Sanofi/Regeneron Extend a Hand on Praluent, Express Scripts Takes It
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expression Profiling / Microarray / Data Analysis at Amgen
Expression Profiling / Microarray / Data Analysis at Amgen Dan Fitzpatrick, PhD Expression Profiling & Pharmacogenomics Department Amgen, Inc. Changes in Drug Development: Feeding the Beast Dan Fitzpatrick, PhD Expression Profiling & Pharmacogenomics Department Amgen, Inc. Seminar Outline The current state of affairs, and where we want to go Instruments of change The Amgen experience The High Stakes in Pharmaceuticals •Global R&D increased 14% in 1999 to 24 billion. •Top 11 geographical markets grew 9% to $202 billion in sales. •U.S. market valued at $83 billion. …And High Pressure •U.S. FDA approved 35 new molecular entities in 1999 (30 in 1998, 39 in 1997). •36 branded pharmaceuticals ($1.9 billion in sales) came off patent protection in 1999. •Between 2000 & 2005, 173 products representing $30 billion in sales to lose patent protection. C&E News, Jan. 17, 2000 The Gap Between R&D and New Drugs New U.S. R&D molecular entities Year (Billions) FDA approved 1993 $10.5 25 1994 11.1 22 1995 11.9 28 1996 13.6 53 1997 15.5 39 1998 17.2 30 1999 20.1 35 Top Five Drug Targets 56 (11%) brands 29% of prescription sales HMG CoA reductase (hypercholesterolemia) Proton pump (ulcers) Serotonin transporter (depression) Calcium channel (hypertension) Angiotensin converting enzyme (hypertension) A Piece of the Pie Drug Company Zocor Merck & Co. HMG-CoA Lipitor Warner-Lambert/Pfizer Reductase Pravachol Bristol-Myers Squibb Inhibitors Mevalotin Sankyo Mevacor Merck & Co. Lescol Novartis Baycol Bayer/SKB Lodales Sanofi Why Pharmaceutical Executives Sleep like Babies at Night. •‘Return’ on R&D diminishing •Potential for reduced government subsidization and/or HMO reimbursement •Investor pressure •Biologics Biologics Come of Age Drug Company Target Indication 1. -
Evidence Regarding Research and Development Investments in Innovative and Non-Innovative Medicines James Love Consumer Project on Technology September 22, 2003
Evidence Regarding Research and Development Investments in Innovative and Non-Innovative Medicines James Love Consumer Project on Technology September 22, 2003 1. Introduction.......................................................................................................... 3 2. Empirical Estimates of Drug Development Costs........................................... 3 2.1 The Tufts Study ......................................................................................... 3 Table RND 2.1-1: Tufts study estimate of costs of development of self- originated New Chemical Entity .................................................................... 4 2.2 The TB Alliance Study of Drug Development Costs........................................ 6 2.3 Orphan Drug Development ........................................................................ 7 Table 2.3-1: Pre-Tax Cost of Trials for Orphan Products: FDA approvals of Orphan Indications and Orphan NMEs (Millions of USD)............................. 7 2.4 Parexel Analysis of Size of Clinical Trials ................................................. 9 Table RND 2.4-1 : Mean and median number of patents in clinical trials: FDA NME approvals 1998 - 2001 .......................................................................... 9 2.5 October 2001 FDA Study of Clinical Trials. .................................................... 9 2.6 The PERI Survey of development costs ........................................................... 9 Table RND 2.6-1: Average Time and Spending per project..........................10 -
Patient Focused Disease State and Assistance Programs
