Metabolite Analysis of Clostridium Thermocellum Using Capillary Electrophoresis Based Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Metabolite Analysis of Clostridium Thermocellum Using Capillary Electrophoresis Based Techniques University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 METABOLITE ANALYSIS OF CLOSTRIDIUM THERMOCELLUM USING CAPILLARY ELECTROPHORESIS BASED TECHNIQUES Anup P. Thakur University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Thakur, Anup P., "METABOLITE ANALYSIS OF CLOSTRIDIUM THERMOCELLUM USING CAPILLARY ELECTROPHORESIS BASED TECHNIQUES" (2008). University of Kentucky Doctoral Dissertations. 647. https://uknowledge.uky.edu/gradschool_diss/647 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Anup P. Thakur Graduate School University of Kentucky 2008 METABOLITE ANALYSIS OF CLOSTRIDIUM THERMOCELLUM USING CAPILLARY ELECTROPHORESIS BASED TECHNIQUES ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of degree of Doctor of Philosophy in the college of Arts and Sciences at the University of Kentucky By Anup P. Thakur Director: Dr. Bert C. Lynn Professor of Chemistry Lexington, KY 2008 Copyright © Anup P. Thakur 2008 ABSTRACT OF DISSERTATION METABOLITE ANALYSIS OF CLOSTRIDIUM THERMOCELLUM USING CAPILLARY ELECTROPHORESIS BASED TECHNIQUES Clostridium thermocellum is a thermophilic bacterium that converts biomass to ethanol directly; however, high sensitivity of this bacterium toward ethanol limits its commercial utility. To elucidate the effect of ethanol on the growth of this bacterium a metabolite analysis of C. thermocellum was performed. The hypothesis of the project was that exogenous ethanol alters the metabolite profile of C. thermocellum. For metabolite analysis, capillary electrophoresis-electrospray ionization-mass spectrometry method (CE-ESI-MS) was developed due to highly polar and charged nature of metabolites. To increase the sensitivity of CE-ESI-MS, several parameters at the ESI interface were optimized. The application of 50% isopropanol as a sheath liquid increased sensitivity for metabolite analysis dramatically. Trimethylamine acetate (pH 10) was used as background electrolyte (BGE) due to its ability to separate the structural isomers of glucose phosphate. For metabolite sample preparation, novel methods for quenching and CE compatible metabolite extraction protocols were developed. Newly developed protocols were applied to metabolite analysis of wild type (WT) and ethanol adapted (EA) strains of C. thermocellum grown in batch cultures. Significant differences were found in key intracellular metabolites such as NAD+ and pyruvic acid. Intracellular concentrations of NAD+ were low in EA cells compared to WT cells and pyruvic acid was only detected in EA cells. To further understand the effect of ethanol on metabolite fluxes, WT and EA cells were grown in increasing concentrations of ethanol and the metabolite profile for each ethanol treatment was obtained. Significant changes were found in intracellular metabolite concentrations. Metabolic data showed that the glycolysis process in WT cells was obstructed due to exogenous ethanol which was evident from accumulation of G6P. On the other hand, no such accumulation of G6P was observed in the EA strain; however pyruvate began to accumulate in EA strain. These changes in intracellular metabolite concentrations due to perturbation of exogenous ethanol supported the hypothesis. Also, this investigation revealed a correlation between ethanol and metabolite profile changes and was able to explain a possible mechanism of growth inhibition of C. thermocellum which will certainly help genetic engineers to develop superior strains of C. thermocellum for commercial cellulosic ethanol production. Keywords: C. thermocellum, metabolomics, quenching, extraction, capillary electrophoresis-electrospray ionization-mass spectrometry. Anup Thakur 2008 IV METABOLITE ANALYSIS OF CLOSTRIDIUM THERMOCELLUM USING CAPILLARY ELECTROPHORESIS BASED TECHNIQUES By Anup P. Thakur ______________________________________ Dr. Bert C. Lynn (Director of Dissertation) ______________________________________ Dr. Robert B. Grossman (Director of Graduate Studies) RULES FOR THE USE OF DISSERTATIONS Unpublished dissertations submitted for the Doctor’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of authors. Bibliographical references may be noted, but quotations or summaries of the parts may be published only with permission of the author, and with the usual scholarly acknowledgements. Extensive copying or publication of the dissertation in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky. A library that borrows this dissertation for use by its patrons is expected to secure the signature of each user. Name Date ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ____________________________________________________________________ DISSERTATION Anup P. Thakur Graduate School University of Kentucky 2008 METABOLITE ANALYSIS OF CLOSTRIDIUM THERMOCELLUM USING CAPILLARY ELECTROPHORESIS BASED TECHNIQUES ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of degree of Doctor of Philosophy in the college of Arts and Sciences at the University of Kentucky By Anup P. Thakur Director: Dr. Bert