Flying Squirrels Have Special Tools and Tricks for Living Almost Entirely in the Treetops—And in the Air

Total Page:16

File Type:pdf, Size:1020Kb

Flying Squirrels Have Special Tools and Tricks for Living Almost Entirely in the Treetops—And in the Air naturalists Y oung ▼ Flying squirrels have special tools and tricks for living almost entirely in the treetops—and in the air. by Christine Petersen Nearly 300 years ago, a British explorer visited leaves, but that didn’t make sense because they appeared A flying squirrel colonial America. He was a naturalist named Mark to follow one another in one direction. glides through the Catesby, and as he traveled he kept a journal and It didn’t take Catesby long to solve the puzzle. What air from one tree to another. The sketched unfamiliar plants and animals he found along he had seen were tiny squirrels, “leaping from one Tree squirrels are most the way. One night, he watched several small objects fall to another.” Catesby watched with fascination as the active at night. from a tree. It was probably hard to see them in the dark creatures soared through the night like furry trapeze woods. At first, Catesby thought they were just falling artists. He called them flying squirrels. STAN TEKIELA Minnesota Conservation Volunteer March–April 2019 45 STAN TEKIELA STAN TEKIELA STAN The northern flying squirrel, one of Minnesota’s two types, has a pale gray belly. The smaller southern flying squirrel, the state’s other species, often has a white belly. ID That Squirrel More than 40 flying squirrel species have the upper body is covered with brownish- dle-shaped leaves, and most of them keep which both species may share the same been identified around the world. Two gray fur that is as soft as velvet. their green needles all year. Deciduous patches of woodland. This region stretches of these—southern and northern flying trees have leaves that fall off seasonally from about Mille Lacs Lake to Wild River squirrels—live in Minnesota’s woodlands, Which one is it? Do you wonder which and later regrow. Spruce, fir, and hem- State Park. There, you must see a flying forests, and tree-filled city neighborhoods. flying squirrel lives in your neighbor- lock are important conifers for north- squirrel to identify its species. Flying squirrels avoid competing with hood? The answer depends on where ern flying squirrels in Minnesota. These Two traits can be used to tell the spe- other tree squirrels by being nocturnal. you are in Minnesota and the kinds of squirrels also use deciduous trees such as cies apart: size and the color of fur on They hide out by day and are active at trees that grow there. beech, maple, and birch. the animal’s belly. Southern flying squir- night, so they are very hard to spot. Northern flying squirrels often live in Southern flying squirrels can be found rels often have white belly fur, while the The two species of flying squirrels colder climates, from Alaska and Canada throughout the eastern United States, and northern species is pale gray beneath. look much alike. The head is small and to the northern United States, but also south into Mexico and Central America. Of the two, northern flying squirrels are rounded, with large, dark eyes and a pink in areas as far south as the Appalachian In Minnesota, they are most common in larger—about 12 inches long, includ- nose surrounded by long whiskers. Cup- Mountains. Minnesota’s northeastern Ar- the eastern counties—wherever there are ing the tail. That’s half the size of a gray shaped ears come to a sharp point at the rowhead region offers suitable habitat, with plenty of deciduous hardwood trees like squirrel. The southern species is about top. The flying squirrel’s tail is long and a mix of coniferous and deciduous trees. oak, beech, maple, and hickory. as big as a chipmunk, measuring just 9 fluffy but completely flat. In both species, Coniferous trees, or conifers, have nee- There is a small part of Minnesota in or 10 inches. 46 Minnesota Conservation Volunteer March–April 2019 47 A flying squirrel uses its rudder-like tail, padded feet, and long claws to land on a tree. Living Kites Back in the 1720s, when Mark Catesby unfold. Slender bones on the squirrel’s the few seconds it’s in the air. Kicking a landing against a tree trunk. Long, caught a flying squirrel, he was surprised feet extend to hold the membranes open. leg backward or slightly tilting its body curved claws grip the bark to prevent a to see that it didn’t have wings like a bat. The squirrel becomes a living kite, glid- causes a change in flight direction. The fall. Skittering around the tree and up- Instead, it has a membrane, or flap of ing gracefully through the night toward squirrel can angle its glide to avoid tree