types collected in Singapore that have long been considered of uncertain application. Dischidia wallichii Wight is shown to be a synonym of Micrechites serpyllifolius (Blume) Kosterm. (Apocynaceae) and Saprosma ridleyi King & Gamble is a synonym of Psychotria maingayi Hook.f. (Rubiaceae). A lectotype is designated for Dischidia wallichii. Keywords. Apocynaceae, Dischidia wallichii, Micrechites serpyllifolius, Psychotria maingayi, Rubiaceae, Saprosma ridleyi, synonymy Introduction The Gentianales have recently been the focus of intensive research in preparation for the accounts of the included families for the Flora of Singapore (Rodda & Ang, 2012; Rodda et al., 2015, 2016; Middleton et al., 2018; Rodda & Lai, 2018; Seah & Wong, 2018; Turner, 2018; Turner & Kumar, 2018; Wong & Mahyuni, 2018; Wong et al, in press; Wong & Lua, 2018). This involved a closer look at two taxa described from specimens collected in Singapore that have long eluded satisfactory conclusions as to their identities, Dischidia wallichii Wight (Apocynaceae) and Saprosma ridleyi King & Gamble (Rubiaceae). Through a collaboration among the authors of this paper, who have wide expertise across these families, we can now place these two names in synonymy of other taxa. -
Evidence of the Morphological Range, Transition and Evolution of Stomatal Protection Mechanisms in Some Selected Proteaceae
EVIDENCE OF THE MORPHOLOGICAL RANGE, TRANSITION AND EVOLUTION OF STOMATAL PROTECTION MECHANISMS IN SOME SELECTED PROTEACEAE Ratnawati Submitted in fulfilment of the requirements for the Masters of Science Degree l ' \ ' i. <.. I . t I \ I \ :'\. ' • SCHOOL OF PLANT SCIENCE DECEMBER 2001 DECEMBER 2001 This thesis is not to be made available for loan or copying for two years following the date this statement was signed. Following that time the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. - - ---- - __·1 -----------~--- --- -- ------------- ------- DECLARATION Except as stated herein, this thesis contains no material which has been accepted for the award or any other degree or diploma, and to the best of my knowledge and belief contains no copy or paraphrase of material previously published or written by any other person, except where due reference is made in the text. I dedicate my work to my beloved husband, Agung, and my sons, Odit and Yusta, for their spiritual support during my study. Abstract Xero- and scleromorphic adaptations are obviously shown by Australian plants, in response to the Australian climate and edaphic factors. Since these adaptations overlap, there are problems separating the two. Some qualitative hypotheses about the distinction between xero- and scleromorphic characters have been proposed. This research is an effort to quantitatively determine xeromorphic characters in some members of the Proteaceae, in order to elaborate upon some of the existing hypotheses about these characters. Twenty three species of Banksia, 16 species of Grevillea and 6 species of Orites were sectioned and observed under the light micrscope and measurements were made of the stomata! depressions, margin recurvations, cuticle thickness and hair dimensions. -
Vascular Plant Composition and Diversity of a Coastal Hill Forest in Perak, Malaysia
www.ccsenet.org/jas Journal of Agricultural Science Vol. 3, No. 3; September 2011 Vascular Plant Composition and Diversity of a Coastal Hill Forest in Perak, Malaysia S. Ghollasimood (Corresponding author), I. Faridah Hanum, M. Nazre, Abd Kudus Kamziah & A.G. Awang Noor Faculty of Forestry, Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia Tel: 98-915-756-2704 E-mail: [email protected] Received: September 7, 2010 Accepted: September 20, 2010 doi:10.5539/jas.v3n3p111 Abstract Vascular plant species and diversity of a coastal hill forest in Sungai Pinang Permanent Forest Reserve in Pulau Pangkor at Perak were studied based on the data from five one hectare plots. All vascular plants were enumerated and identified. Importance value index (IVI) was computed to characterize the floristic composition. To capture different aspects of species diversity, we considered five different indices. The mean stem density was 7585 stems per ha. In total 36797 vascular plants representing 348 species belong to 227 genera in 89 families were identified within 5-ha of a coastal hill forest that is comprises 4.2% species, 10.7% genera and 34.7% families of the total taxa found in Peninsular Malaysia. Based on IVI, Agrostistachys longifolia (IVI 1245), Eugeissona tristis (IVI 890), Calophyllum wallichianum (IVI 807), followed by Taenitis blechnoides (IVI 784) were the most dominant species. The most speciose rich families were Rubiaceae having 27 species, followed by Dipterocarpaceae (21 species), Euphorbiaceae (20 species) and Palmae (14 species). According to growth forms, 57% of all species were trees, 13% shrubs, 10% herbs, 9% lianas, 4% palms, 3.5% climbers and 3% ferns. -