Patient Focused Disease State and Assistance Programs Medication Medication Toll-free Brand (Generic) Website number Additional Resources Allergy/Asthma Xolair (omalizumab) xolair.com 1-866-4-XOLAIR lung.org Cardiovascular Pradaxa (dabigatran) pradaxa.com 877-481-5332 heart.org Praluent (alirocumab) praluent.com 844-PRALUENT thefhfoundation.org Repatha (evolocumab) repatha.com 844-REPATHA Tikosyn (dofetilide) tikosyn.com 800-879-3477 Crohn’s Disease Cimzia (certolizumab pegol) cimzia.com 866-4-CIMZIA crohnsandcolitis.com Humira (adalimumab) humira.com 800-4-HUMIRA crohnsforum.com Stelara (ustekinumab) stelarainfo.com 877-STELARA Dermatology Cosentyx (secukinumab) cosentyx.com 844-COSENTYX psoriasis.org Dupixent (dupilumab) dupixent.com 844-DUPIXENT nationaleczema.org Enbrel (etanercept) enbrel.com 888-4-ENBREL Humira (adalimumab) humira.com 800-4-HUMIRA Otezla (apremilast) otezla.com 844-4-OTEZLA Stelara (ustekinumab) stelarainfo.com 877-STELARA Taltz (ixekizumab) taltz.com 800-545-5979 Hematology Aranesp (darbepoetin alfa) aranesp.com 805-447-1000 chemocare.com Granix (filgrastim) granixrx.com 888-4-TEVARX hematology.org Jadenu (deferasirox) jadenu.com 888-282-7630 Neulasta (pegfilgrastim) neulasta.com 800-77-AMGEN Neupogen (filgrastim) neupogen.com 800-77-AMGEN Nivestym (filgrastim) nivestym.com 800-879-3477 Zarxio (filgrastim) zarxio.com 800-525-8747 Zytiga (abiraterone) zytiga.com 800-JANSSEN Hepatitis B Baraclude (entecavir) baraclude.com 800-321-1335 cdc.gov Viread (tenofovir disoproxil viread.com 800-GILEAD-5 hepb.org fumarate) -
The Breakthrough of Biosimilars: a Twist in the Narrative of Biological Therapy
biomolecules Review The Breakthrough of Biosimilars: A Twist in the Narrative of Biological Therapy Eva Rahman Kabir 1,* , Shannon Sherwin Moreino 1 and Mohammad Kawsar Sharif Siam 1,2 1 Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh 2 Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK * Correspondence: [email protected] Received: 12 June 2019; Accepted: 20 August 2019; Published: 24 August 2019 Abstract: The coming wave of patent expiries of first generation commercialized biotherapeutical drugs has seen the global market open its doors to close copies of these products. These near perfect substitutes, which are termed as “biosimilars”, do not need to undergo intense clinical trials for their approval. However, they are mandated to produce identical similarity from their reference biologics in terms of clinical safety and efficacy. As such, these biosimilar products promise to foster unprecedented access to a wide range of life-saving biologics. However, seeing this promise be fulfilled requires the development of biosimilars to be augmented with product trust, predictable regulatory frameworks, and sustainable policies. It is vital for healthcare and marketing professionals to understand the critical challenges surrounding biosimilar use and implement informed clinical and commercial decisions. A proper framework of pharmacovigilance, education, and scientific exchange for biologics and biosimilars would ensure a dramatic rise in healthcare access and market sustainability. This paper seeks to collate and review all relevant published intelligence of the health and business potential of biosimilars. In doing so, it provides a visualization of the essential steps that are required to be taken for global biosimilar acceptance. -
Amgen's Complaint 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Case3:14-cv-04741 Document1 Filed10/24/14 Page1 of 39 1 SIDLEY AUSTIN LLP Vernon M. Winters (SBN 130128) 2 555 California Street, Suite 2000 San Francisco, CA 94104-1503 3 Telephone: (415) 772-1200 4 Facsimile: (415) 772-7400 [email protected] 5 PAUL, WEISS, RIFKIND, WHARTON 6 & GARRISON LLP Nicholas Groombridge (pro hac vice application to be filed) 7 Jennifer Gordon Peter Sandel (pro hac vice application to be filed) 8 Jennifer H. Wu (pro hac vice application to be filed) 9 Michael T. Wu (pro hac vice application to be filed) 1285 Avenue of the Americas 10 New York, NY 10019-6064 Telephone: (212) 373-3000 11 Facsimile: (212) 757-3990 [email protected] 12 13 AMGEN INC. Wendy A. Whiteford 14 Lois M. Kwasigroch Kimberlin L. Morley 15 One Amgen Center Drive Thousand Oaks, CA 91320-1789 16 Telephone: (805) 447-1000 17 Facsimile: (805) 447-1010 [email protected] 18 Attorneys for Plaintiffs Amgen Inc. 19 and Amgen Manufacturing, Limited 20 UNITED STATES DISTRICT COURT 21 NORTHERN DISTRICT OF CALIFORNIA 22 AMGEN INC. and Case