Soluble Ligands As Drug Targets

Total Page:16

File Type:pdf, Size:1020Kb

Soluble Ligands As Drug Targets REVIEWS Soluble ligands as drug targets Misty M. Attwood 1, Jörgen Jonsson1, Mathias Rask- Andersen 2 and Helgi B. Schiöth 1,3 ✉ Abstract | Historically, the main classes of drug targets have been receptors, enzymes, ion channels and transporters. However, owing largely to the rise of antibody- based therapies in the past two decades, soluble protein ligands such as inflammatory cytokines have become an increasingly important class of drug targets. In this Review, we analyse drugs targeting ligands that have reached clinical development at some point since 1992. We identify 291 drugs that target 99 unique ligands, and we discuss trends in the characteristics of the ligands, drugs and indications for which they have been tested. In the last 5 years, the number of ligand-targeting drugs approved by the FDA has doubled to 34, while the number of clinically validated ligand targets has doubled to 22. Cytokines and growth factors are the predominant types of targeted ligands (70%), and inflammation and autoimmune disorders, cancer and ophthalmological diseases are the top therapeutic areas for both approved agents and agents in clinical studies, reflecting the central role of cytokine and/or growth factor pathways in such diseases. Drug targets In the twentieth century, drug discovery largely involved far more challenging to achieve with small- molecule Pharmacological targets, such the identification of small molecules that exert their drugs. Protein ligands have been successfully targeted as proteins, that mediate the therapeutic effects by interacting with the binding sites by many drugs since the first FDA approval of the desired therapeutic effect of of endogenous small- molecule ligands such as neuro- ligand- targeting agents etanercept and infliximab in a drug. This Review focuses on endogenous soluble protein transmitters or hormones on target proteins. Reflecting 1998, including cytokines such as tumour necrosis factor ligands, such as cytokines, this, drug targets fell mainly into one of four classes of pro- (TNF) and growth factors such as vascular endothelial as drug targets. teins: receptors, enzymes, ion channels and transporters. growth factor A (VEGFA). However, while small molecules remain the predominant Therapeutic mAbs and their targets have been inves- Cytokines therapeutic modality among approved agents1–5, advances tigated, often with a focus on specific indications — pre- Small proteins involved in cell signalling, including in molecular and cellular biology, genomics and pharma- dominantly cancer or inflammatory diseases — and other interleukins, interferons, cology in the past few decades have enabled the develop- modalities such as gene therapies and their targets have tumour necrosis factors, ment of several other therapeutic modalities, including also been reviewed10–12. However, to our knowledge, a chemokines and lymphokines, full- length monoclonal antibodies (mAbs), decoy recep- comprehensive study of the endogenous soluble ligands but not hormones or growth factors. tors, antibody fragments and mimetics, oligonucleotide targeted by all therapeutic modalities has not been pub- therapies and gene therapies6. Antibody- based therapies lished. Here we present an analysis of soluble ligands in particular have dramatically changed the landscape as a class of drug targets based on approved agents and of drug development; more than 80 mAbs have been agents in clinical trials between 1992 and 2020 (see BOX 1 1Functional Pharmacology, approved since the pioneering mAb muromonab-CD3 for details of the origin of the dataset and analysis), Department of Neuroscience, was approved by the FDA in 1986, and three of the top ten including the types of ligands being targeted and the Uppsala University, Uppsala, best-selling drugs in 2018 and 2019 were ligand-targeting characteristics of the drugs and their indications. Sweden. mAbs7–9. Furthermore, we discuss strategic issues such as the pros 2Medical Genetics and Genomics, Department The expansion in the types of biopharmaceutical and cons of different ligand-targeting therapeutic modal- of Immunology, Genetics agents has broadened the types of targets of approved ities and why targeting ligands versus their receptors and Pathology, Uppsala drugs and drugs in clinical trials because characteristics might be preferable in different disease contexts. University, Uppsala, Sweden. of these agents, such as their target specificity and size, 3Institute for Translational enable the effective modulation of target types that are Overview of ligand- targeting drugs Medicine and Biotechnology, far less