C. Lynn Professor of Chemistry Lexington, KY 2008 Copyright © Anup P. Thakur 2008 Dedicated to My beloved Uncle Arvind Thakur ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Bert Lynn for accepting me in his group and introducing me to the wonderful world of mass spectrometry. A million thanks to him for providing me guidance, motivation, and inspiration throughout my research work. He is really a wonderful person and great mentor and helped me to grow from a chemist to a scientist. My sincere thanks to Dr. Herbert Strobel, Professor of Animal and Food Sciences, without his guidance and help I would not have completed my research project. Constant interactions with him provided opportunities to learn basic as well as modern aspects of microbiology, especially when I didn’t have much credentials of biology. I am also thankful to Dr. Barbara Knutson, Professor of Chemical Engineering; Dr. Nokes, Professor of Biosystems and Agriculture engineering; Dr. Satyakrishna Jujjuri, Postdoctoral fellow at Department of Chemical Engineering; and all other people involved in KREC project. I also take this opportunity to thank Dr. Jack Goodman, Manager of University of Kentucky Mass Spectrometry Facility for his resourceful and kind assistance on several occasions. I really appreciate all the members and colleagues from Lynn laboratory for their fellowship and making graduate career an amazing experience. I will always relish those memories in future. I also show my gratitude toward all the graduate students and staff from the Department of Chemistry at the University of Kentucky. Lastly, I will be indebted all my life to my uncle Mr. Arvind Thakur for his constant inspiration and support during the tough time of my PhD. He helped me to make my academic journey really smooth sailing when the path was obstructed by the storms of challenges and shadows of uncertainties. I want to thank you all for helping me in fulfilling my academic goals. I TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................... I TABLE OF CONTENTS.................................................................................................. II LIST OF TABLES .......................................................................................................... VI LIST OF FIGURES .......................................................................................................VII LIST OF FILES .............................................................................................................. X Chapter 1 : Introduction ..................................................................................................1 1.1 Study goal ......................................................................................................................... 2 1.2 Study hypothesis ............................................................................................................... 2 1.3 Study rationale .................................................................................................................. 2 1.4 Specific goals .................................................................................................................... 3 Chapter 2 : Background ..................................................................................................4
Recommended publications
  • CO2-Fixing One-Carbon Metabolism in a Cellulose-Degrading Bacterium
    CO2-fixing one-carbon metabolism in a cellulose- degrading bacterium Clostridium thermocellum Wei Xionga, Paul P. Linb, Lauren Magnussona, Lisa Warnerc, James C. Liaob,d, Pin-Ching Manessa,1, and Katherine J. Choua,1 aBiosciences Center, National Renewable Energy Laboratory, Golden, CO 80401; bDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095; cNational Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401; and dAcademia Sinica, Taipei City, Taiwan 115 Edited by Lonnie O. Ingram, University of Florida, Gainesville, FL, and approved September 23, 2016 (received for review April 6, 2016) Clostridium thermocellum can ferment cellulosic biomass to for- proposed pathway involving CO2 utilization in C. thermocellum is mate and other end products, including CO2. This organism lacks the malate shunt and its variant pathway (7, 14), in which CO2 is formate dehydrogenase (Fdh), which catalyzes the reduction of first incorporated by phosphoenolpyruvate carboxykinase (PEPCK) 13 CO2 to formate. However, feeding the bacterium C-bicarbonate to form oxaloacetate and then is released either by malic enzyme or and cellobiose followed by NMR analysis showed the production via oxaloacetate decarboxylase complex, yielding pyruvate. How- of 13C-formate in C. thermocellum culture, indicating the presence ever, other pathways capable of carbon fixation may also exist but of an uncharacterized pathway capable of converting CO2 to for- remain uncharacterized. mate. Combining genomic and experimental data, we demon- In recent years, isotopic tracer experiments followed by mass strated that the conversion of CO2 to formate serves as a CO2 spectrometry (MS) (15, 16) or NMR measurements (17) have entry point into the reductive one-carbon (C1) metabolism, and emerged as powerful tools for metabolic analysis.