No. ____________ AMGEN MANUFACTURING, LIMITED, 23 24 Plaintiffs, COMPLAINT FOR PATENT vs. INFRINGEMENT, CONVERSION, 25 AND UNFAIR COMPETITION SANDOZ INC., SANDOZ (CAL. BUS. & PROF. CODE § 17200) 26 INTERNATIONAL GMBH, and SANDOZ GMBH, JURY TRIAL DEMANDED 27 28 Defendants. AMGEN’S COMPLAINT Case3:14-cv-04741 Document1 Filed10/24/14 Page2 of 39 1 Plaintiffs Amgen Inc. and Amgen Manufacturing, Limited (collectively, “Plaintiffs”), 2 by and through their undersigned attorneys, for their Complaint against Defendants Sandoz 3 Inc., Sandoz International GmbH, and Sandoz GmbH (collectively, “Defendants”) hereby 4 allege as follows: 5 NATURE OF THE ACTION 6 1. -
Immunfarmakológia Immunfarmakológia
Gergely: Immunfarmakológia Immunfarmakológia Prof Gergely Péter Az immunpatológiai betegségek döntő többsége gyulladásos, és ennek következtében általában szövetpusztulással járó betegség, melyben – jelenleg – a terápia alapvetően a gyulladás csökkentésére és/vagy megszűntetésére irányul. Vannak kizárólag gyulladásgátló gyógyszereink és vannak olyanok, amelyek az immunreakció(k) bénításával (=immunszuppresszió révén) vagy emellett vezetnek a gyulladás mérsékléséhez. Mind szerkezetileg, mind hatástanilag igen sokféle csoportba oszthatók, az alábbi felosztás elsősorban didaktikus célokat szolgál. 1. Nem-szteroid gyulladásgátlók (‘nonsteroidal antiinflammatory drugs’ NSAID) 2. Kortikoszteroidok 3. Allergia-elleni szerek (antiallergikumok) 4. Sejtoszlás-gátlók (citosztatikumok) 5. Nem citosztatikus hatású immunszuppresszív szerek 6. Egyéb gyulladásgátlók és immunmoduláns szerek 7. Biológiai terápia 1. Nem-szteroid gyulladásgátlók (NSAID) Ezeket a vegyületeket, melyek őse a szalicilsav (jelenleg, mint acetilszalicilsav ‘aszpirin’ használatos), igen kiterjedten alkalmazzák a reumatológiában, az onkológiában és az orvostudomány szinte minden ágában, ahol fájdalom- és lázcsillapításra van szükség. Egyes felmérések szerint a betegek egy ötöde szed valamilyen NSAID készítményt. Szerkezetük alapján a készítményeket több csoportba sorolhatjuk: szalicilátok (pl. acetilszalicilsav) pyrazolidinek (pl. fenilbutazon) ecetsav származékok (pl. indometacin) fenoxiecetsav származékok (pl. diclofenac, aceclofenac)) oxicamok (pl. piroxicam, meloxicam) propionsav -
Setting Fair Prices for Life-Saving Drugs by Bruce A
Virtual Mentor American Medical Association Journal of Ethics January 2007, Volume 9, Number 1: 38-43. Policy forum Setting fair prices for life-saving drugs by Bruce A. Chabner, MD, and Thomas G. Roberts Jr., MD, MSocSci Cancer drugs are big business. Worldwide sales are projected to reach $25 billion in 2006 and to increase to almost $50 billion by 2010 [1]. This represents a startling growth in a segment of the drug industry once shunned by major pharmaceutical manufacturers as too high-risk and unprofitable. While a few drug companies, notably Bristol-Myers Squibb (BMS) and Pharmatalia, made significant profits on cancer drugs between 1970 and 1990 when the first effective combination therapies came into common practice, the turning point in this industrial segment occurred in 1992 with the approval of Bristol-Myers Squibb’s paclitaxel, which became a multibillion-dollar-per-year product by 1998. To understand our current concerns with cancer drug costs and their potential effect on medical care financing and access, one needs to be familiar with the paclitaxel experience. The story of paclitaxel’s discovery and commercial development reflects both the lack of interest that industry had in cancer drugs at that time and the sudden emergence of drug cost as a social justice issue. In 1964 Monroe Wall and associates, working at the Research Triangle Institute under a National Cancer Institute (NCI) contract, isolated the active compound in paclitaxel from the bark of the common yew tree [2]. Its tortuous development, complicated by difficulties in material procurement, compound purification and formulation, delayed its entry into clinical trials until 1983, and its efficacy in treating ovarian cancer was not demonstrated until 1987 [3]. -
761119Orig1s000 SUMMARY REVIEW