The Cytotaxonomy of Four Tasmanian Genera of Proteaceae
http://dx.doi.org/10.7751/telopea19971010 181 The cytotaxonomy of four Tasmanian genera of Proteaceae Robert J.E. Wiltshire and Helen M. Stace Abstract Wiltshire, R.J.E.1 and Stace, H.M.2 (1Department of Plant Science, University of Tasmania, GPO Box 252- 55, Hobart, Tasmania 7001, 2Department of Botany, University of Western Australia, Nedlands, WA 6907) 1997. The cytotaxonomy of four Tasmanian genera of Proteaceae. Telopea 7(3): 181–185. New chromosome number determinations for Orites diversifolia (2n=28) and Cenarrhenes nitida (2n=26) correct prior reports. We confirm Agastachys odorata with 2n=26 and Bellendena montana with 2n=10. These data indicate that x=15 is absent from subfamily Grevillioideae and family Proteaceae, and x=14 is absent from tribe Conospermeeae of subfamily Proteoideae, but x=5 is confirmed in subfamily Bellendenoideae. Introduction In Proteaceae the highest and the lowest chromosome base numbers were reported from two Tasmanian species, n=15 in Orites diversifolia and n=5 in Bellendena montana (Venkata Rao 1957a, 1957b, 1971). All other chromosomal reports in 65 genera of the family range between x=14 and x=7 (e.g. de Vos 1943; Darlington and Wylie 1955; Smith-White 1959; Ramsay 1963; Johnson and Briggs 1963, 1975). The two results have never been revisited, although that for O. diversifolia is discordant with other data in the genus Orites (otherwise n=14), and that for the Tasmanian endemic Bellendena is unusual in the subfamily Persoonioideae (usually x=7) in which it was formerly included (Weston 1995). Another Tasmanian endemic, Cenarrhenes nitida, was reported as n=14 (Ramsay 1963), a generally rare result in the tribe Conospermeeae and subfamily Proteoideae which includes a further Tasmanian endemic Agastachys odorata with 2n=26 (Venkata Rao 1957a). -
Gardens and Stewardship
GARDENS AND STEWARDSHIP Thaddeus Zagorski (Bachelor of Theology; Diploma of Education; Certificate 111 in Amenity Horticulture; Graduate Diploma in Environmental Studies with Honours) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2007 School of Geography and Environmental Studies University of Tasmania STATEMENT OF AUTHENTICITY This thesis contains no material which has been accepted for any other degree or graduate diploma by the University of Tasmania or in any other tertiary institution and, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by other persons, except where due acknowledgement is made in the text of the thesis or in footnotes. Thaddeus Zagorski University of Tasmania Date: This thesis may be made available for loan or limited copying in accordance with the Australian Copyright Act of 1968. Thaddeus Zagorski University of Tasmania Date: ACKNOWLEDGEMENTS This thesis is not merely the achievement of a personal goal, but a culmination of a journey that started many, many years ago. As culmination it is also an impetus to continue to that journey. In achieving this personal goal many people, supervisors, friends, family and University colleagues have been instrumental in contributing to the final product. The initial motivation and inspiration for me to start this study was given by Professor Jamie Kirkpatrick, Dr. Elaine Stratford, and my friend Alison Howman. For that challenge I thank you. I am deeply indebted to my three supervisors Professor Jamie Kirkpatrick, Dr. Elaine Stratford and Dr. Aidan Davison. Each in their individual, concerted and special way guided me to this omega point. -
Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia)
Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia) Alison Kellow Michael Bayly Pauline Ladiges School of Botany, The University of Melbourne July, 2007 THE GRIMWADE PLANT COLLECTION, MT BUFFALO Contents Summary ...........................................................................................................................3 Mt Buffalo and its flora.....................................................................................................4 History of botanical exploration........................................................................................5 The Grimwade plant collection of Percival St John..........................................................8 A new collection of plants from Mt Buffalo - The Miegunyah Plant Collection (2006/2007) ....................................................................................................................................13 Plant species list for Mt Buffalo National Park...............................................................18 Conclusion.......................................................................................................................19 Acknowledgments...........................................................................................................19 References .......................................................................................................................20 Appendix 1 Details of specimens in the Grimwade Plant Collection.............................22 -
Phytophoto Index 2018
PhytoPhoto 2018 Image Availability Accessing the photo collection is easy. Simply send an email with the plant names or a description of images sought to [email protected] and a gallery of photos meeting your criteria will be submitted to you, usually the same day. Abeliophyllum distichum Abutilon vitifolium ‘Album’ Acer palmatum fall color Abeliophyllum distichum ‘Roseum’ Abutilon vitifolium white Acer palmatum in front of window Abelmoschus esculentus "Okra" Abutilon Wisley Red Acer palmatum in orange fall color Abelmoschus manihot Abutilon x hybridum 'Bella Red' Acer palmatum var. dissectum Abies balsamea 'Nana' Abutilon-orange Acer palmatum var. dissectum Dissectum Abies concolor 'Blue Cloak' Abutilon-white Viride Group Abies guatemalensis Acacia baileyana Acer pensylvaticum Abies koreana 'Glauca' Acacia baileyana 'Purpurea' Acer platanoides 'Princeton Gold' Abies koreana 'Green Carpet' Acacia boormanii Acer pseudoplatanus Abies koreana 'Horstmann's Silberlocke' Acacia confusa Acer pseudoplatanus 'Leopoldii' Abies koreana 'Silberperle' Acacia cultriformis Acer pseudoplatanus 'Purpureum' Abies koreana 'Silberzwerg' Acacia dealbata Acer pseudoplatanus ‘Puget Pink’ Abies koreana 'Silver Show' Acacia iteaphylla Acer pseudoplatanus f... 'Leopoldii' Abies koreana Aurea Acacia koa Acer rubrum Abies koreana-cone Acacia koa seedlings Acer rubrum and stop sign Abies lasiocarpa Acacia koaia Acer rufinerve Hatsuyuki Abies lasiocarpa v. arizonica 'Argentea' Acacia longifolia Acer saccharinum Abies lasiocarpa v. arizonica 'Glauca Acacia -
Diplospora Should Be Separated From
BLUMEA 35 (1991) 279-305 Remarks on the tropical Asian and Australian taxa included in Diplospora or Tricalysia (Rubiaceae — Ixoroideae — Gardenieae) S.J. Ali & E. Robbrecht Summary The Asian and Australian species generally included in Diplospora or Tricalysia are shown to form an artificial assemblage. A few species even do not belong to the Gardenieae-Diplosporinae and need to be transferred to other tribes of the Ixoroideae. So Diplospora malaccensis, Diplospora and the The minahassae, Tricalysia purpurea, Tricalysia sorsogonensis belong to Hypobathreae. three Australian members of the Pavetteae and transferred Tarenna. A Diplosporas are are to survey is given of the characters of the remaining Asian species of Diplospora/Tricalysia, demonstrating that these be accommodated under the African and 1) species cannot genus Tricalysia, 2)Discosper- mum, since a century included in the synonymy ofDiplospora, merits to be revived at generic rank. The differ in fruit size and fruit wall two genera placentation, texture, number of seeds per locule, seed and exotestal cell combinations shape, anatomy. Eight necessary new are provided: Diplospora puberula, Diplospora tinagoensis, Discospermum abnorme, Discospermum beccarianum,Discosper- mum whitfordii, Tarenna australis, Tarenna cameroni, and Tarenna triflora. An annotated check-list including the more than 100 names involved is given. 1. Introduction Present undertaken short-time study, as a postdoctoral research of the first author, intends to settle the problem of the generic position of the Asian species included in Tricalysia or Diplospora (Rubiaceae-Ixoroideae-Gardenieae-Diplosporinae). In- deed, it is not clear whether the Asian genus Diplospora should be separated from Tricalysia or not. Robbrecht (1979, 1982, 1983, 1987), when revising the African species of Tricalysia, left the question unanswered.