Atlantic Whitefish (Coregonus Huntsmani)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Burbot Management Plan
BURBOT MANAGEMENT PLAN DEPARTMENT OF INLAND FISHERIES AND WILDLIFE DIVISION OF FISHERIES AND HATCHERIES PREPARED BY SCOTT A. ROY ASSISTANT REGIONAL FISHERIES BIOLOGIST REGION E MARCH 2001 BURBOT LIFE HISTORY The burbot, Lota lota (Linnaeus), is a unique member of the cod family. It is the only species in the family, which spends its entire life in fresh water. However, the burbot is similar to its marine relatives in that its distribution is circumpolar. It can be found in cool, fresh waters throughout northern Europe, Asia and North America. In North America its range extends as far south as the northern tier of States across the United States. In Maine, the burbot is commonly known as the cusk, although in other areas it is also called the ling, eelpout, loche and lawyer. Unlike the salmonids and Maine’s other coldwater species, the burbot is not noted for its grace and beauty. The body is elongate, almost eel-shaped, with long, soft-rayed dorsal and anal fins that meet a rounded tail. Although it is smooth and slimy to the touch, the skin is embedded with very small, cycloid scales. The head of the burbot is broad and somewhat flattened. It has a large mouth containing several rows of small teeth on the jaws. A single, whisker-like barbell protrudes from the tip of the chin. There are no obvious external differences between males and females. In general, adults are olive brown to dark brown on the back and sides. This background is overlaid with distinctive patterns of dark brown or black markings and spots. -
Sport-Fish-Identification.Pdf
Walleye Walleye have two distinct fins on their back, the first with large spines. Lake Sturgeon They have a yellow-olive back, brassy, silvery sides with yellow spots, a white underside, and white on the lower lobe of the tail. Dusky vertical Lake Sturgeon are a Threatened Species due to population size and bars are often found on the body as well. concerns with viability. Lake Sturgeon have a large brown or grey body covered with tough, leather- like tissue and five rows of bony plates. They have a shark-like, upturned tail and a pointed snout with four barbels. Sauger Lake Whitefish are olive-green to blue on the back, with silvery sides.They Sauger are a Threatened Species due to hybridization, habitat Lakehave a small Whitefish mouth below a rounded snout, and a deeply forked tail. degradation and overharvest. Sauger are golden olive on the back with silver-yellow sides and a white underside. They also have a large spiny dorsal fin, distinct rows of spots on the dorsal fins and three or four dusky vertical bars on the body. Mountain Whitefish have large scales, no spots and small mouths with no Burbot Mountainteeth. Their general Whitefish body colour is a bronze-white or greenish white. Burbot have a slim, brownish black body with smooth skin, a flattened head, and a fin that stretches along the back half of the body. Distinctive barbels hang from the lower jaw and nostrils. Goldeye Northern Pike Goldeye have prominent eyes with bright yellow pupils, a blunt head, and Northern Pike are a long, slender fish with duck-like jaws and a long, flat a deep, compressed body. -
Westslope Cutthroat Trout
This file was created by scanning the printed publication. Errors identified by the software have been corrected; Chapter 1 however, some errors may remain. Westslope Cutthroat Trout John D. IVIclntyre and Bruce E. Rieman, USDA Forest Service, Intermountain Research Station, 316 E. iViyrtle Street, Boise, Idaho 83702 Introduction Westslope cutthroat trout begin to mature at age 3 but usually spawn first at age 4 or 5 (table 2). Sexu The westslope cutthroat trout inhabits streams on ally maturing adfluvial fish move into the vicinity of both sides of the Continental Divide. On the east side tributaries in fall and winter where they remain un of the divide, they are distributed mostly in Mon til they begin to migrate upstream in the spring tana but also occur in some headwaters in Wyoming (Liknes 1984). They spawn from March to July at and southern Alberta (Behnke 1992). They are in the water temperatures near 10°C (Roscoe 1974; Liknes Missouri Basin downstream to about 60 km below 1984; Shepard et al. 1984). A population of adult fish Great Falls and in the headwaters of the Judith, Milk, in the St. Joe River, Idaho, included 1.6 females for and Marias rivers. On the west side of the Continen each male (Thurow and Bjornn 1978). Average length tal Divide the subspecies occurs in the upper was 334 mm for females and 366 mm for males. A Kootenai River; the Clark Fork drainage in Montana similar population in Big Creek, Montana, included and Idaho downstream to the falls on the Fend Oreille 4.1 females for each male (Huston et al. -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Traceability Study in Shark Products