    [Show full text]
  • Specialized Cell Surface Structures in Cellulolytic Bacteria RAPHAEL LAMED,'* JENNY NAIMARK,' ELY MORGENSTERN,' and EDWARD A
    JOURNAL OF BACTERIOLOGY, Aug. 1987, p. 3792-3800 Vol. 169, No. 8 0021-9193/87/083792-09$02.00/0 Copyright © 1987, American Society for Microbiology Specialized Cell Surface Structures in Cellulolytic Bacteria RAPHAEL LAMED,'* JENNY NAIMARK,' ELY MORGENSTERN,' AND EDWARD A. BAYER2 Center for Biotechnology, George S. Wise Faculty ofLife Sciences, Tel Aviv University, Ramat Aviv,1 and Department of Biophysics, The Weizmann Institute of Science, Rehovot,2 Israel Received 30 March 1987/Accepted 22 May 1987 The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characterisitic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose. We have recently demonstrated by various means that MATERIALS AND METHODS cellulolytic enzymes of the gram-positive, thermophilic anaerobe Clostridium thermocellum are organized into a Organisms and culture conditions. The bacterial strains distinct multisubunit complex which we have called the used in this study are listed in Table 1. All strains of C. "cellulosome" (2, 16, 17). The cellulosome in this organism thermocellum were cultivated under anaerobic conditions at appears both in an extracellular and in a cell-associated 60°C in cellobiose-containing medium as described in refer- form.
    [Show full text]
  • Supporting Information
    Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs.
    [Show full text]
  • New Insights Into Clostridia Through Comparative Analyses of Their 40 Genomes
    Bioenerg. Res. DOI 10.1007/s12155-014-9486-9 New Insights into Clostridia Through Comparative Analyses of Their 40 Genomes Chuan Zhou & Qin Ma & Xizeng Mao & Bingqiang Liu & Yanbin Yin & Ying Xu # Springer Science+Business Media New York 2014 Abstract The Clostridium genus of bacteria contains the gene groups are shared by all the strains, and the strain- most widely studied biofuel-producing organisms such as specific gene pool consists of 22,668 genes, which is consis- Clostridium thermocellum and also some human pathogens, tent with the fact that these bacteria live in very diverse plus a few less characterized strains. Here, we present a environments and have evolved a very large number of comparative genomic analysis of 40 fully sequenced clostrid- strain-specific genes to adapt to different environments. ial genomes, paying a particular attention to the biomass Across the 40 genomes, 1.4–5.8 % of genes fall into the degradation ones. Our analysis indicates that some of the carbohydrate active enzyme (CAZyme) families, and 20 out Clostridium botulinum strains may have been incorrectly clas- of the 40 genomes may encode cellulosomes with each ge- sified in the current taxonomy and hence should be renamed nome having 1 to 76 genes bearing the cellulosome-related according to the 16S ribosomal RNA (rRNA) phylogeny. A modules such as dockerins and cohesins. A phylogenetic core-genome analysis suggests that only 169 orthologous footprinting analysis identified cis-regulatory motifs that are enriched in the promoters of the CAZyme genes, giving rise to 32 statistically significant motif candidates. Keywords Clostridium . Comparative genomics .