tractable for small molecules. In particular, sol- The FDA has approved 34 new molecular entities Sechenov First Moscow cytokines growth factors State Medical University, uble protein ligands such as and (NMEs) that target soluble ligands since the first such Moscow, Russia. can be readily targeted with mAbs, fusion proteins and agents — etanercept and infliximab — were approved ✉e- mail: [email protected] other modalities such as aptamers to achieve a thera- in 1998 (Fig. 1). There is a trend towards an increasing https://doi.org/10.1038/ peutic goal such as blockade of the interaction between number of ligand- targeting drugs being approved, with s41573-020-0078-4 protein ligands and their receptors — a goal that is more than half of the NMEs gaining approval in the last NATURE REVIEWS | DRUG DISCOVERY VOLUME 19 | OCTOBER 2020 | 695 REVIEWS Box 1 | Dataset and analysis The overall dataset, which is provided in Supplementary Approved ligand-targeting drugs Novel investigational agents Table 1, comprises FDA-approved agents as well as Data sources investigational drugs that target soluble ligands. • DrugBank dataset • CenterWatch clinical trials dataset The dataset for FDA-approved ligand-targeting drugs is • Drugs@FDA: FDA-approved drugs • Literature reviews composed of a manually selected subset from the updated 2018 • AdisInsight database dataset2 of the study by Rask-Andersen et al. on drug–target interactions of approved agents that affect targets that are Datasets encoded by the human genome130 (see the left side of the figure). The original study, which extends from 1982, was based FDA-approved ligand-targeting drugs Investigational ligand-targeting agents in clinical trials on the DrugBank database131, with further updates and 1998–2020 1992–2020 verifications from the Drugs@FDA website and monthly Beginning from first ligand-targeting Beginning from study start date of first reports. The ligand-targeting subset spans from 1998, when drug approved by the FDA clinical trial of ligand-targeting drug the first drugs targeting ligands were approved, to 15 June 2020. registered in ClinicalTrials.gov The dataset of investigational ligand-targeting agents in clinical trials is also a manually selected subset from the updated Validation of drug–target interactions 2018 dataset2 based on the study by Rask-Andersen et al. on the • Google Scholar • Google Scholar druggable genome and evaluation of drug targets in clinical • Patent applications • Patent applications trials1 (see the right side of the figure). The original study was • PubMed • PubMed based on the CenterWatch Drugs in Clinical Trials Database • Industry press releases • Industry press releases (DCTD; not currently accessible), which was established in 1994, • Conference abstracts • Conference abstracts and subsequent updates from the CenterWatch Weekly Pipeline. Additionally, literature reviews and the publicly accessible pages Final results from the AdisInsight database were used to identify potential 34 FDA-approved drugs acting on 257 novel investigational agents acting on investigational agents that target ligands. Investigational agents 22 novel ligands, including 77 novel ligands, including verified to have an NCT (National Clinical Trials) number in 3 combinations 22 combinations ClinicalTrials.gov were included in the dataset. In addition, there were 27 agents that had literature describing trials but an NCT number conference abstracts and patent applications. The drug–target mechanism could not be found. ClinicalTrials.gov was launched to the public in 2000 of action was carefully researched to exclude targets that induce owing to the requirements of the FDA Modernization Act of 1997 and is pleiotropic or other unknown effects. As the focus is on innovation of the registry of US clinical trials information. Registration requirements agents and targets, biosimilars were excluded from the dataset. Trial of trials expanded in 2007 after the FDA Amendments Act was passed and information for interventional studies with the primary purpose of hence the database has grown significantly since that time. Our subset of treatment was obtained from ClinicalTrials.gov for each agent. The NCT investigational agents targeting ligands spans from 1992, the first year in number, which signifies one record per unique study protocol, was used to which we identify one of the ligand-targeting agents began a registered distinguish individual clinical trials. The ‘study start date’ field was used clinical trial, to 15 June 2020. As the registration of clinical trials has been to identify when studies of novel agents and targets began as well as when inconsistent, particularly in the decades preceding and immediately trial phases were initiated. To assess whether an agent was still being following the turn of the century, our dataset may underestimate the actively investigated, the status of its clinical trials was first reviewed,