ward, the squirrel is ready to leap again. skin, between its legs. Biologists call this a distant tree. trunks and branches in its path. It can Most of the time, flying squirrels move membrane a patagium. The squirrel has swerve to escape a swooping owl or a between trees that are just dozens of feet two membranes—one on each side of its What goes up must come down. Grav- pouncing house cat. apart. But when conditions are right, they body. Together they are called patagia. ity is a natural force that pulls downward Landing requires skill. The squirrel can cover truly astounding distances. The The patagia usually rest loosely against on everything. So even with the aid of its raises its tail as it approaches the target known record is held by a northern flying the squirrel’s body like a furry cape. That gliding membranes, a flying squirrel be- tree. Like a furry rudder, the tail drags squirrel, which jumped down a moun- changes as soon as the squirrel jumps. gins to descend as soon as it jumps. But through the air and slows the glide. The tainside. It soared down the slope and It stretches its legs wide and the patagia the animal has remarkable control for TEKIELA STAN animal’s padded feet soften its abrupt landed more than 290 feet away. 48 Minnesota Conservation Volunteer March–April 2019 49 Adapted for Gliding and Nocturnal Life Skull styliform cartilage is flexible. It spreads and holds patagium open and helps with steering northern flying squirrel Large eye sockets for (Glaucomys sabrinus) best night sight (10 to 15 inches) patagium—a flap of skin that catches the air like a wing Large ear opening for better hearing and enables gliding Front teeth southern flying squirrel Back teeth flat for strong and sharp grinding seeds for chewing through (Glaucomys volans) nut shells (8.3–10.2 inches) Back leg with strong back claws for Nesting climbing trees Nest in tree crotch is called a drey Long flat tail Tree hole nest Diet Both species eat nuts, seeds, berries, fruits, fungi, lichen, tree buds, moths, beetles, insect larvae, spiders, bird eggs, small mice, shrews, and carrion (the flesh of dead animals). Both species also eat seeds at bird feeders. ILLUSTRATION BY TAINA LITWAK 50 51 Northern flying squirrels peek from their nest in an aspen tree in northern Minnesota. They huddle for warmth in winter. Home Sweet Home Northern flying squirrels often build nests family nest gets messy, mother squirrel high in conifer tree branches. From the can easily carry her babies to a fresh home. outside, a squirrel drey looks like a messy ball of twigs and leaves. Don’t be fooled. On the menu. Northern flying squirrels The drey is cleverly designed to keep its emerge soon after dark in search of food. owner safe, dry, and cozy. The squirrel The Arrowhead region gets a lot of snow. uses moss as insulation, stuffing it into the Mushrooms and lichens grow well in this cracks to block water and wind. It collects damp climate. Plant foods are also on the conifer needles, feathers, and fur to make a menu—from nuts and seeds to sap, fruit, soft bed inside the drey. and buds. Insects make a good snack, too. Northern flying squirrel mothers build The patagia make walking awkward large dreys, more than a foot wide, to hold and slow. But northern flying squirrels their growing babies. The southern species take the risk. The evidence can be found SUNDBERG PAUL prefers to live inside trees. These squirrels in winter. They leave long skidmarks in healthy. While carrying mushrooms to are usually family members, but a stranger may occupy an empty woodpecker hole or the snow where they land and run off to the nest, flying squirrels spread the spores is sometimes allowed to join. use a hollow space inside a decaying tree. dig their favorite mushrooms. from which more mushrooms grow. Even here in snowy Minnesota, fly- Southern flying squirrels will even nest in- In southern woodlands, flying squir- Where they nibble on tree buds, the plant ing squirrels don’t hibernate. They re- side buildings or take over bird boxes. rels eat a mix of plant and animal foods begins to sprout again. Uneaten nuts in main active even when temperatures This little squirrel’s ideal home has an mostly found in trees. They hunt June a squirrel’s cache can become new trees. fall below zero. Bad weather is a signal entrance roughly two inches across—you bugs and moths, pick berries and seeds, And flying squirrels eat many insects that to cuddle up and rest. The squirrels may could just slip a ping-pong ball through or take birds’ eggs and baby mice. Be- would otherwise damage the forest. go into torpor. In torpor, an animal’s it. Few predators are small enough to ginning in late summer, each south- heartbeat and breathing slow down.