    [Show full text]
  • Clostridium Amazonitimonense, Clostridium Me
    ORIGINAL ARTICLE Taxonogenomic description of four new Clostridium species isolated from human gut: ‘Clostridium amazonitimonense’, ‘Clostridium merdae’, ‘Clostridium massilidielmoense’ and ‘Clostridium nigeriense’ M. T. Alou1, S. Ndongo1, L. Frégère1, N. Labas1, C. Andrieu1, M. Richez1, C. Couderc1, J.-P. Baudoin1, J. Abrahão2, S. Brah3, A. Diallo1,4, C. Sokhna1,4, N. Cassir1, B. La Scola1, F. Cadoret1 and D. Raoult1,5 1) Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France, 2) Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 3) Hopital National de Niamey, BP 247, Niamey, Niger, 4) Campus Commun UCAD-IRD of Hann, Route des pères Maristes, Hann Maristes, BP 1386, CP 18524, Dakar, Senegal and 5) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Culturomics investigates microbial diversity of the human microbiome by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene identification. The present study allowed identification of four putative new Clostridium sensu stricto species: ‘Clostridium amazonitimonense’ strain LF2T, ‘Clostridium massilidielmoense’ strain MT26T, ‘Clostridium nigeriense’ strain Marseille-P2414T and ‘Clostridium merdae’ strain Marseille-P2953T, which we describe using the concept of taxonogenomics. We describe the main characteristics of each bacterium and present their complete genome sequence and annotation. © 2017 Published by Elsevier Ltd. Keywords: ‘Clostridium amazonitimonense’, ‘Clostridium massilidielmoense’, ‘Clostridium merdae’, ‘Clostridium nigeriense’, culturomics, emerging bacteria, human microbiota, taxonogenomics Original Submission: 18 August 2017; Revised Submission: 9 November 2017; Accepted: 16 November 2017 Article published online: 22 November 2017 intestine [1,4–6].
    [Show full text]
  • Development of a Genome-Scale Metabolic Model of Clostridium Thermocellum and Its Applications for Integration of Multi-Omics Datasets and Computational Strain Design
    ORIGINAL RESEARCH published: 21 August 2020 doi: 10.3389/fbioe.2020.00772 Development of a Genome-Scale Metabolic Model of Clostridium thermocellum and Its Applications for Integration of Multi-Omics Datasets and Computational Strain Design Sergio Garcia 1,2, R. Adam Thompson 2,3,4†, Richard J. Giannone 2,5, Satyakam Dash 2,6, 2,6 1,2,3,4 Edited by: Costas D. Maranas and Cong T. Trinh * Young-Mo Kim, 1 2 Pacific Northwest National Laboratory Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, United States, Center 3 (DOE), United States for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States, Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, United States, 4 Oak Ridge Reviewed by: National Laboratory, Oak Ridge, TN, United States, 5 Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Karsten Zengler, TN, United States, 6 Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, University of California, San Diego, United States United States Esteban Marcellin, The University of Queensland, Solving environmental and social challenges such as climate change requires a shift Australia from our current non-renewable manufacturing model to a sustainable bioeconomy. *Correspondence: To lower carbon emissions in the production of fuels and chemicals, plant biomass Cong T. Trinh [email protected] feedstocks can replace petroleum using microorganisms as biocatalysts. The anaerobic thermophile Clostridium thermocellum is a promising bacterium for bioconversion due †Present address: R. Adam Thompson, to its capability to efficiently degrade lignocellulosic biomass. However, the complex Quantitative Translational metabolism of C.