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 761119Orig1s000 SUMMARY REVIEW Summary Review Summary Review Date February 21, 2020 Heather Fitter, MD From Nick Kozauer, MD Billy Dunn, MD Subject Summary Review BLA # 761119 Applicant Lundbeck Seattle BioPharmaceuticals, Inc. Date of Submission December 26, 2018 PDUFA Goal Date February 21, 2020 Proprietary Name Vyepti Established or Proper Names Eptinezumab Solution for intravenous (IV) injection (100 Dosage Form mg/mL) Applicant Proposed Prevention of migraine in adults Indication/Population 100 mg IV infusion every 3 months; 300 mg IV Applicant Proposed Dosing Regimen(s) infusion every 3 months Recommendation on Regulatory Action Approval Recommended Indication/Population Preventive treatment of migraine in adults 100 mg IV infusion every 3 months; 300 mg IV Recommended Dosing Regimen(s) infusion every 3 months 1 Reference ID: 4564908 Summary Review 1. Benefit-Risk Assessment Benefit-Risk Assessment Framework Benefit-Risk Integrated Assessment Eptinezumab is a humanized monoclonal antibody that binds to the calcitonin gene-related peptide (CGRP) ligand, and prevents CGRP binding to its receptor. The applicant provided information supporting safety and efficacy in patients with both chronic migraine (i.e., at least 15 headache days/month, with features of migraine headache on at least 8 days/month) and episodic migraine (i.e., up to 14 migraine headache days/month). There are several FDA-approved drugs for the preventive treatment of migraine. Three drugs in the anti-CGRP class were approved recently for this indication: erenumab (May 2018), fremanezumab (September 2018), and galcanezumab (September 2018). These three drugs are given by subcutaneous (SC) administration either monthly or quarterly, while eptinezumab is given intravenously (IV) quarterly. -
(CGRP) Inhibitor Criteria – Migraine and Cluster Headache Prevention Approval Date: February 24, 2021
New Hampshire Medicaid Fee-for-Service Program Calcitonin Gene-Related Peptide (CGRP) Inhibitor Criteria – Migraine and Cluster Headache Prevention Approval Date: February 24, 2021 Medications Brand Names Generic Names Dosage 70 mg/mL solution single-dose prefilled syringe or auto-injector; Aimovig® erenumab-aooe 140 mg/mL prefilled syringe and autoinjector 225 mg/1.5 mL solution single-dose prefilled syringe; Ajovy® fremanezumab-vfrm 225 mg/1.5 mL autoinjector 120 mg/mL solution single-dose prefilled syringe or prefilled pen; Emgality® galcanezumab-gnlm 100 mg/mL solution single-dose prefilled syringe Vyepti™ eptinezumab-jjmr Intravenous (IV) solution: 100 mg/mL Indication Aimovig® (erenumab-aooe): A high-affinity human immunoglobulin G2 (IgG2) monoclonal antibody that targets the calcitonin gene-related peptide (CGRP) receptor, is indicated for the preventative treatment of migraine in adults. Ajovy® (fremanezumab-vfrm): A human IgG2 monoclonal antibody that targets the CGRP receptor, is indicated for the preventative treatment of migraine in adults. Emgality® (galcanezumab-gnlm): A human immunoglobulin IgG4 monoclonal antibody that targets the CGRP ligand, is indicated for the preventative treatment of migraine and episodic cluster headaches in adults. Vyepti™ (eptinezumab-jjmr): A humanized immunoglobulin G1 (IgG1) monoclonal antibody that targets the CGRP ligand and inhibits its interaction with the receptor, is indicated for the preventative treatment of migraine in adults. Proprietary & Confidential © 2003–2021 Magellan Health, Inc. All rights reserved. Magellan Medicaid Administration, part of the Magellan Rx Management division of Magellan Health, Inc. Migraine Headache Prevention Request Criteria for Approval 1. Patient has a diagnosis of migraine with or without aura based on International Classification of Headache Disorders (ICHD-III) diagnostic criteria; AND 2. -
Digital R&D: the Next Frontier for Biopharmaceuticals