Recommended publications
  • Northwestwildlife.Com Species Reports
    A publication by: NORTHWEST WILDLIFE PRESERVATION SOCIETY Northern Flying Squirrel Glaucomys sabrinus Photo credit: US Fish and Wildlife By Renee Picard There are two species of flying squirrels that live in North America. The northern flying squirrel (with 25 sub-species) may be found in forests throughout most of Canada, except for the central prairies and the extreme North; also in the U.S. in Alaska and northern areas of the Rockies and Appalachians. The southern flying squirrel (with 10 sub-species) inhabits a broad range in the eastern and midwestern United States, but in Canada is only found in very small, scattered pockets of southeastern Ontario. The southern species is considered ‘vulnerable’ but the northern species is not at risk. It is the northern squirrel that you would be likely to encounter in the Pacific Northwest, so it is the focus of this article. Characteristics The scientific name for the northern flying squirrel is Glaucomys sabrinus. Glaucos means for silver or grey, mys means mouse, and sabrinus come from the Latin word for river-nymph. So you will notice them often in riparian areas, near streams and rivers. Their colours range from tan to cinnamon and they have greyish-white belly fur. They are about 30 cm (12 in.) long and weigh about 139 g (46 oz.) Flying squirrels have big black eyes and this characteristic helps their night vision for they are nocturnal animals. You might be surprised to find that, despite their name, flying squirrels do not really fly—they glide down from branch to branch. The front and back legs are connected with a thin fold of furry skin or membrane called a patagium.
    [Show full text]
  • Gliding Behavior of Japanese Giant Flying Squirrels (Petaurista Leucogenys)
    Journal of Mammalogy, 83(2):553-562, 2002 GLIDING BEHAVIOR OF JAPANESE GIANT FLYING SQUIRRELS (PETAURISTA LEUCOGENYS) BRIAN J. STAFFORD,* RICHARD W. THORINGTON, JR., AND TAKEO KAWAMICHI Department of Anatomy, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059 (BJS) Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0108 (BJS, RWT) Department of Biology, Osaka City University, Sugimoto, Osaka, Sumiyoshi-ku 558•8585, Japan (TK) Gliding behavior of Japanese giant flying squirrels, Petaurista leucogenys, was studied at Nara Park, Japan. We observed 150 glides. We were able to calculate glide ratios on 57 glides and airspeeds on 29 glides. Glide ratios (distance/faltitude lost]) averaged 1.87, and a glide ratio of 3•3.5 seems to represent an upper performance limit for P. leucogenys. Airspeeds (4.39•9.47 m/s) were substantially lower than reported in other studies, and glide angles were higher (17.74•34.99°). Aspect ratios of the animals in mid-glide averaged 1.42. Key words: aerodynamics, flying squirrels, gliding, locomotion, musasabi, Petaurista, Pteromyinae Gliding is a common adaptation in mam- 1990; Jackson 2000; Russell and Dijkstra mals. It has evolved independently in at 2001; Scholey 1986; Stafford 1999; Thor- least 6 extant taxa: Volitantia (the dermop- ington et al. 1996 and references therein). terans and bats), Pteromyinae (true gliding Morphological studies of flying squirrels in- squirrels), Anomaluridae (scaly-tail "flying clude examinations of skeletal proportions squirrels"), Acrobates (feather-tail gliders), (Stafford 1999; Thorington and Heaney Petaurus (lesser gliding possums), and Pe- 1981), myology (Endo et al.