    [Show full text]
  • Human Microbiota Reveals Novel Taxa and Extensive Sporulation Hilary P
    OPEN LETTER doi:10.1038/nature17645 Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation Hilary P. Browne1*, Samuel C. Forster1,2,3*, Blessing O. Anonye1, Nitin Kumar1, B. Anne Neville1, Mark D. Stares1, David Goulding4 & Trevor D. Lawley1 Our intestinal microbiota harbours a diverse bacterial community original faecal sample and the cultured bacterial community shared required for our health, sustenance and wellbeing1,2. Intestinal an average of 93% of raw reads across the six donors. This overlap was colonization begins at birth and climaxes with the acquisition of 72% after de novo assembly (Extended Data Fig. 2). Comparison to a two dominant groups of strict anaerobic bacteria belonging to the comprehensive gene catalogue that was derived by culture-independent Firmicutes and Bacteroidetes phyla2. Culture-independent, genomic means from the intestinal microbiota of 318 individuals4 found that approaches have transformed our understanding of the role of the 39.4% of the genes in the larger database were represented in our cohort human microbiome in health and many diseases1. However, owing and 73.5% of the 741 computationally derived metagenomic species to the prevailing perception that our indigenous bacteria are largely identified through this analysis were also detectable in the cultured recalcitrant to culture, many of their functions and phenotypes samples. remain unknown3. Here we describe a novel workflow based on Together, these results demonstrate that a considerable proportion of targeted phenotypic culturing linked to large-scale whole-genome the bacteria within the faecal microbiota can be cultured with a single sequencing, phylogenetic analysis and computational modelling that growth medium.
    [Show full text]
  • Ruminococcal Cellulosomes: Molecular Lego to Deconstruct Microcrystalline Cellulose in Human Gut Gurvan Michel
    Ruminococcal cellulosomes: molecular Lego to deconstruct microcrystalline cellulose in human gut Gurvan Michel To cite this version: Gurvan Michel. Ruminococcal cellulosomes: molecular Lego to deconstruct microcrystalline cellulose in human gut. Environmental Microbiology, Society for Applied Microbiology and Wiley-Blackwell, 2015, 17 (9), pp.3113-3115. 10.1111/1462-2920.12920. hal-02137960 HAL Id: hal-02137960 https://hal.archives-ouvertes.fr/hal-02137960 Submitted on 23 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Highlights on: Ben David et al (2015) Ruminococcal cellulosome systems from rumen to 2 human. Environmental Microbiology 3 4 5 Ruminococcal cellulosomes: molecular Lego to deconstruct microcrystalline cellulose in 6 human gut 7 8 Gurvan Michel 9 10 Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of 11 Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, Bretagne, 12 France 13 For correspondence: Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, 14 Bretagne, France. Tel.: 33-298-29-23-30; Fax: 33-298-29-23-24; E-mail: gurvan.michel@sb- 15 roscoff.fr. 16 1 Plants (and also algae in East Asian cuisine) constitute the bases of human diet.
    [Show full text]
  • Clostridium Cellulolyticum: Model Organism of Mesophilic Cellulolytic Clostridia
    FEMS Microbiology Reviews 29 (2005) 741–764 www.fems-microbiology.org Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia Mickae¨l Desvaux * Institute for Biomedical Research, The University of Birmingham – The Medical School, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK Received 26 November 2003; received in revised form 27 April 2004; accepted 1 November 2004 First published online 7 December 2004 Abstract Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon sub- strates to support bacterial growth. As most cellulolytic bacteria, C. cellulolyticum was initially characterised by limited carbon con- sumption and subsequent limited growth in comparison to other saccharolytic clostridia. The first metabolic studies performed in batch cultures suggested nutrient(s) limitation and/or by-product(s) inhibition as the reasons for this limited growth. In most recent investigations using chemostat cultures, metabolic flux analysis suggests a self-intoxication of bacterial metabolism resulting from an inefficiently regulated carbon flow. The investigation of C. cellulolyticum physiology with cellobiose, as a model of soluble cellod- extrin, and with pure cellulose, as a carbon source more
    [Show full text]
  • Cellulose Fermentation by Clostridium Thermocellum and a Mixed Consortium in an Automated Repetitive Batch Reactor ⇑ Parker T
    Bioresource Technology 155 (2014) 50–56 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Cellulose fermentation by Clostridium thermocellum and a mixed consortium in an automated repetitive batch reactor ⇑ Parker T. Reed, Javier A. Izquierdo 1, Lee R. Lynd Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States highlights An automated repetitive batch fermentation system was developed. A strong correlation was observed between CO2 produced and cellulose consumed. C. thermocellum and a mixed consortium exhibit accelerated substrate utilization. Similar numbers of cycles were needed to reach maximum CO2 production rates. Maximum CO2 production rates and cycle times were very similar for both cultures. article info abstract Article history: An automated repetitive batch fermentation system was developed to facilitate the study of microbial Received 4 October 2013 cellulose utilization. The system was operated with Avicel as the carbon source and either Clostridium Received in revised form 10 December 2013 thermocellum ATCC 27405 or a consortium enriched from compost as inocula. Multiple cycles of growth Accepted 12 December 2013 medium addition, incubation, and medium removal were performed with each inoculum. Removal and Available online 25 December 2013 addition of media were automatically initiated when CO2 production fell to 90% of the cycle’s peak. A strong correlation was observed between CO2 production and cellulose consumption, suggesting that Keywords: the online signal was a good proxy for substrate utilization. Both cultures exhibited accelerated substrate Automated batch fermentation utilization and a decrease in cycle time.