Traceability study in shark products Dr Heiner Lehr (Photo: © Francisco Blaha, 2015) Report commissioned by the CITES Secretariat This publication was funded by the European Union, through the CITES capacity-building project on aquatic species Contents 1 Summary.................................................................................................................................. 7 1.1 Structure of the remaining document ............................................................................. 9 1.2 Acknowledgements ....................................................................................................... 10 2 The market chain ................................................................................................................... 11 2.1 Shark Products ............................................................................................................... 11 2.1.1 Shark fins ............................................................................................................... 12 2.1.2 Shark meat ............................................................................................................. 12 2.1.3 Shark liver oil ......................................................................................................... 13 2.1.4 Shark cartilage ....................................................................................................... 13 2.1.5 Shark skin .............................................................................................................. -
Lake Superior Food Web MENT of C
ATMOSPH ND ER A I C C I A N D A M E I C N O I S L T A R N A T O I I O T N A N U E .S C .D R E E PA M RT OM Lake Superior Food Web MENT OF C Sea Lamprey Walleye Burbot Lake Trout Chinook Salmon Brook Trout Rainbow Trout Lake Whitefish Bloater Yellow Perch Lake herring Rainbow Smelt Deepwater Sculpin Kiyi Ruffe Lake Sturgeon Mayfly nymphs Opossum Shrimp Raptorial waterflea Mollusks Amphipods Invasive waterflea Chironomids Zebra/Quagga mussels Native waterflea Calanoids Cyclopoids Diatoms Green algae Blue-green algae Flagellates Rotifers Foodweb based on “Impact of exotic invertebrate invaders on food web structure and function in the Great Lakes: NOAA, Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI A network analysis approach” by Mason, Krause, and Ulanowicz, 2002 - Modifications for Lake Superior, 2009. 734-741-2235 - www.glerl.noaa.gov Lake Superior Food Web Sea Lamprey Macroinvertebrates Sea lamprey (Petromyzon marinus). An aggressive, non-native parasite that Chironomids/Oligochaetes. Larval insects and worms that live on the lake fastens onto its prey and rasps out a hole with its rough tongue. bottom. Feed on detritus. Species present are a good indicator of water quality. Piscivores (Fish Eaters) Amphipods (Diporeia). The most common species of amphipod found in fish diets that began declining in the late 1990’s. Chinook salmon (Oncorhynchus tshawytscha). Pacific salmon species stocked as a trophy fish and to control alewife. Opossum shrimp (Mysis relicta). An omnivore that feeds on algae and small cladocerans. -
Nova Scotia Inland Water Boundaries Item River, Stream Or Brook
SCHEDULE II 1. (Subsection 2(1)) Nova Scotia inland water boundaries Item River, Stream or Brook Boundary or Reference Point Annapolis County 1. Annapolis River The highway bridge on Queen Street in Bridgetown. 2. Moose River The Highway 1 bridge. Antigonish County 3. Monastery Brook The Highway 104 bridge. 4. Pomquet River The CN Railway bridge. 5. Rights River The CN Railway bridge east of Antigonish. 6. South River The Highway 104 bridge. 7. Tracadie River The Highway 104 bridge. 8. West River The CN Railway bridge east of Antigonish. Cape Breton County 9. Catalone River The highway bridge at Catalone. 10. Fifes Brook (Aconi Brook) The highway bridge at Mill Pond. 11. Gerratt Brook (Gerards Brook) The highway bridge at Victoria Bridge. 