    [Show full text]
  • Breeding Ecology of Barred Owls in the Central Appalachians
    BREEDING ECOLOGY OF BARRED OWLS IN THE CENTRAL APPALACHIANS ABSTRACT- Eight pairs of breedingBarred Owls (Strix varia) in westernMaryland were studied. Nest site habitat was sampledand quantifiedusing a modificationof theJames and Shugart(1970) technique (see Titus and Mosher1981). Statisticalcomparison to 76 randomhabitat plots showed nest sites werb in moremature forest stands and closer to forest openings.There was no apparent association of nestsites with water. Cavity dimensions were compared statistically with 41 randomlyselected cavities. Except for cavityheight, there were no statistically significant differences between them. Smallmammals comprised 65.9% of the totalnumber of prey itemsrecorded, of which81.5% were members of the familiesCricetidae and Soricidae. Birds accounted for 14.6%of theprey items and crayfish and insects 19.5%. We also recordedan apparentinstance of juvenile cannibalism. Thirteennestlings were produced in 7 nests,averaging 1.9 young per nest.Only 2 of 5 nests,where the outcome was known,fledged young. The Barred Owl (Strix varia) is a common noc- STUDY AREA AND METHODS turnal raptor in forestsof the easternUnited States, The studywas conducted in Green Ridge State Forest (GRSF), though few detailedstudies of it havebeen pub- Allegany County, Maryland. It is within the Ridge and Valley lished.Most reportsare of singlenesting occurr- physiographicregion (Stoneand Matthews 1977), characterized by narrowmountain ridges oriented northeast to southwestsepa- encesand general observations(Bolles 1890; Carter rated by steepnarrow valleys(see Titus 1980). 1925; Henderson 1933; Robertson 1959; Brown About 74% of the countyand nearly all of GRSF is forested 1962; Caldwell 1972; Hamerstrom1973; Appel- Major foresttypes were describedby Brushet al. (1980).Predom- gate 1975; Soucy 1976; Bird and Wright 1977; inant tree speciesinclude white oak (Quercusalba), red oak (Q.
    [Show full text]
  • A Bird's Eye View of the Evolution of Avialan Flight
    Chapter 12 Navigating Functional Landscapes: A Bird’s Eye View of the Evolution of Avialan Flight HANS C.E. LARSSON,1 T. ALEXANDER DECECCHI,2 MICHAEL B. HABIB3 ABSTRACT One of the major challenges in attempting to parse the ecological setting for the origin of flight in Pennaraptora is determining the minimal fluid and solid biomechanical limits of gliding and powered flight present in extant forms and how these minima can be inferred from the fossil record. This is most evident when we consider the fact that the flight apparatus in extant birds is a highly integrated system with redundancies and safety factors to permit robust performance even if one or more components of their flight system are outside their optimal range. These subsystem outliers may be due to other adaptive roles, ontogenetic trajectories, or injuries that are accommodated by a robust flight system. This means that many metrics commonly used to evaluate flight ability in extant birds are likely not going to be precise in delineating flight style, ability, and usage when applied to transitional taxa. Here we build upon existing work to create a functional landscape for flight behavior based on extant observations. The functional landscape is like an evolutionary adap- tive landscape in predicting where estimated biomechanically relevant values produce functional repertoires on the landscape. The landscape provides a quantitative evaluation of biomechanical optima, thus facilitating the testing of hypotheses for the origins of complex biomechanical func- tions. Here we develop this model to explore the functional capabilities of the earliest known avialans and their sister taxa.
    [Show full text]
  • A Comparison of Flight Potential Among Small-Bodied Paravians
    Chapter 11 High Flyer or High Fashion? A Comparison of Flight Potential among Small-Bodied Paravians T. ALEXANDER DECECCHI,1 HANS C.E. LARSSON,2 MICHAEL PITTMAN,3 AND MICHAEL B. HABIB4 ABSTRACT The origin of flight in birds and its relationship to bird origins itself has achieved something of a renaissance in recent years, driven by the discovery of a suite of small-bodied taxa with large pen- naceous feathers. As some of these specimens date back to the Middle Jurassic and predate the earli- est known birds, understanding how these potential aerofoil surfaces were used is of great importance to answering the question: which came first, the bird or the wing? Here we seek to address this question by directly comparing key members of three of the major clades of paravians: anchiorni- thines, Microraptor and Archaeopteryx across their known size classes to see how they differ in terms of major flight-related parameters (wing loading; disc loading; specific lift; glide speed; takeoff poten- tial). Using specimens with snout to vent length (SVL) ranging from around 150 mm to 400 mm and mass ranging from approximately 130 g to 2 kg, we investigated patterns of inter- and intraspe- cific changes in flight potential. We find that anchiornithines show much higher wing- and disc- loading values and correspondingly high required minimum glide and takeoff speeds, along with lower specific lift and flapping running outputs suggesting little to no flight capability in this clade. In contrast, we see good support for flight potential, either gliding or powered flight, for all size classes of both Microraptor and Archaeopteryx, though there are differing patterns of how this shifts ontogenetically.