    [Show full text]
  • Clostridium Thermocellum from Icelandic Hot Springs ANDREW C
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1988, p. 119-121 Vol. 38, No. 1 0020-7713/88/010119-03$02.00/0 Copyright 0 1988, International Union of Microbiological Societies Isolation and Properties of Clostridium thermocellum from Icelandic Hot Springs ANDREW C. STAINTHORPE AND RALPH A. D. WILLIAMS* Biochemistry Department, The London Hospital Medical College, London El 2AD, United Kingdom Six strains of Clostridium thermocellum were isolated from hot springs near Hveragerthi, Iceland, and compared with strains of this and other species of clostridia. Deoxyribonucleic acid homology showed that the strains of this species formed a genetic species distinct from all others. The anaerobic thermophile Clostridium thermocellum has All strains were gram variable throughout growth and were often been used for the simultaneous saccharification and lysed by 3% potassium hydroxide (6). Zones of cellulose fermentation of lignocellulosic biomasses (18, 27). Cellulo- clearing were distinct in 1 to 2 days at 60°C. Terminal spores lytic bacteria have been isolated from hot springs (21, 24) (1.2 to 2.0 by 2.0 to 2.2 pm) were round to oval. All strains and decomposing biomasses (22). Strains with broad sub- were obligate anaerobes and required yeast extract. All strate ranges that are of potential biotechnological use have strains fermented cellulose, D-cellobiose, D-glucose, and been described (7, 13, 15, 23). C. thermocellum cultures are sorbitol. Strains B2, A2, H20, and G2 fermented D-fructose, often associated with contaminants (26), and identification of and strains B2 and H20 also fermented raffinose and lactose the species is hampered by differences in the descriptions, weakly.
    [Show full text]
  • Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium Thermocellum
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Peer-reviewed articles by Dartmouth faculty Faculty Work 9-20-1989 Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium thermocellum Lee R. Lynd Dartmouth College Hans E. Grethlein Dartmouth College Richard H. Wolkin Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Biochemistry, Biophysics, and Structural Biology Commons Dartmouth Digital Commons Citation Lynd, Lee R.; Grethlein, Hans E.; and Wolkin, Richard H., "Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium thermocellum" (1989). Open Dartmouth: Peer-reviewed articles by Dartmouth faculty. 502. https://digitalcommons.dartmouth.edu/facoa/502 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Peer-reviewed articles by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Dec. 1989, p. 3131-3139 Vol. 55, No. 12 0099-2240/89/123131-09$02.00/0 Copyright C) 1989, American Society for Microbiology Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium thermocellum LEE RYBECK LYND,* HANS E. GRETHLEIN,t AND RICHARD H. WOLKINt Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 Received 19 December 1988/Accepted 20 September 1989 Fermentation of dilute-acid-pretreated mixed hardwood and Avicel by Clostridium thermocellum was compared in batch and continuous cultures. Maximum specific growth rates per hour obtained on cellulosic substrates were 0.1 in batch culture and >0.13 in continuous culture.
    [Show full text]