12. Mira River The Highway 1 bridge. 13. Six Mile Brook (Lorraine The first bridge upstream from Big Lorraine Harbour. Brook) 14. Sydney River The Sysco Dam at Sydney River. Colchester County 15. Bass River The highway bridge at Bass River. 16. Chiganois River The Highway 2 bridge. 17. Debert River The confluence of the Folly and Debert Rivers. 18. Economy River The highway bridge at Economy. 19. Folly River The confluence of the Debert and Folly Rivers. 20. French River The Highway 6 bridge. 21. Great Village River The aboiteau at the dyke. 22. North River The confluence of the Salmon and North Rivers. 23. Portapique River The highway bridge at Portapique. 24. Salmon River The confluence of the North and Salmon Rivers. 25. Stewiacke River The highway bridge at Stewiacke. 26. Waughs River The Highway 6 bridge. -
Differences in Brain Transcriptomes of Closely Related Baikal Coregonid Species
Differences in brain transcriptomes of closely related baikal coregonid species Bychenko, O. S., Sukhanova, L. V., Azhikina, T. L., Skvortsov, T. A., Belomestnykh, T. V., & Sverdlov, E. D. (2014). Differences in brain transcriptomes of closely related baikal coregonid species. BioMed Research International, 2014, [857329]. DOI: 10.1155/2014/857329 Published in: BioMed Research International Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2017 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:06. Nov. 2017 Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 857329, 11 pages http://dx.doi.org/10.1155/2014/857329 Research Article Differences in Brain Transcriptomes of Closely Related Baikal Coregonid Species Oksana S. -
FOR REFERENCE USE ONL Y DO NOT Removt from LIBRARY
Canada. F isbcries Service Maritimes Region. R csource Development Branch MANUSCRIPT REPORT I+ Environment Canada Environnement Canada RESOURCE DEVELOPMENT BRANCH .. " ' IÎÏI ~ Îl ~l Ïl\ij fü1imÎ l~I Îl \ i1 li~ ~Î~Ïil l I 'J 09093266 A Preliminary Investigation of the Striped Bass, Roccus saxatilis, Fishery Resource in the Annapolis River System, and the General Distribution of Striped Bass in Other Areas in Southwestern Nova Scotia by G. H. PENNEY FOR REFERENCE USE ONL Y DO NOT REMOvt FROM LIBRARY f h~trlts Stnlct 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 Hallfa1, N.S. 1l7d.- Restricted MANUSCRIPT REPORT No. 73- 4 A PRELIMINARY INVESTIGATION OF THE STRIPED BASS, Roccus saxatilis ~ FISHERY RESOURCE IN THE ANNAPOLIS RIVER SYSTEM, AND THE GENERAL DISTRIBUTION OF STRIPED BASS IN OTHER AREAS IN SOUTHWESTERN NOVA SCOTIA BY G.H. PENNEY Restricted A PRELIMINARY INVESTIGATION OF THE STRIPED BASS, Roccus s axatilis , FISHERY RESOURCE IN THE ANNAPOLIS RIVER SYSTEM, AND THE GENERAL DISTRIBUTION OF STRIPED BASS IN OTHER AREAS IN SOUTHWESTERN NOVA SCOTIA BY G.H. PENNEY DEPARTMENT OF THE ENVIRONMENT FISHERIES SERVICE RESOURCE DEVELOPMENT BRANCH HALIFAX, NOVA SCOTIA MARCH, 1973. CONTENTS PAGE INTRODUCTION . • . • . • . • . • . • 1 METHODS 8 RESULTS 10 (a) Angling Statistics (1951-1972)-Annapolis River system . ....................................... 10 (b) Length, Weight, Sex, and Age of Striped Bass sampled from the Annapolis River in 1972 .....• 12 (c) Residence Distribution of Anglers from which Samples were obtained ........................ 16 (d) Angling Pressure for Striped Bass during June, July, and August, 1972, at the Annapolis 18 Causeway ..............•....................... (e) General Distribution and Abundance of Striped Bass in Other Areas in Southwestern Nova 20 Scotia ....................................... DISCUSSION - RECOMMENDATIONS ....................... -
Summary Report No
Canadian Manuscript Report of Fisheries and Aquatic Sciences 2614 2002 Life History Characteristics Of Freshwater Fishes Occurring in the Northwest Territories and Nunavut, With Major Emphasis on Riverine Habitat Requirements by C.L. Evans1, J.D. Reist1 and C.K. Minns2 1. Department of Fisheries and Oceans, Arctic Fish Ecology and Assessment Research, Central and Arctic Division, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 Canada 2. Department of Fisheries and Oceans, Great Lakes Laboratory of Fisheries and Aquatic Sciences, Bayfield Institute, 867 Lakeshore Road, P.O. Box 5050, Burlington, Ontario, L7R 4A6 Canada. Her Majesty the Queen in Right of Canada, 2002 Cat. No. Fs 97-4/2614E ISSN 0706-6473 Correct citation of this publication: Evans, C.E., J.D. Reist and C.K. Minns. 