    [Show full text]
  • Phylogenies of Flying Squirrels (Pteromyinae)
    Journal of Mammalian Evolution, Vol. 9, No. 1/2, June 2002 (© 2002) Phylogenies of Flying Squirrels (Pteromyinae) Richard W. Thorington, Jr.,'''* Diane Pitassy,^ and Sharon A. Jansa^ The phylogeny of flying squirrels was assessed, based on analyses of 80 morphological characters. Three published hypotheses were tested with constraint trees and compared with trees based on heuristic searches, all using PAUP*. Analyses were conducted on unordered data, on ordered data (Wagner), and on ordered data using Dollo parsimony. Compared with trees based on heuristic searches, the McKenna (1962) constraint trees were consistently the longsst, requiring 8-11 more steps. The Mein (1970) constraint trees were shorter, requiring five to seven steps more than the unconstrained trees, and the Thorington and Darrow (20(X)) constraint trees were shorter yet, zero to one step longer than the corresponding unconstrained tree. In each of the constraint trees, some of the constrained nodes had poor character support. The heuristic trees provided best character support for three groups, but they did not resolve the basal trichotomy between a Glaucomys group of six genera, a Petaurista group of four genera, and a Trogopterus group of four genera. The inclusion of the small northern Eurasian flying squirrel, Pteminys, in the Peiaiiiisia group of giant South Asian flying squirrels is an unexpected hypothesis. Another novel hypothesis is the inclusion of the genus Aemmys, large animals from the Sunda Shelf, with the Trogopterus group of smaller "complex-toothed flying squirrels" from mainland Malaysia and southeast Asia. We explore the implications of this study for future analysis of molecular data and for past and future interpretations of the fossil record.
    [Show full text]
  • The Evolution of Flight in Bats: a Novel Hypothesis Sophia C
    bs_bs_banner Mammal Review ISSN 0305-1838 REVIEW The evolution of flight in bats: a novel hypothesis Sophia C. ANDERSON* School of Biology, University of St Andrews, Sir Harold Mitchell Building, Greenside Place, St Andrews, KY16 9TH, UK. Email: [email protected] Graeme D. RUXTON School of Biology, University of St Andrews, Sir Harold Mitchell Building, Greenside Place, St Andrews, KY16 9TH, UK. Email: [email protected] Keywords ABSTRACT bats, Chiroptera, echolocation, evolution of flight, interdigital webbing, pterosaurs, 1. Bats (order Chiroptera) are the only mammals capable of powered flight, Scansoriopterygidae and this may be an important factor behind their rapid diversification into *Correspondence author. the over 1400 species that exist today – around a quarter of all mammalian species. Though flight in bats has been extensively studied, the evolutionary Received: 10 October 2019 history of the ability to fly in the chiropterans remains unclear. Accepted: 13 May 2020 2. We provide an updated synthesis of current understanding of the mechanics Editor: DR of flight in bats (from skeleton to metabolism), its relation to echolocation, doi: 10.1111/mam.12211 and where previously articulated evolutionary hypotheses for the development of flight in bats stand following recent empirical advances. We consider the gliding model, and the echolocation-first, flight-first, tandem development, and diurnal frugivore hypotheses. In the light of the recently published de- scription of the web-winged dinosaur Ambopteryx longibrachium, we draw together all the current evidence into a novel hypothesis. 3. We present the interdigital webbing hypothesis: the ancestral bat exhibited interdigital webbing prior to powered flight ability, and the Yangochiroptera, Pteropodidae, and Rhinolophoidea evolved into their current forms along parallel trajectories from this common ancestor.
    [Show full text]
  • Bat Wing Sensors Support Flight Control
    Bat wing sensors support flight control Susanne Sterbing-D’Angeloa,1, Mohit Chadhab,c, Chen Chiuc, Ben Falkc, Wei Xianc, Janna Barceloc, John M. Zookd, and Cynthia F. Mossa,b,c bProgram in Neuroscience and Cognitive Science, cDepartment of Psychology, and aInstitute for Systems Research, University of Maryland, College Park, MD 20742; and dDepartment of Biological Sciences, Ohio University, Athens, OH 45701 Edited* by Jon H. Kaas, Vanderbilt University, Nashville, TN, and approved May 25, 2011 (received for review January 3, 2011) Bats are the only mammals capable of powered flight, and they hair is long (up to several millimeters), relatively thick (6–18 perform impressive aerial maneuvers like tight turns, hovering, μm), and found close to the ventral forearm, around the leg, and and perching upside down. The bat wing contains five digits, and on the tail membrane (IFM), resembling pelage hair. On the its specialized membrane is covered with stiff, microscopically other membranous parts of the wing, a second type of hair was small, domed hairs. We provide here unique empirical evidence found, which is invisible to the naked eye. Fig. 1 shows an ex- that the tactile receptors associated with these hairs are involved ample of these hairs collected from E.f. This type of hair is very in sensorimotor flight control by providing aerodynamic feedback. short (100–600 μm), with the shortest ones found along the We found that neurons in bat primary somatosensory cortex re- trailing edge of the wing. They are so thin that only one follicle spond with directional sensitivity to stimulation of the wing hairs cell builds each segment of the hair, resulting in a coronal scale with low-speed airflow.