Recommended publications
  • Old and New Challenges in Uveitis Associated with Behçet's Disease
    Journal of Clinical Medicine Review Old and New Challenges in Uveitis Associated with Behçet’s Disease Julie Gueudry 1,* , Mathilde Leclercq 2, David Saadoun 3,4,5 and Bahram Bodaghi 6 1 Department of Ophthalmology, Hôpital Charles Nicolle, F-76000 Rouen, France 2 Department of Internal Medicine, Hôpital Charles Nicolle, F-76000 Rouen, France; [email protected] 3 Department of Internal Medicine and Clinical Immunology, AP-HP, Centre National de Références Maladies Autoimmunes et Systémiques Rares et Maladies Autoinflammatoires Rares, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France; [email protected] 4 Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology-Immunotherapy (I3), F-75005 Paris, France 5 Biotherapy (CIC-BTi), Hôpital Pitié-Salpêtrière, AP-HP, F-75651 Paris, France 6 Department of Ophthalmology, IHU FOReSIGHT, Sorbonne-AP-HP, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France; [email protected] * Correspondence: [email protected]; Tel.: +33-2-32-88-80-57 Abstract: Behçet’s disease (BD) is a systemic vasculitis disease of unknown origin occurring in young people, which can be venous, arterial or both, classically occlusive. Ocular involvement is particularly frequent and severe; vascular occlusion secondary to retinal vasculitis may lead to rapid and severe loss of vision. Biologics have transformed the management of intraocular inflammation. However, the diagnosis of BD is still a major challenge. In the absence of a reliable biological marker, diagnosis is based on clinical diagnostic criteria and may be delayed after the appearance of the onset sign. However, therapeutic management of BD needs to be introduced early in order to control inflammation, to preserve visual function and to limit irreversible structural damage.
    [Show full text]
  • Presentation
    Strategies to support the COVID-19 response in LMICs A virtual seminar series Therapeutics Landscape for COVID-19 Natasha Mubeen Chida, MD MSPH Associate Program Director, Infectious Disease Fellowship Program Assistant Professor, Division of Infectious Diseases Johns Hopkins University School of Medicine Objectives • Review biological plausibility of Remdesivir for SARS-CoV-2 treatment • Review clinical data on Remdesivir • Review biological plausibility of Hydroxychloroquine for SARS-CoV-2 treatment • Review clinical data on Hydroxychloroquine • Discuss cytokine release syndrome in COVID-19 • Discuss use of anti IL-6 blockade for management of CRS • State ongoing clinical trials for Remdesivir, hydroxychloroquine, IL-6 blockade Sample of COVID-19 Therapeutic Landscape Antivirals Immune Modulators Other Baloxavir Anakinra ACEI/ARB Chloroquine/Hydroxychloroquine Convalescent Plasma Ascorbic Acid DAS-181 Corticosteroids Azithromycin Favipiravir IVIG Epoprostenol Interferon Lenzilumab Indomethacin Lopinavir/Ritonavir Ruxolitinib Ivermectin Neuraminidase inhibitors Sarilumab Niclosamide Remdesivir Sirolimus Nitazoxanide Ribavarin Tocilizumab Statins Umifenovir Acalabrutinib SARS-CoV-2 Liu C, et al. ACS Cent Sci. doi: 10.1021/acscentsci.0c00272 (2020). Jiang S, Hillyer C, Du L. Trends Immunol doi: 10.1016/j.it.2020.03.007 (2020). “Antivirals” Remdesivir • 2013 Ebola outbreak • CDC/USAMRIDD/Gilead Sciences identified nucleoside lead à prodrug, RDV • Metabolized to active form, adenosine nucleoside analog • Interferes with RNA polymerase • Evades
    [Show full text]
  • Fig. L COMPOSITIONS and METHODS to INHIBIT STEM CELL and PROGENITOR CELL BINDING to LYMPHOID TISSUE and for REGENERATING GERMINAL CENTERS in LYMPHATIC TISSUES
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ 23 February 2012 (23.02.2012) WO 2U12/U24519ft ft A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 31/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US201 1/048297 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 18 August 201 1 (18.08.201 1) NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/374,943 18 August 2010 (18.08.2010) US kind of regional protection available): ARIPO (BW, GH, 61/441,485 10 February 201 1 (10.02.201 1) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/449,372 4 March 201 1 (04.03.201 1) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventor; and EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (71) Applicant : DEISHER, Theresa [US/US]; 1420 Fifth LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Avenue, Seattle, WA 98101 (US).