Digital R&D │ The Next Frontier for Biopharmaceuticals The Next Frontier Digital R&D The Next Frontier for Biopharmaceuticals Pharmaceuticals and Medical Products Practice 2017 Designed by the US Design Center Copyright © McKinsey & Company, Inc. www.mckinsey.com Digital R&D The Next Frontier for Biopharmaceuticals 2017 Editors Sastry Chilukuri Ann Westra For more info please contact [email protected] Contents 1 Digital in R&D—the $100 billion opportunity Sastry Chilukuri, Edd Fleming, and Ann Westra R&D in the age of analytics 13 Real-world evidence: From activity to impact Olivia Cavlan, Sastry Chilukuri, Matthias Evers, and Ann Westra 31 Randomized pragmatic trials: Can they fulfill their promise? Arnaub Chatterjee, Sastry Chilukuri, Michael Pencina, Eric Peterson, Saif Rathore, and Vijay Vaidya 35 The next generation in clinical operations performance Sastry Chilukuri, Edd Fleming, Eoin Leydon, Fareed Melhem, and Michael Steinmann 47 Moving beyond serendipity in drug discovery Sastry Chilukuri, Leeland Ekstrom, Jonathan Usuka, and Ann Westra 61 Digital vigilance: Building the backbone for insight-driven safety Kate Chavez and Brandon Parry 69 How big data can revolutionize pharmaceutical R&D Jamie Cattell, Sastry Chilukuri, and Michael Levy Connecting with the individual customer 85 Medical affairs: Key imperatives for engaging and educating physicians in a digital world Matthias Evers, Ivan Ostojic, Brindan Suresh, Josh Weiner, and Ann Westra 101 Engaging patients during clinical trials Montana Cherney, Amit Paley, Leslie Ruckman, -
Monoclonal Antibodies As Neurological Therapeutics
pharmaceuticals Review Monoclonal Antibodies as Neurological Therapeutics Panagiotis Gklinos 1 , Miranta Papadopoulou 2, Vid Stanulovic 3, Dimos D. Mitsikostas 4 and Dimitrios Papadopoulos 5,6,* 1 Department of Neurology, KAT General Hospital of Attica, 14561 Athens, Greece; [email protected] 2 Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; [email protected] 3 Global Pharmacovigilance, R&D Sanofi, 91385 Chilly-Mazarin, France; vid.stanulovic@sanofi.com 4 1st Neurology Department, Aeginition Hospital, National and Kapodistrian University of Athens, 11521 Athens, Greece; [email protected] 5 Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 129 Vasilissis Sophias Avenue, 11521 Athens, Greece 6 Salpetriere Neuropsychiatric Clinic, 149 Papandreou Street, Metamorphosi, 14452 Athens, Greece * Correspondence: [email protected] Abstract: Over the last 30 years the role of monoclonal antibodies in therapeutics has increased enormously, revolutionizing treatment in most medical specialties, including neurology. Monoclonal antibodies are key therapeutic agents for several neurological conditions with diverse pathophysio- logical mechanisms, including multiple sclerosis, migraines and neuromuscular disease. In addition, a great number of monoclonal antibodies against several targets are being investigated for many more neurological diseases, which reflects our advances in understanding the pathogenesis of these -
Estimated Research and Development Investment Needed to Bring a New
Estimated research and development investment needed to bring a new medicine to market, 2009-2018 LSE Research Online URL for this paper: http://eprints.lse.ac.uk/103688/ Version: Accepted Version Article: Wouters, Olivier J., McKee, Martin and Luyten, Jeroen (2020) Estimated research and development investment needed to bring a new medicine to market, 2009- 2018. JAMA, 323 (9). pp. 844-853. ISSN 0098-7484 https://doi.org/10.1001/jama.2020.1166 Reuse Items deposited in LSE Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the LSE Research Online record for the item. [email protected] https://eprints.lse.ac.uk/ Estimated research and development investment needed to bring a new medicine to market, 2009-2018 Olivier J. Wouters, PhD1*; Martin McKee, MD, DSc2; Jeroen Luyten, PhD3 1 Department of Health Policy, London School of Economics and Political Science, London, UK 2 Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK 3 Leuven Institute for Healthcare Policy, Department of Public Health and Primary Care, KU Leuven, Belgium Olivier J. Wouters, PhD Assistant Professor of Health Policy Department of Health Policy London School of Economics and Political Science Houghton Street London WC2A 2AE United Kingdom [email protected] * Corresponding author Prof.