    [Show full text]
  • Phylogenetic Relationships Among Six Flying Squirrel Gener,A Inferred from Mitochondrial Cytochrome B Gene Sequences
    Phylogenetic Relationships among Six Flying Squirrel Gener,a Inferred from Mitochondrial Cytochrome b Gene Sequences 著者(英) Oshida Tatsuo, Lin Liang-Kong, Yanagisawa Hisashi, Endo Hideki, Masuda Ryuichi journal or Zoological Science publication title volume 17 number 4 page range 485-489 year 2000-05 URL http://id.nii.ac.jp/1588/00004215/ ZOOLOGICAL SCIENCE 17: 485–489 (2000) © 2000 Zoological Society of Japan Phylogenetic Relationships among Six Flying Squirrel Genera, Inferred from Mitochondrial Cytochrome b Gene Sequences Tatsuo Oshida1*, Liang-Kong Lin2, Hisashi Yanagawa3, Hideki Endo4 and Ryuichi Masuda1 1Chromosome Research Unit, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan 2Laboratory of Wildlife Ecology, Department of Biology, Tunghai University, Taichung 407, Taiwan 3Laboratory of Wildlife Ecology, Obihiro University and Veterinary Medicine, Obihiro 080-0843, Japan 4Department of Zoology, National Science Museum, Shinjuku-ku, Tokyo, 169-0073, Japan ABSTRACT—Petauristinae (flying squirrels) consists of 44 extant species in 14 recent genera, and their phylogenetic relationships and taxonomy are unsettled questions. We analyzed partial mitochondrial cyto- chrome b gene sequences (1,068 base pairs) to investigate the phylogenetic relationships among six flying squirrel genera (Belomys, Hylopetes, Petaurista, Petinomys, and Pteromys from Asia and Glaucomys from North America). Molecular phylogenetic trees, constructed by neighbor-joining and maximum likelihood methods, strongly indicated the closer relationship between Hylopetes and Petinomys with 100% bootstrap values. Belomys early split from other flying squirrels. Petaurista was closely related to Pteromys, and Glaucomys was most closely related to the cluster consisting of Hylopetes and Petinomys. The bootstrap values supporting branching at the deeper nodes were not always so high, suggesting the early radiation in the evolution of flying squirrels.
    [Show full text]
  • Nest Box Utility for Arboreal Small Mammals in Vietnam's Tropical Forest Использование Дуплянок Для И
    Russian J. Theriol. 10(2): 5964 © RUSSIAN JOURNAL OF THERIOLOGY, 2011 Nest box utility for arboreal small mammals in Vietnams tropical forest Ami Kato, Tatsuo Oshida, Son Truong Nguyen, Nghia Xuan Nguyen, Hao Van Luon, Tue Van Ha, Bich Quang Truong, Hideki Endo & Dang Xuan Nguyen ABSTRACT. To test nest box utility in a Southeast Asian tropical forest, we set 30 wooden nest boxes on trees in the Cuc Phuong National Park, Vietnam for a year. During the rainy season, we checked each nest box each month in the daytime. We expected that arboreal rodents might be more likely to use the nest boxes as shelter from the heavy rain. During dry season, we additionally checked each nest box every two months. We expected that nest boxes would be used as a shelter from the rain by small arboreal mammals, such as rats and flying squirrels in the rainy season more than in the dry season. During the rainy season, we found ants, bees, and birds mainly nested the nest boxes for reproduction: bees in April; ants from May to August; and birds from April to June. From the late rainy season to the dry season, arboreal small mammals mainly used nest boxes: rats from August to February and flying squirrel in December. Nest resource competition between birds and rodents may be minimal since they use cavities in different seasons. Also, unlike our expectation, it was preliminary suggested that arboreal small rodents would use more frequently nest box in the dry season than in the rainy season. KEY WORDS: flying squirrel, rat, rainy season, dry season, competition, nest resource, nest material.