    [Show full text]
  • Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients
    antibodies Review Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients Andrew T. Lucas 1,2,3,*, Ryan Robinson 3, Allison N. Schorzman 2, Joseph A. Piscitelli 1, Juan F. Razo 1 and William C. Zamboni 1,2,3 1 University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; [email protected] (J.A.P.); [email protected] (J.F.R.); [email protected] (W.C.Z.) 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-919-966-5242; Fax: +1-919-966-5863 Received: 30 November 2018; Accepted: 22 December 2018; Published: 1 January 2019 Abstract: The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution.
    [Show full text]
  • Specialty Pipeline Monthly Update
    Specialty Pipeline Monthly Update Critical updates in an ever changing environment July 2018 New approvals ● Braftovi™ (encorafenib) + Mektovi® (binimetinib): Array BioPharma received U.S. Food and Drug Administration (FDA) approval for Braftovi and Mektovi, to be used in combination for patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation. The FDA also granted approval of the THxID BRAF Kit (bioMereieux) as a companion diagnostic for these therapeutics. The recommended doses are Mektovi 45 mg orally twice daily and Braftovi 450 mg orally once daily. ● Tibsovo (ivosidenib): Agios Pharmaceuticals received FDA approval for the treatment of relapsed or refractory acute myeloid leukemia (r/r/AML) with susceptible IDH1 mutation. Tibsovo is taken orally once daily until disease progression or unacceptable toxicity. It is estimated that 6 – 10% of AML patients have the IDH1 mutation. ● Nivestym™ (filgrastim-aafi): The FDA approved Pfizer’s Nivestym, a filgrastim biosimilar to Amgen’s Neupogen®, for the same indications as Neupogen, except for the treatment of patients acutely exposed to myelosuppressive doses of radiation (hematopoetic syndrome of acute radiation syndrome). Nivestym follows Sandoz’s biosimilar to Neupogen, Zarxio®, which has been available since 2015. New indications ● Cinryze® (C1 esterase inhibitor [human]): The FDA expanded the indication for Shire’s Cinryze to include pediatric patients with hereditary angioedema (HAE) to use for routine prophylaxis against HAE attacks in children 6 years of age and older. ● Keytruda (pembrolizumab): Merck received FDA approval for Keytruda for the treatment of adult and pediatric patients with refractory primary mediastinal B-cell lymphoma (PMBCL) who relapsed after, were refractory to, or were ineligible for bone marrow transplant and failed two or more prior lines of therapy.