2002. Life history characteristics of freshwater fishes occurring in the Northwest Territories and Nunavut, with major emphasis on riverine habitat requirements. Can. MS Rep. Fish. Aquat. Sci. 2614: xiii + 169 p. ii TABLE OF CONTENTS LIST OF FIGURES .......................................................................................................... v LIST OF TABLES............................................................................................................ v ABSTRACT ...................................................................................................................viii RÉSUMÉ ........................................................................................................................viii INTRODUCTION............................................................................................................ -
South Western Nova Scotia
Netukulimk of Aquatic Natural Life “The N.C.N.S. Netukulimkewe’l Commission is the Natural Life Management Authority for the Large Community of Mi’kmaq /Aboriginal Peoples who continue to reside on Traditional Mi’Kmaq Territory in Nova Scotia undisplaced to Indian Act Reserves” P.O. Box 1320, Truro, N.S., B2N 5N2 Tel: 902-895-7050 Toll Free: 1-877-565-1752 2 Netukulimk of Aquatic Natural Life N.C.N.S. Netukulimkewe’l Commission Table of Contents: Page(s) The 1986 Proclamation by our late Mi’kmaq Grand Chief 4 The 1994 Commendation to all A.T.R.A. Netukli’tite’wk (Harvesters) 5 A Message From the N.C.N.S. Netukulimkewe’l Commission 6 Our Collective Rights Proclamation 7 A.T.R.A. Netukli’tite’wk (Harvester) Duties and Responsibilities 8-12 SCHEDULE I Responsible Netukulimkewe’l (Harvesting) Methods and Equipment 16 Dangers of Illegal Harvesting- Enjoy Safe Shellfish 17-19 Anglers Guide to Fishes Of Nova Scotia 20-21 SCHEDULE II Specific Species Exceptions 22 Mntmu’k, Saqskale’s, E’s and Nkata’laq (Oysters, Scallops, Clams and Mussels) 22 Maqtewe’kji’ka’w (Small Mouth Black Bass) 23 Elapaqnte’mat Ji’ka’w (Striped Bass) 24 Atoqwa’su (Trout), all types 25 Landlocked Plamu (Landlocked Salmon) 26 WenjiWape’k Mime’j (Atlantic Whitefish) 26 Lake Whitefish 26 Jakej (Lobster) 27 Other Species 33 Atlantic Plamu (Salmon) 34 Atlantic Plamu (Salmon) Netukulimk (Harvest) Zones, Seasons and Recommended Netukulimk (Harvest) Amounts: 55 SCHEDULE III Winter Lake Netukulimkewe’l (Harvesting) 56-62 Fishing and Water Safety 63 Protecting Our Community’s Aboriginal and Treaty Rights-Community 66-70 Dispositions and Appeals Regional Netukulimkewe’l Advisory Councils (R.N.A.C.’s) 74-75 Description of the 2018 N.C.N.S. -
Ours to Save: the Distribution, Status & Conservation Needs of Canada's Endemic Species
Ours to Save The distribution, status & conservation needs of Canada’s endemic species June 4, 2020 Version 1.0 Ours to Save: The distribution, status & conservation needs of Canada’s endemic species Additional information and updates to the report can be found at the project website: natureconservancy.ca/ourstosave Suggested citation: Enns, Amie, Dan Kraus and Andrea Hebb. 2020. Ours to save: the distribution, status and conservation needs of Canada’s endemic species. NatureServe Canada and Nature Conservancy of Canada. Report prepared by Amie Enns (NatureServe Canada) and Dan Kraus (Nature Conservancy of Canada). Mapping and analysis by Andrea Hebb (Nature Conservancy of Canada). Cover photo credits (l-r): Wood Bison, canadianosprey, iNaturalist; Yukon Draba, Sean Blaney, iNaturalist; Salt Marsh Copper, Colin Jones, iNaturalist About NatureServe Canada A registered Canadian charity, NatureServe Canada and its network of Canadian Conservation Data Centres (CDCs) work together and with other government and non-government organizations to develop, manage, and distribute authoritative knowledge regarding Canada’s plants, animals, and ecosystems. NatureServe Canada and the Canadian CDCs are members of the international NatureServe Network, spanning over 80 CDCs in the Americas. NatureServe Canada is the Canadian affiliate of NatureServe, based in Arlington, Virginia, which provides scientific and technical support to the international network. About the Nature Conservancy of Canada The Nature Conservancy of Canada (NCC) works to protect our country’s most precious natural places. Proudly Canadian, we empower people to safeguard the lands and waters that sustain life. Since 1962, NCC and its partners have helped to protect 14 million hectares (35 million acres), coast to coast to coast.