    [Show full text]
  • Tree Squirrels: Managing Habitat and Controlling Damage
    ■ ,VVXHG LQ IXUWKHUDQFH RI WKH &RRSHUDWLYH ([WHQVLRQ :RUN$FWV RI 0D\ DQG -XQH LQ FRRSHUDWLRQ ZLWK WKH 8QLWHG 6WDWHV 'HSDUWPHQWRI$JULFXOWXUH 'LUHFWRU&RRSHUDWLYH([WHQVLRQ8QLYHUVLW\RI0LVVRXUL&ROXPELD02 NATURAL ■ ■ ■ DQHTXDORSSRUWXQLW\$'$LQVWLWXWLRQ H[WHQVLRQPLVVRXULHGX RESOURCES Tree Squirrels: Managing Habitat and Controlling Damage issouri is home to three species of tree squirrels: the fox squirrel (Sciurus niger) and gray squirrel M(S. carolinensis), both popular game animals; and the southern flying squirrel Glaucomys( volans), the smallest of the tree squirrel species in the state. These squirrels provide relaxation and enjoyment for many Missourians who spend time observing or photo- graphing wildlife. They seldom pose problems in rural areas, but it is not unusual for them to become a nuisance in urban areas (Figure 1). Occasionally, fox or gray squirrels enter attics and chimneys and cause damage to electrical wiring, siding or insulation. Squirrels may cause damage to home gardens and ornamentals; sweet corn, tomatoes and other vegetables or flower bulbs; and newly planted seeds in urban gardens. Squirrels also can become a nuisance around bird feeders, frightening birds and scattering seeds. Figure 1. Squirrels can become a nuisance, especially in urban areas. Fox squirrels Gray squirrels normally prefer areas with more forest Fox squirrels are most common in urban areas and cover than fox squirrels. Forests dominated by oaks and open woodlots. They are the largest of the three species, hickories are prime habitats for gray squirrels. Gray averaging 19 to 29 inches from nose to tail and weighing 1 squirrels also prefer to spend more time in trees and do not to 3 pounds.
    [Show full text]
  • Mammals of Vermont Vermont Natural Heritage Inventory Vermont Fish & Wildlife Department 22 March 2017
    Mammals of Vermont Vermont Natural Heritage Inventory Vermont Fish & Wildlife Department 22 March 2017 The following is a list of mammal species known to regularly occur in Vermont. Historic species (not documented in Vermont in the last 25 years) are included if there is a reasonable expectation of their return. Not included are species that are extinct or extirpated from the state. The list is organized taxonomically to genus, then alphabetically within genus. Species not native to Vermont are indicated with an asterisk (*). Questions can be directed to the Vermont Natural Heritage Inventory, Vermont Fish & Wildlife Department, 1 National Life Drive, Montpelier, VT 05620-3702. (802) 241-3700. [email protected] State Global State Federal Scientific Name Common Name Rank Rank Status Status SGCN Didelphis virginiana Virginia Opossum S5 G5 Glaucomys sabrinus Northern Flying Squirrel S4 G5 SGCN Glaucomys volans Southern Flying Squirrel S5 G5 SGCN Marmota monax Woodchuck S5 G5 Sciurus carolinensis Eastern Gray Squirrel S5 G5 Tamias striatus Eastern Chipmunk S5 G5 Tamiasciurus hudsonicus Red Squirrel S5 G5 Castor canadensis American Beaver S5 G5 Napaeozapus insignis Woodland Jumping Mouse S5 G5 Zapus hudsonius Meadow Jumping Mouse S5 G5 Microtus chrotorrhinus Rock Vole S2 G4 SC SGCN Microtus pennsylvanicus Meadow Vole S5 G5 Microtus pinetorum Woodland Vole S3 G5 SGCN Myodes gapperi Southern Red-backed Vole S5 G5 Ondatra zibethicus Common Muskrat S5 G5 SGCN Peromyscus leucopus White-footed Deermouse S5 G5 Peromyscus maniculatus North
    [Show full text]