    [Show full text]
  • RECENT MAJOR CHANGES------­ Age
    HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use ---------------------DOSAGE FORMS AND STRENGTHS---------------------­ CRYSVITA safely and effectively. See full prescribing information Injection: 10 mg/mL, 20 mg/mL, or 30 mg/mL in a single-dose vial (3) for CRYSVITA. -------------------------------CONTRAINDICATIONS-----------------------------­ ® CRYSVITA (burosumab-twza) injection, for subcutaneous use • With oral phosphate and/or active vitamin D analogs. (4) Initial U.S. Approval: 2018 • When serum phosphorus is within or above the normal range for -------------------------RECENT MAJOR CHANGES-----------------­ age. (4) Indications and Usage (1) 6/2020 • In patients with severe renal impairment or end stage renal Dosage and Administration, disease. (4) Tumor-induced Osteomalacia (2.4) 6/2020 ------------------------WARNINGS AND PRECAUTIONS----------------------­ Dosage and Administration, 25-Hydroxy Vitamin D • Hypersensitivity: Discontinue CRYSVITA if serious hypersensitivity Supplementation (2.7) 9/2019 reactions occur and initiate appropriate medical treatment. (5.1) • Hyperphosphatemia and Risk of Nephrocalcinosis: For patients -----------------------------INDICATIONS AND USAGE-------------------------­ already taking CRYSVITA, dose interruption and/or dose reduction CRYSIVTA is a fibroblast growth factor 23 (FGF23) blocking antibody may be required based on a patient’s serum phosphorus levels. indicated for: (5.2, 6.1) • The treatment of X-linked hypophosphatemia (XLH) in adult and • Injection Site Reactions: Administration of CRYSVITA may result in pediatric patients 6 months of age and older. (1.1) local injection site reactions. Discontinue CRYSVITA if severe • The treatment of FGF23-related hypophosphatemia in tumor- injection site reactions occur and administer appropriate medical induced osteomalacia (TIO) associated with phosphaturic treatment. (5.3, 6.1) mesenchymal tumors that cannot be curatively resected or localized in adult and pediatric patients 2 years of age and older.
    [Show full text]
  • Where Do Novel Drugs of 2016 Fit In?
    FORMULARY JEOPARDY: WHERE DO NOVEL DRUGS OF 2016 FIT IN? Maabo Kludze, PharmD, MBA, CDE, BCPS, Associate Director Elizabeth A. Shlom, PharmD, BCPS, SVP & Director Clinical Pharmacy Program Acurity, Inc. Privileged and Confidential August 15, 2017 Privileged and Confidential Program Objectives By the end of the presentation, the pharmacist or pharmacy technician participant will be able to: ◆ Identify orphan drugs and first-in-class medications approved by the FDA in 2016. ◆ Describe the role of new agents approved for use in oncology patients. ◆ Identify and discuss the role of novel monoclonal antibodies. ◆ Discuss at least two new medications that address public health concerns. Neither Dr. Kludze nor Dr. Shlom have any conflicts of interest in regards to this presentation. Privileged and Confidential 2016 NDA Approvals (NMEs/BLAs) ◆ Nuplazid (primavanserin) P ◆ Adlyxin (lixisenatide) ◆ Ocaliva (obeticholic acid) P, O ◆ Anthim (obitoxaximab) O ◆ Rubraca (rucaparib camsylate) P, O ◆ Axumin (fluciclovive F18) P ◆ Spinraza (nusinersen sodium) P, O ◆ Briviact (brivaracetam) ◆ Taltz (ixekizumab) ◆ Cinqair (reslizumab) ◆ Tecentriq (atezolizumab) P ◆ Defitelio (defibrotide sodium) P, O ◆ Venclexta (venetoclax) P, O ◆ Epclusa (sofosburvir and velpatasvir) P ◆ Xiidra (lifitigrast) P ◆ Eucrisa (crisaborole) ◆ Zepatier (elbasvir and grazoprevir) P ◆ Exondys 51 (eteplirsen) P, O ◆ Zinbyrta (daclizumab) ◆ Lartruvo (olaratumab) P, O ◆ Zinplava (bezlotoxumab) P ◆ NETSTPOT (gallium Ga 68 dotatate) P, O O = Orphan; P = Priority Review; Red = BLA Privileged and Confidential History of FDA Approvals Privileged and Confidential Orphan Drugs ◆FDA Office of Orphan Products Development • Orphan Drug Act (1983) – drugs and biologics . “intended for safe and effective treatment, diagnosis or prevention of rare diseases/disorders that affect fewer than 200,000 people in the U.S.
    [Show full text]
  • Review Anti-Cytokine Biologic Treatment Beyond Anti-TNF in Behçet's Disease
    Review Anti-cytokine biologic treatment beyond anti-TNF in Behçet’s disease A. Arida, P.P. Sfikakis First Department of Propedeutic Internal ABSTRACT and thrombotic complications (1-3). Medicine Laikon Hospital, Athens, Unmet therapeutic needs in Behçet’s Treatment varies according to type and University Medical School, Greece. disease have drawn recent attention to severity of disease manifestations. Cor- Aikaterini Arida, MD biological agents targeting cytokines ticosteroids, interferon-alpha and con- Petros P. Sfikakis, MD other than TNF. The anti-IL-17 anti- ventional immunosuppressive drugs, Please address correspondence to: body secukinumab and the anti-IL-2 such as azathioprine, cyclosporine-A, Petros P. Sfikakis, MD, receptor antibody daclizumab were not cyclophosphamide and methotrexate, First Department of Propedeutic superior to placebo for ocular Behçet’s and Internal Medicine, are used either alone or in combination Laikon Hospital, in randomised controlled trials, com- for vital organ involvement. During the Athens University Medical School, prising 118 and 17 patients, respec- last decade there has been increased use Ag Thoma, 17, tively. The anti-IL-1 agents anakinra of anti-TNF monoclonal antibodies in GR-11527 Athens, Greece. and canakinumab and the anti-IL-6 patients with BD who were refractory E-mail: [email protected] agent tocilizumab were given to iso- to conventional treatment or developed Received on June 7, 2014; accepted in lated refractory disease patients, who life-threatening complications (4, 5). revised form on September 17, 2014. were either anti-TNF naïve (n=9) or Anti-TNF treatment has been shown to Clin Exp Rheumatol 2014; 32 (Suppl. 84): experienced (n=18).
    [Show full text]
  • SPECIALTY MEDICATION ADMINISTRATION – SITE of CARE REVIEW GUIDELINES Policy Number: PHARMACY 276.15 T2 Effective Date: September 1, 2017
    UnitedHealthcare® Oxford Clinical Policy SPECIALTY MEDICATION ADMINISTRATION – SITE OF CARE REVIEW GUIDELINES Policy Number: PHARMACY 276.15 T2 Effective Date: September 1, 2017 Table of Contents Page Related Policies INSTRUCTIONS FOR USE .......................................... 1 Actemra® (Tocilizumab) Injection for Intravenous CONDITIONS OF COVERAGE ...................................... 1 Infusion BENEFIT CONSIDERATIONS ...................................... 2 Entyvio® (Vedolizumab) COVERAGE RATIONALE ............................................. 2 Exondys 51™ (Eteplirsen) DEFINITIONS .......................................................... 3 Home Health Care DESCRIPTION OF SERVICES ...................................... 3 Infliximab (Remicade®, Inflectra™, Renflexis™) CLINICAL EVIDENCE ................................................. 3 ® REFERENCES ........................................................... 4 Orencia (Abatacept) Injection for Intravenous POLICY HISTORY/REVISION INFORMATION ................. 5 Infusion Radicava™ (Edaravone) Simponi Aria® (Golimumab) Injection for Intravenous Infusion Soliris® (Eculizumab) INSTRUCTIONS FOR USE This Clinical Policy provides assistance in interpreting Oxford benefit plans. Unless otherwise stated, Oxford policies do not apply to Medicare Advantage members. Oxford reserves the right, in its sole discretion, to modify its policies as necessary. This Clinical Policy is provided for informational purposes. It does not constitute medical advice. The term Oxford includes Oxford
    [Show full text]
  • New Biological Therapies: Introduction to the Basis of the Risk of Infection
    New biological therapies: introduction to the basis of the risk of infection Mario FERNÁNDEZ RUIZ, MD, PhD Unit of Infectious Diseases Hospital Universitario “12 de Octubre”, Madrid ESCMIDInstituto de Investigación eLibraryHospital “12 de Octubre” (i+12) © by author Transparency Declaration Over the last 24 months I have received honoraria for talks on behalf of • Astellas Pharma • Gillead Sciences • Roche • Sanofi • Qiagen Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author Paul Ehrlich (1854-1915) • “side-chain” theory (1897) • receptor-ligand concept (1900) • “magic bullet” theory • foundation for specific chemotherapy (1906) • Nobel Prize in Physiology and Medicine (1908) (together with Metchnikoff) Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author 1981: B-1 antibody (tositumomab) anti-CD20 monoclonal antibody 1997: FDA approval of rituximab for the treatment of relapsed or refractory CD20-positive NHL 2001: FDA approval of imatinib for the treatment of chronic myelogenous leukemia Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author Functional classification of targeted (biological) agents • Agents targeting soluble immune effector molecules • Agents targeting cell surface receptors
    [Show full text]
  • Keeping up with FDA Drug Approvals: 60 New Drugs in 60 Minutes Elizabeth A
    Keeping Up with FDA Drug Approvals: 60 New Drugs in 60 Minutes Elizabeth A. Shlom, PharmD, BCPS Senior Vice President & Director Clinical Pharmacy Program | Acurity, Inc. Privileged and Confidential April 10, 2019 Privileged and Confidential Program Objectives By the end of the presentation, the pharmacist or pharmacy technician participant will be able to: ▪ Identify orphan drugs and first-in-class medications approved by the FDA in 2018. ▪ List five new drugs and their indications. ▪ Identify the place in therapy for three novel monoclonal antibodies. ▪ Discuss at least two new medications that address public health concerns. Dr. Shlom does not have any conflicts of interest in regard to this presentation. Both trade names and generic names will be discussed throughout the presentation Privileged and Confidential 2018 NDA Approvals (NMEs/BLAs) ▪ Lutathera (lutetium Lu 177 dotatate) ▪ Braftovi (encorafenib) ▪ Vizimpro (dacomitinib) ▪ Biktarvy (bictegravir, emtricitabine, ▪ TPOXX (tecovirimat) ▪ Libtayo (cemiplimab-rwic) tenofovir, ▪ Tibsovo (ivosidenib) ▪ Seysara (sarecycline) alafenamide) ▪ Krintafel (tafenoquine) ▪ Nuzyra (omadacycline) ▪ Symdeko (tezacaftor, ivacaftor) ▪ Orilissa (elagolix sodium) ▪ Revcovi (elapegademase-lvir) ▪ Erleada (apalutamide) ▪ Omegaven (fish oil triglycerides) ▪ Tegsedi (inotersen) ▪ Trogarzo (ibalizumab-uiyk) ▪ Mulpleta (lusutrombopag) ▪ Talzenna (talazoparib) ▪ Ilumya (tildrakizumab-asmn) ▪ Poteligeo (mogamulizumab-kpkc) ▪ Xofluza (baloxavir marboxil) ▪ Tavalisse (fostamatinib disodium) ▪ Onpattro (patisiran)
    [Show full text]
  • Pharmaceuticals and Medical Devices Safety Information No
    Pharmaceuticals and Medical Devices Safety Information No. 370 February 2020 Table of Contents 1. For the Promotion of Pediatric Clinical Development (development and safety measures) through Active Use of Medical Information Database (Part 1) Maintaining the Pediatric Medical Data Collecting System and Examples of a Survey on the Drug Use in Children through Active Use of the System ..................................... 4 2. Post-Marketing Information Collection and Malfunctions Report from Medical Institutions for Medical Devices ................................ 9 3. Important Safety Information .............................................................14 1. Ipragliflozin L-Proline ............................................................................... 14 2. Olmesartan medoxomil ........................................................................... 16 3. Secukinumab (genetical recombination) .............................................. 19 4. Revision of Precautions (No. 310) ...................................................21 [1] Levodopa, [2] Levodopa/carbidopa hydrate, [3] Levodopa/benserazide hydrochloride (and 6 others) 5. List of Products Subject to Early Post-marketing Phase Vigilance ............................................24 Access to the latest safety information is available via the This Pharmaceuticals and Medical Devices Safety PMDA Medi-navi. Information (PMDSI) publication is issued reflective of safety information collected by the Ministry of Health, Labour and Welfare (MHLW). It is intended to
    [Show full text]